1
|
Monteiro Neto JR, de Souza GF, Dos Santos VM, de Holanda Paranhos L, Ribeiro GD, Magalhães RSS, Queiroz DD, Eleutherio ECA. SOD1, A Crucial Protein for Neural Biochemistry: Dysfunction and Risk of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2025:10.1007/s12035-025-05067-1. [PMID: 40419749 DOI: 10.1007/s12035-025-05067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Neurons are very susceptible to oxidative stress. They are the major consumers of oxygen in the brain, which is used to provide energy through oxidative phosphorylation, the major source of reactive oxygen species (ROS). In addition, compared to other tissues, neurons have lower levels of catalase and glutathione and increased susceptibility to lipid peroxidation due to the elevated levels of unsaturated fatty acids. These characteristics increasingly emphasize the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) to maintain neuronal redox homeostasis. In the last decade, SOD1 gained additional roles which are also important to the metabolism of neurons. SOD1 controls the production of ROS by the electron transport chain, activates the expression of genes involved in the protection against oxidative stress, and regulates the shift from oxidative to fermentative metabolism involved in astrocyte-neuron metabolic cooperation. Furthermore, impaired interaction between the phosphatase calcineurin and SOD1 seems to result in TDP-43 hyperphosphorylation, the main proteinopathy found in amyotrophic lateral sclerosis (ALS) patients. However, this enzyme is ubiquitously expressed, mutated, and damaged forms of SOD1 cause disease in motor neurons. In this review, we discuss the pivotal functions of SOD1 in neuronal biochemistry and their implications for ALS.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriel Freitas de Souza
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Vanessa Mattos Dos Santos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Luan de Holanda Paranhos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriela Delaqua Ribeiro
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rayne Stfhany Silva Magalhães
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniela Dias Queiroz
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Elis Cristina Araujo Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
2
|
Behtash F, Ramezani R, Seyed Hajizadeh H, Eghlima G. Optimum concentrations of potassium and zinc for better performance, nutritional, and biochemical quality of hydroponically cultivated Spinacia oleracea Cv. Virofly. Sci Rep 2025; 15:12845. [PMID: 40229359 PMCID: PMC11997224 DOI: 10.1038/s41598-025-96911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
In order to evaluate micro and macronutrient balance in vegetable growth, a study on greenness, yield, nutritional value, as well as biochemical status in spinach, has been conducted in a greenhouse, utilising the different concentrations of zinc (Zn) and potassium (K) in the nutrient solution. So, three concentrations of Zn (0.22, 5, and 10 mg L- 1) and K (39, 78, and 117 mg L- 1) were applied to hydroponically grown spinach (Spinacia oleracea cv. Virofly) through a factorial experiment based on a randomized complete design with three replications. The results showed that along with increasing concentrations of Zn and K in a nutrient solution, chlorophyll index and plant performance were increased although Zn showed more influence than K. The maximum plant yield was observed at 117 mg L- 1 of K in combination with both concentrations of Zn (5 and 10 mg L- 1). Along with an increase in Zn and K concentrations, the amount of nutrients including Na, Fe, Cu, Ca, Mn, and Mg decreased compared to the control level of Zn and K in nutrient solution except for Zn and K, which increased due to the Zn and K, respectively. Increased levels of Zn and K caused to decrease in malondialdehyde (MDA) content by 51% and 34%, respectively. Hydrogen peroxide (H2O2) was decreased also by 29% and 14% at 10 and 117 mg L- 1 concentration of Zn and K while higher levels of Zn and K in the nutrient solution, increased protein content by 1.4 and 1.2 folded compared to the control plants. The maximum activity of superoxide dismutase (SOD) was recorded in spinach treated with 10 mg L- 1 of Zn in combination independent to the K concentrations. The activity of ascorbate peroxidase (APX) was also affected by Zn as it showed up to 2.1 folded increment at 10 mg L- 1 Zn compared to the 0.22 mg L- 1 concentration. In general, an increase in Zn and K concentration in the nutrient solution decreased the absorption of measured nutrients except for Zn and K in spinach leaves. The effect of increased levels of Zn was more obvious than that of potassium in qualitative and biochemical traits of spinach specially at 5 mg L- 1 concentration. These findings suggest that supplementing hydroponic nutrient solutions with 5 mg L- 1 Zn in combination with 78 mg L- 1 K can lead to the better quality and tolerance of the plant, offering a promising strategy to enhance crop productivity and nutritional value in hydroponically cultivated spinach.
Collapse
Affiliation(s)
- Farhad Behtash
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, 55136-553, Maragheh, Iran.
| | - Raana Ramezani
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, 55136-553, Maragheh, Iran
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, 55136-553, Maragheh, Iran.
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
4
|
Basith S, Manavalan B, Lee G. Unveiling local and global conformational changes and allosteric communications in SOD1 systems using molecular dynamics simulation and network analyses. Comput Biol Med 2024; 168:107688. [PMID: 37988788 DOI: 10.1016/j.compbiomed.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder affecting nerve cells in the brain and spinal cord that is caused by mutations in the superoxide dismutase 1 (SOD1) enzyme. ALS-related mutations cause misfolding, dimerisation instability, and increased formation of aggregates. The underlying allosteric mechanisms, however, remain obscure as far as details of their fundamental atomistic structure are concerned. Hence, this gap in knowledge limits the development of novel SOD1 inhibitors and the understanding of how disease-associated mutations in distal sites affect enzyme activity. METHODS We combined microsecond-scale based unbiased molecular dynamics (MD) simulation with network analysis to elucidate the local and global conformational changes and allosteric communications in SOD1 Apo (unmetallated form), Holo, Apo_CallA (mutant and unmetallated form), and Holo_CallA (mutant form) systems. To identify hotspot residues involved in SOD1 signalling and allosteric communications, we performed network centrality, community network, and path analyses. RESULTS Structural analyses showed that unmetallated SOD1 systems and cysteine mutations displayed large structural variations in the catalytic sites, affecting structural stability. Inter- and intra H-bond analyses identified several important residues crucial for maintaining interfacial stability, structural stability, and enzyme catalysis. Dynamic motion analysis demonstrated more balanced atomic displacement and highly correlated motions in the Holo system. The rationale for structural disparity observed in the disulfide bond formation and R143 configuration in Apo and Holo systems were elucidated using distance and dihedral probability distribution analyses. CONCLUSION Our study highlights the efficiency of combining extensive MD simulations with network analyses to unravel the features of protein allostery.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
6
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
7
|
Pang YJ, Li XC, Siegbahn PEM, Chen GJ, Tan HW. Theoretical Study of the Catalytic Mechanism of the Cu-Only Superoxide Dismutase. J Phys Chem B 2023. [PMID: 37196177 DOI: 10.1021/acs.jpcb.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The catalytic mechanisms for the wild-type and the mutated Cu-only superoxide dismutase were studied using the hybrid density functional B3LYP and a quantum chemical cluster approach. Optimal protonation states of the active site were examined for each stage of the catalytic cycle. For both the reductive and the oxidative half-reactions, the arrival of the substrate O2•- was found to be accompanied by a charge-compensating H+ with exergonicities of -15.4 kcal·mol and -4.7 kcal·mol, respectively. The second-sphere Glu-110 and first-sphere His-93 were suggested to be the transient protonation site for the reductive and the oxidative half-reactions, respectively, which collaborates with the hydrogen bonding water chain to position the substrate near the redox-active copper center. For the reductive half-reaction, the rate-limiting step was found to be the inner-sphere electron transfer from the partially coordinated O2•- to CuII with a barrier of 8.1 kcal·mol. The formed O2 is released from the active site with an exergonicity of -14.9 kcal·mol. For the oxidative half-reaction, the inner-sphere electron transfer from CuI to the partially coordinated O2•- was found to be accompanied by the proton transfer from the protonated His-93 and barrierless. The rate-limiting step was found to be the second proton transfer from the protonated Glu-110 to HO2- with a barrier of 7.3 kcal·mol. The barriers are reasonably consistent with experimental activities, and a proton-transfer rate-limiting step in the oxidative half-reaction could explain the experimentally observed pH-dependence. For the E110Q CuSOD, Asp-113 was suggested to be likely to serve as the transient protonation site in the reductive half-reaction. The rate-limiting barriers were found to be 8.0 and 8.6 kcal·mol, respectively, which could explain the slightly lower performance of E110X mutants. The results were found to be stable, with respect to the percentage of exact exchange in B3LYP.
Collapse
Affiliation(s)
- Yun-Jie Pang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Xi-Chen Li
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Guang-Ju Chen
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| |
Collapse
|
8
|
Akhter S, Khursheed S, Arjmand F, Tabassum S. Revelation of potential bioactive water-soluble Boc-L-valine and imidazole appended metal complexes {M = Co(II), Cu(II) & Zn(II)}: synthesis, characterization, ct-DNA binding, pBR322 cleavage, SOD mimetic, and cytotoxicity studies. Dalton Trans 2023; 52:5141-5154. [PMID: 36961247 DOI: 10.1039/d2dt03647a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Bio-compatible water-soluble conjugates of Co(II), Cu(II) and Zn(II) (1-3), [Co(Boc-L-valine)2(imidazole)2], [Cu(Boc-L-valine)2(imidazole)2], and [Zn(Boc-L-valine)2(imidazole)2], were synthesized and comprehensively characterized by various spectroscopic techniques (UV-visible, FT-IR, ESI-MS, EPR, 1H NMR, 13C NMR) and single crystal X-ray diffraction which showed that the complexes 1-3 crystallized in an orthorhombic crystal system, in a slightly distorted octahedral geometry having the space group P21212. Density functional theory calculations were performed to correlate the energy of frontier molecular orbitals with the stability and reactivity of the complexes. In vitro DNA binding interaction studies of complexes were performed by employing various biophysical techniques and their corroborative results revealed (i) the electrostatic mode of binding in the groove region of DNA, (ii) pBR322 plasmid cleavage at a low concentration of 5-12.5 μM via an oxidative pathway in complexes 1 and 2 and the hydrolytic mechanism in the case of 3, (iii) changes in the 1H NMR chemical shift values of the NH2 group of GMP after interaction with complex 3, (iv) alteration in the EPR parameters of complex 2 after complexation with DNA, (v) SOD mimetic activity of complex 2 with the IC50 value of 2.08 μM and (vi) a good and selective cytotoxicity profile against chemo-resistant MCF-7 and MDA-MB-231 cancer cell lines by complex 1. Molecular docking studies complemented the spectroscopic results and confirmed the electrostatic interaction of complexes in the groove region of DNA.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Salman Khursheed
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Evidence and Metabolic Implications for a New Non-Canonical Role of Cu-Zn Superoxide Dismutase. Int J Mol Sci 2023; 24:ijms24043230. [PMID: 36834640 PMCID: PMC9966940 DOI: 10.3390/ijms24043230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Copper-zinc superoxide dismutase 1 (SOD1) has long been recognized as a major redox enzyme in scavenging superoxide radicals. However, there is little information on its non-canonical role and metabolic implications. Using a protein complementation assay (PCA) and pull-down assay, we revealed novel protein-protein interactions (PPIs) between SOD1 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) or epsilon (YWHAE) in this research. Through site-directed mutagenesis of SOD1, we studied the binding conditions of the two PPIs. Forming the SOD1 and YWHAE or YWHAZ protein complex enhanced enzyme activity of purified SOD1 in vitro by 40% (p < 0.05) and protein stability of over-expressed intracellular YWHAE (18%, p < 0.01) and YWHAZ (14%, p < 0.05). Functionally, these PPIs were associated with lipolysis, cell growth, and cell survival in HEK293T or HepG2 cells. In conclusion, our findings reveal two new PPIs between SOD1 and YWHAE or YWHAZ and their structural dependences, responses to redox status, mutual impacts on the enzyme function and protein degradation, and metabolic implications. Overall, our finding revealed a new unorthodox role of SOD1 and will provide novel perspectives and insights for diagnosing and treating diseases related to the protein.
Collapse
|
10
|
Waheed SO, Varghese A, DiCastri I, Kaski B, LaRouche C, Fields GB, Karabencheva-Christova TG. Mechanism of the Early Catalytic Events in the Collagenolysis by Matrix Metalloproteinase-1. Chemphyschem 2023; 24:e202200649. [PMID: 36161746 DOI: 10.1002/cphc.202200649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Indexed: 02/04/2023]
Abstract
Metalloproteinase-1 (MMP-1) catalyzed collagen degradation is essential for a wide variety of normal physiological processes, while at the same time contributing to several diseases in humans. Therefore, a comprehensive understanding of this process is of great importance. Although crystallographic and spectroscopic studies provided fundamental information about the structure and function of MMP-1, the precise mechanism of collagen degradation especially considering the complex and flexible structure of the substrate, remains poorly understood. In addition, how the protein environment dynamically reorganizes at the atomic scale into a catalytically active state capable of collagen hydrolysis remains unknown. In this study, we applied experimentally-guided multiscale molecular modeling methods including classical molecular dynamics (MD), well-tempered (WT) classical metadynamics (MetD), combined quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM MetD simulations to explore and characterize the early catalytic events of MMP-1 collagenolysis. Importantly the study provided a complete atomic and dynamic description of the transition from the open to the closed form of the MMP-1•THP complex. Notably, the formation of catalytically active Michaelis complex competent for collagen cleavage was characterized. The study identified the changes in the coordination state of the catalytic zinc(II) associated with the conformational transformation and the formation of catalytically productive ES complex. Our results confirm the essential role of the MMP-1 catalytic domain's α-helices (hA, hB and hC) and the linker region in the transition to the catalytically competent ES complex. Overall, the results provide unique mechanistic insight into the conformational transformations and associated changes in the coordination state of the catalytic zinc(II) that would be important for the design of effective MMP-1 inhibitors.
Collapse
Affiliation(s)
- Sodiq O Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Isabella DiCastri
- Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Brenden Kaski
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Ciara LaRouche
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida, 33458, USA
| | | |
Collapse
|
11
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
12
|
Sanyal RP, Prashar V, Jawali N, Sunkar R, Misra HS, Saini A. Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864330. [PMID: 35707617 PMCID: PMC9191229 DOI: 10.3389/fpls.2022.864330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.
Collapse
Affiliation(s)
- Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Evaluation of Zn2+- and Cu2+-Binding Affinities of Native Cu,Zn-SOD1 and Its G93A Mutant by LC-ICP MS. Molecules 2022; 27:molecules27103160. [PMID: 35630637 PMCID: PMC9142952 DOI: 10.3390/molecules27103160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
The tight binding of Cu and Zn ions to superoxide dismutase 1 (SOD1) maintains the protein stability, associated with amyotrophic lateral sclerosis (ALS). Yet, the quantitative studies remain to be explored for the metal-binding affinity of wild-type SOD1 and its mutants. We have investigated the demetallation of Cu,Zn-SOD1 and its ALS-related G93A mutant in the presence of different standard metal ion chelators at varying temperatures by using an LC-ICP MS-based approach and fast size-exclusion chromatography. Our results showed that from the slow first-order kinetics both metal ions Zn2+ and Cu2+ were released simultaneously from the protein at elevated temperatures. The rate of the release depends on the concentration of chelating ligands but is almost independent of their metal-binding affinities. Similar studies with the G93A mutant of Cu,Zn-SOD1 revealed slightly faster metal-release. The demetallation of Cu,Zn-SOD1 comes always to completion, which hindered the calculation of the KD values. From the Arrhenius plots of the demetallation in the absence of chelators ΔH‡ = 173 kJ/mol for wt and 191 kJ/mol for G93A mutant Cu,Zn-SOD1 was estimated. Obtained high ΔH values are indicative of the occurrence of protein conformational changes before demetallation and we concluded that Cu,Zn-SOD1 complex is in native conditions kinetically inert. The fibrillization of both forms of SOD1 was similar.
Collapse
|
14
|
Srinivasan E, Ram V, Rajasekaran R. A review on Huntington protein Insight into protein aggregation and therapeutic interventions. Curr Drug Metab 2022; 23:260-282. [PMID: 35319359 DOI: 10.2174/1389200223666220321103942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) is a distressing, innate neurodegenerative disease that descends from CAG repeat expansion in the huntingtin gene causing behavioral changes, motor dysfunction, and dementia in children and adults. Mutation in huntingtin (HTT) protein has been suggested to cause neuron loss in the cortex and striatum through various mechanisms including abnormal regulation of transcription, proteasomal dysfunction, post-translational modification, and other events, regulating toxicity. Pathogenesis of HD involves cleavage of the huntingtin protein followed by the neuronal accumulation of its aggregated form. Several research groups made possible efforts to reduce huntingtin gene expression, protein accumulation, and protein aggregation using inhibitors and molecular chaperones as developing drugs against HD. Herein, we review the mechanism proposed towards the formation of HTT protein aggregation and the impact of therapeutic strategies for the treatment of HD.
Collapse
Affiliation(s)
- E Srinivasan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602105, Tamil Nadu, India
| | - Vavish Ram
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| |
Collapse
|
15
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
16
|
Butler KE, Takinami Y, Rainczuk A, Baker ES, Roberts BR. Utilizing Ion Mobility-Mass Spectrometry to Investigate the Unfolding Pathway of Cu/Zn Superoxide Dismutase. Front Chem 2021; 9:614595. [PMID: 33634076 PMCID: PMC7900566 DOI: 10.3389/fchem.2021.614595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Native mass spectrometry has emerged as a powerful tool for structural biology as it enables the evaluation of molecules as they occur in their physiological conditions. Ion mobility spectrometry-mass spectrometry (IMS-MS) has shown essential in these analyses as it allows the measurement of the shape of a molecule, denoted as its collision cross section (CCS), and mass. The structural information garnered from native IMS-MS provides insight into the tertiary and quaternary structure of proteins and can be used to validate NMR or crystallographic X-ray structures. Additionally, due to the rapid nature (millisecond measurements) and ability of IMS-MS to analyze heterogeneous solutions, it can be used to address structural questions not possible with traditional structural approaches. Herein, we applied multiple solution conditions to systematically denature bovine Cu/Zn-superoxide dismutase (SOD1) and assess its unfolding pathway from the holo-dimer to the holo-monomer, single-metal monomer, and apo-monomer. Additionally, we compared and noted 1–2% agreement between CCS values from both drift tube IMS and trapped IMS for the SOD1 holo-monomer and holo-dimer. The observed CCS values were in excellent agreement with computational CCS values predicted from the homo-dimer crystal structure, showcasing the ability to use both IMS-MS platforms to provide valuable structural information for molecular modeling of protein interactions and structural assessments.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | | | | | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neuroscience, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
17
|
Huang L, Fang Z, Gao J, Wang J, Li Y, Sun L, Wang Y, Liao J, Gooneratne R. Protective role of l-threonine against cadmium toxicity in Saccharomyces cerevisiae. J Basic Microbiol 2021; 61:339-350. [PMID: 33570201 DOI: 10.1002/jobm.202100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Environment and food contamination with cadmium (Cd) can cause serious toxicity, posing a severe threat to agricultural production and human health. However, how amino acids contribute to defenses against oxidative stress caused by Cd in cells is not fully understood. As a model eukaryote with a relatively clear genetic background, Saccharomyces cerevisiae has been commonly used in Cd toxicity research. To gain insight into Cd toxicity and cell defenses against it, 20 amino acids were screened for protective roles against Cd stress in S. cerevisiae. The results showed that threonine (Thr, T) had the strongest protective effect against Cd-induced mortality and membrane damage in the cells. Compared to the antioxidant vitamin C (VC), Thr exhibited a higher efficacy in restoring the superoxide dismutase (SOD) activity that was inhibited by Cd but not by H2 O2 in vivo. Thr exhibited evident DPPH (2,2-diphenyl-1-picrylhydrazyl) activity but weak ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-9 sulfonic acid)) scavenging activity, giving it a weaker effect against Cd-induced lipid peroxidation and superoxide radical O2- , compared to VC. More importantly, compared to the chelating agent EDTA, Thr showed stronger chelation of Cd, giving it a stronger protective effect on SOD against Cd than VC in vitro. The results of the in vivo and in vitro experiments revealed that the role Thr plays in cell defenses against Cd may be attributed to its protection of the SOD enzyme, predominantly through the preferential chelation of Cd. Our results provide insights into the protective mechanisms of amino acid Thr that ameliorate Cd toxicity and suggest that a supplement of Thr might help to reduce Cd-induced oxidative damage.
Collapse
Affiliation(s)
- Linru Huang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Jian Gao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Jingwen Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Jianmeng Liao
- Institute for Food and Drug Control, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| |
Collapse
|
18
|
da Silva TU, Pougy KDC, da Silva ET, Lima CHDS, Machado SDP. Electronic investigation of the effect of substituents on the SOD mimic activity of copper (II) complexes with 8-hydroxyquinoline-derived ligands. J Inorg Biochem 2021; 217:111359. [PMID: 33578252 DOI: 10.1016/j.jinorgbio.2021.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/04/2023]
Abstract
Density functional theory (DFT) calculations were used to study the superoxide dismutase (SOD) mimic activity of two Cu2+ complexes with ligands derived from 8-hydroxyquinoline (8-HQ). Electron-donating and -withdrawing substituent groups were inserted into the structures to verify changes in the reactivity. The theoretical parameters obtained were compared and validated with the experimental data available. The results showed that the reduction process occurs with greater participation of the 8-HQ ligand and the oxidation step occurs with participation of the copper atom in the complexes, where the electron received during the reduction step is used to reduce the Cu2+ to Cu+. The calculated electronic affinity showed good correlation with the experimental mimetic activity, and the analysis of this property, of total charge and of molecular orbitals indicated an increase in the mimetic activity with the insertion of electron-withdrawing substituent groups in the structures.
Collapse
Affiliation(s)
- Talis Uelisson da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil.
| | - Karina de Carvalho Pougy
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| | - Everton Tomaz da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil; Instituto Federal do Rio de Janeiro, 25050-100 Caxias, RJ, Brazil
| | | | - Sérgio de Paula Machado
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Manieri TM, Sensi SL, Squitti R, Cerchiaro G. Structural effects of stabilization and complexation of a zinc-deficient superoxide dismutase. Heliyon 2021; 7:e06100. [PMID: 33553758 PMCID: PMC7848637 DOI: 10.1016/j.heliyon.2021.e06100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/01/2022] Open
Abstract
The activity of the erythrocyte Cu2,Zn2-superoxide dismutase (SOD1) is altered in Alzheimer's disease (AD) patients. These patients, compared to healthy subjects, exhibit low plasmatic zinc (Zn) levels in the presence of high plasmatic levels of copper (Cu). SOD1 is an antioxidant enzyme characterized by the presence of two metal ions, Cu and Zn, on its active site. On the SOD1, Cu exerts a catalytic role, and Zn serves a structural function. In this study, we generated a modified SOD1 characterized by an altered capacity to complex Zn. The study investigates the metal-binding dynamics of the enzyme, estimating the stability of a SOD1 protein lacking the appropriate Zn site complexation. Our mutant SOD1 possesses a double amino acid mutation (T135S and K136E) that interferes with the correct Zn site complexation. We found that the protein mutations produce unstable Zn coordination and lower enzymatic activity even when complexed with Cu. Analysis with circular dichroism (CD) spectra on metal titration showed a considerable difference between the two Zn entries in the native dimeric enzyme, and Cu presents a simultaneous entrance in the protein. Otherwise, the mutant T135S,K136E-SOD1 exhibited Zn and Cu complexation instability, being a useful in vitro model to study the SOD1 behavior in AD patients.
Collapse
Affiliation(s)
- Tania M. Manieri
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, Bloco B, 09210-580, Santo André, SP, Brazil
| | - Stefano L. Sensi
- Center for Advanced Studies and Technology - CAST, University G. d'Annunzio of Chieti-Pescara, Italy
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders – iMIND, University of California - Irvine, USA
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, Bloco B, 09210-580, Santo André, SP, Brazil
| |
Collapse
|
20
|
Reilley DJ, Fuller JT, Nechay MR, Victor M, Li W, Ruberry JD, Mujika JI, Lopez X, Alexandrova AN. Toxic and Physiological Metal Uptake and Release by Human Serum Transferrin. Biophys J 2020; 118:2979-2988. [PMID: 32497515 PMCID: PMC7300305 DOI: 10.1016/j.bpj.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022] Open
Abstract
An atomistic understanding of metal transport in the human body is critical to anticipate the side effects of metal-based therapeutics and holds promise for new drugs and drug delivery designs. Human serum transferrin (hTF) is a central part of the transport processes because of its ubiquitous ferrying of physiological Fe(III) and other transition metals to tightly controlled parts of the body. There is an atomistic mechanism for the uptake process with Fe(III), but not for the release process, or for other metals. This study provides initial insight into these processes for a range of transition metals-Ti(IV), Co(III), Fe(III), Ga(III), Cr(III), Fe(II), Zn(II)-through fully atomistic, extensive quantum mechanical/discrete molecular dynamics sampling and provides, to our knowledge, a new technique we developed to calculate relative binding affinities between metal cations and the protein. It identifies protonation of Tyr188 as a trigger for metal release rather than protonation of Lys206 or Lys296. The study identifies the difficulty of metal release from hTF as potentially related to cytotoxicity. Simulations identify a few critical interactions that stabilize the metal binding site in a flexible, nuanced manner.
Collapse
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Jack T Fuller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Michael R Nechay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Marie Victor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Institut Lumire Matire, Villeurbanne, France
| | - Wei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Josiah D Ruberry
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Jon I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia, International Physics Center, Donostia, Euskadi, Spain
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia, International Physics Center, Donostia, Euskadi, Spain
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
21
|
Nucleation and kinetics of SOD1 aggregation in human cells for ALS1. Mol Cell Biochem 2020; 466:117-128. [PMID: 32056106 DOI: 10.1007/s11010-020-03693-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
Aberrant structural formations of Cu/Zn superoxide dismutase enzyme (SOD1) are the probable mechanism by which circumscribed mutations in the SOD1 gene cause familial amyotrophic lateral sclerosis (ALS1). SOD1 forms aberrant structures which can proceed by nucleation to insoluble aggregates. Here, the SOD1 aggregation reaction was investigated predominantly by time-course studies on ALS1 variants G85R, G37R, D101G, and D101N in human embryonic kidney cells (HEK293FT), with analysis by detergent ultracentrifugation extractions and high-resolution PAGE methodologies. Nucleation was found to be pseudo-zeroth order and dependent on time and concentration at constant 37.0 °C and pH 7.4. The predominant subsets of the total SOD1 expression set which comprised the nucleation phase were both soluble and insoluble inactive monomers, trimers, and hexamers with reduced intra-disulfide bonds. Superoxide exposure via paraquat initiated the formation of SOD1 trimers in untransfected SH-SY5Y cells and increased the aggregation propensity of G85R in HEK293FT. These data show the kinetic formation of aberrant SOD1 subsets implicated in ALS1 and indicate that superoxide substrate may initiate its radical polymerization. In an instance of the utility of methodological reductionism in molecular theory: though many ALS1 variants retain their global enzymatic activity, the SOD1 subsets most implicated in causing ALS1 do not retain their specific activity.
Collapse
|
22
|
Reilley DJ, Hennefarth MR, Alexandrova AN. The Case for Enzymatic Competitive Metal Affinity Methods. ACS Catal 2020; 10:2298-2307. [PMID: 34012720 PMCID: PMC8130888 DOI: 10.1021/acscatal.9b04831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Matthew R Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
23
|
da Silva TU, da Silva ET, Lima CHDS, Machado SDP. Theoretical study of binuclear Cu-M complexes (M = Zn, Cu, Ni) with p-xylylene-bridged-bis(1,4,7-triazacyclononane) ligands: Possible CuZnSOD mimics. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Souza PT, Thallmair S, Marrink SJ, Mera-Adasme R. An Allosteric Pathway in Copper, Zinc Superoxide Dismutase Unravels the Molecular Mechanism of the G93A Amyotrophic Lateral Sclerosis-Linked Mutation. J Phys Chem Lett 2019; 10:7740-7744. [PMID: 31747286 PMCID: PMC6926953 DOI: 10.1021/acs.jpclett.9b02868] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/20/2019] [Indexed: 05/29/2023]
Abstract
Several different mutations of the protein copper, zinc superoxide dismutase (SOD1) produce the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The molecular mechanism by which the diverse mutations converge to a similar pathology is currently unknown. The electrostatic loop (EL) of SOD1 is known to be affected in all of the studied ALS-linked mutations of SOD1. In this work, we employ a multiscale simulation approach to show that this perturbation corresponds to an increased probability of the EL detaching from its native position, exposing the metal site of the protein to water. From extensive atomistic and coarse-grained molecular dynamics (MD) simulations, we identify an allosteric pathway that explains the action of the distant G93A mutation on the EL. Finally, we employ quantum mechanics/molecular mechanics MD simulations to show that the opening of the EL decreases the Zn(II) affinity of the protein. As the loss of Zn(II) is at the center of several proposed pathogenic mechanisms in SOD1-linked ALS, the structural effect identified here not only is in agreement with the experimental data but also places the opening of the electrostatic loop as the possible main pathogenic effect for a significant number of ALS-linked SOD1 mutations.
Collapse
Affiliation(s)
- Paulo
C. T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Raúl Mera-Adasme
- Departamento
de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins
3363, 9170022 Estacion
Central, Chile
| |
Collapse
|
25
|
Klein RD, Nogueira LS, Domingos-Moreira FXV, Gomes Costa P, Bianchini A, Wood CM. Effects of sublethal Cd, Zn, and mixture exposures on antioxidant defense and oxidative stress parameters in early life stages of the purple sea urchin Strongylocentrotus purpuratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105338. [PMID: 31711008 DOI: 10.1016/j.aquatox.2019.105338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Oxidative stress parameters were evaluated during the first 72 h of embryonic development of purple sea urchin Strongylocentrotus purpuratus continuously exposed to control conditions, to cadmium alone (Cd, 30 μg/L), to zinc alone (Zn, 9 μg/L) or to a Cd (28 μg/L) plus Zn (9 μg/L) mixture. These sublethal concentrations represent ∼ 10% of the acute EC50. Bioaccumulation, antioxidant capacity against peroxyl radicals (ACAP), total glutathione (GSH) level, glutathione-S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PDH) and superoxide dismutase (SOD) activity, and lipid peroxidation (LPO) were analyzed at 24 h (blastula), 48 h (gastrula), and 72 h (pluteus) stages of development. Zinc (an essential metal) was well-regulated, whereas Cd (non-essential) bioaccumulated and whole-body [Cd] increased from blastula to pluteus stage in sea urchin larvae. In controls, ACAP progressively declined from 24 h to 72 h, while LPO reciprocally increased, but other parameters did not change. Cd alone was more potent than Zn alone as a pro-oxidant, with the major effects being decreases in SOD activity and parallel increases in LPO throughout development; GST activity also increased at 24 h. Zn alone caused only biphasic disturbances of ACAP. In all cases, the simultaneous presence of the other metal prevented the effects, and there was no instance where the oxidative stress response in the presence of the Cd/Zn mixture was greater than in the presence of either Cd or Zn alone. Therefore the sublethal effects of joint exposures were always less than additive or even protective, in agreement with classical toxicity data. Furthermore, our results indicate that SOD and Zn can play important roles in protecting sea urchin embryos against Cd-induced lipid peroxidation.
Collapse
Affiliation(s)
- Roberta Daniele Klein
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil; Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada.
| | - Lygia S Nogueira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada
| | - Fabíola Xochilt Valdez Domingos-Moreira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecotoxicologia Aquática na Amazônia, Manaus, Amazonas, 69067-375, Brazil; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil; Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - Chris M Wood
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada; McMaster University Dept. of Biology, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
26
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
27
|
Pathways of electron transfer and proton translocation in the action of superoxide dismutase dimer. Biochem Biophys Res Commun 2019; 514:772-776. [DOI: 10.1016/j.bbrc.2019.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 11/21/2022]
|
28
|
Nóbrega CS, Pauleta SR. Reduction of hydrogen peroxide in gram-negative bacteria - bacterial peroxidases. Adv Microb Physiol 2019; 74:415-464. [PMID: 31126534 DOI: 10.1016/bs.ampbs.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacteria display an array of enzymes to detoxify reactive oxygen species that cause damage to DNA and to other biomolecules leading to cell death. Hydrogen peroxide is one of these species, with endogenous and exogenous sources, such as lactic acid bacteria, oxidative burst of the immune system or chemical reactions at oxic-anoxic interfaces. The enzymes that detoxify hydrogen peroxide will be the focus of this review, with special emphasis on bacterial peroxidases that reduce hydrogen peroxide to water. Bacterial peroxidases are periplasmic cytochromes with either two or three c-type haems, which have been classified as classical and non-classical bacterial peroxidases, respectively. Most of the studies have been focus on the classical bacterial peroxidases, showing the presence of a reductive activation in the presence of calcium ions. Mutagenesis studies have clarified the catalytic mechanism of this enzyme and were used to propose an intramolecular electron transfer pathway, with far less being known about the intermolecular electron transfer that occurs between reduced electron donors and the enzyme. The physiological function of these enzymes was not very clear until it was shown, for the non-classical bacterial peroxidase, that this enzyme is required for the bacteria to use hydrogen peroxide as terminal electron acceptor under anoxic conditions. These non-classical bacterial peroxidases are quinol peroxidases that do not require reductive activation but need calcium ions to attain maximum activity and share similar catalytic intermediates with the classical bacterial peroxidases.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
29
|
Reilley DJ, Popov KI, Dokholyan NV, Alexandrova AN. Uncovered Dynamic Coupling Resolves the Ambiguous Mechanism of Phenylalanine Hydroxylase Oxygen Binding. J Phys Chem B 2019; 123:4534-4539. [PMID: 31038957 DOI: 10.1021/acs.jpcb.9b02893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phenylalanine hydroxylase (PAH) is an iron enzyme catalyzing the oxidation of l-Phe to l-Tyr during phenylalanine catabolism. Dysfunction of PAH leads to the debilitating condition phenylketonuria (PKU), which prompted research into the structure and function of PAH over the last 50 years. Despite intensive study, there is no consensus on the atomistic details of the mechanism of O2 binding and splitting by wild-type (WT) PAH and how it varies with PKU-inducing mutations, Arg158Gln and Glu280Lys. We studied structures involved in a proposed mechanism for the WT and mutants using extensive mixed quantum-classical molecular dynamics simulations. Simulations reveal a previously unobserved dynamic coupling between the active site and the mutation sites, suggesting how they can affect the catalytic performance of PAH. Furthermore, the effect of the coupling on the PAH structure agrees with and expands our understanding of the experimentally observed differences in activity between the WT and mutants.
Collapse
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,Department of Pharmacology, Department of Biochemistry & Molecular Biology , Penn State University College of Medicine , Hershey , Pennsylvania 17033 , United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States.,California NanoSystems Institute, Los Angeles , California 90095-1569 , United States
| |
Collapse
|
30
|
Atlasi RS, Malik R, Corrales CI, Tzeplaeff L, Whitelegge JP, Cashman NR, Bitan G. Investigation of Anti-SOD1 Antibodies Yields New Structural Insight into SOD1 Misfolding and Surprising Behavior of the Antibodies Themselves. ACS Chem Biol 2018; 13:2794-2807. [PMID: 30110532 DOI: 10.1021/acschembio.8b00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase (SOD1) gene are linked to 10-20% of familial amyotrophic lateral sclerosis (fALS) cases. The mutations cause misfolding and self-assembly of SOD1 into toxic oligomers and aggregates, resulting in motor neuron degeneration. The molecular mechanisms underlying SOD1 aggregation and toxicity are unclear. Characterization of misfolded SOD1 is particularly challenging because of its metastable nature. Antibodies against misfolded SOD1 are useful tools for this purpose, provided their specificity and selectivity are well-characterized. Here, we characterized three recently introduced antimisfolded SOD1 antibodies and compared them with two commercial, antimisfolded SOD1 antibodies raised against the fALS-linked variant G93A-SOD1. As controls, we compared the reactivity of these antibodies to two polyclonal anti-SOD1 antibodies expected to be insensitive to misfolding. We asked to what extent the antibodies could distinguish between WT and variant SOD1 and between native and misfolded conformations. WT, G93A-SOD1, or E100K-SOD1 were incubated under aggregation-promoting conditions and monitored using thioflavin-T fluorescence, electron microscopy, and dot blots. WT and G93A-SOD1 also were analyzed using native-PAGE/Western blot. The new antimisfolded SOD1 and the commercial antibody B8H10 showed variable reactivity using dot blots but generally showed maximum reactivity at the time misfolded SOD1 oligomers were expected to be most abundant. In contrast, only B8H10 and the control antibodies were reactive in Western blots. Unexpectedly, the polyclonal antibodies showed strong preference for the misfolded form of G93A-SOD1 in dot blots. Surprisingly, antimisfolded SOD1 antibody C4F6 was specific for the apo form of G93A-SOD1 but insensitive to misfolding. Antibody 10C12 showed preference for early misfolded structures, whereas 3H1 bound preferentially to late structures. These new antibodies allow distinction between putative early- and late-forming prefibrillar SOD1 oligomers.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil R. Cashman
- Department of Neurology, University of British Columbia (UBC), Vancouver, British Columbia V6T 2B5, Canada
| | | |
Collapse
|
31
|
Prophylactic Zinc and Therapeutic Selenium Administration Increases the Antioxidant Enzyme Activity in the Rat Temporoparietal Cortex and Improves Memory after a Transient Hypoxia-Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9416432. [PMID: 30258527 PMCID: PMC6146673 DOI: 10.1155/2018/9416432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
In the cerebral hypoxia-ischemia rat model, the prophylactic administration of zinc can cause either cytotoxicity or preconditioning effect, whereas the therapeutic administration of selenium decreases the ischemic damage. Herein, we aimed to explore whether supplementation of low doses of prophylactic zinc and therapeutic selenium could protect from a transient hypoxic-ischemic event. We administrated zinc (0.2 mg/kg of body weight; ip) daily for 14 days before a 10 min common carotid artery occlusion (CCAO). After CCAO, we administrated sodium selenite (6 μg/kg of body weight; ip) daily for 7 days. In the temporoparietal cerebral cortex, we determined nitrites by the Griess method and lipid peroxidation by the Gerard-Monnier assay. qPCR was used to measure mRNA of nitric oxide synthases, antioxidant enzymes, chemokines, and their receptors. We measured the enzymatic activity of SOD and GPx and protein levels of chemokines and their receptors by ELISA. We evaluated long-term memory using the Morris-Water maze test. Our results showed that prophylactic administration of zinc caused a preconditioning effect, decreasing nitrosative/oxidative stress and increasing GPx and SOD expression and activity, as well as eNOS expression. The therapeutic administration of selenium maintained this preconditioning effect up to the late phase of hypoxia-ischemia. Ccl2, Ccr2, Cxcl12, and Cxcr4 were upregulated, and long-term memory was improved. Pyknotic cells were decreased suggesting prevention of neuronal cell death. Our results show that the prophylactic zinc and therapeutic selenium administration induces effective neuroprotection in the early and late phases after CCAO.
Collapse
|
32
|
Zafra A, Castro AJ, Alché JDD. Identification of novel superoxide dismutase isoenzymes in the olive (Olea europaea L.) pollen. BMC PLANT BIOLOGY 2018; 18:114. [PMID: 29884131 PMCID: PMC5994013 DOI: 10.1186/s12870-018-1328-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Among antioxidant enzymes, the superoxide dismutase (SOD) family is a major actor in catalysing the disproportionation of superoxide. Apart from its role as antioxidant, these enzymes have a role in cell signalling, and Cu,Zn-SOD proteins are also major pollen allergens. In order to deepen our understanding of the SOD isoenzymes present in olive pollen and to analyse the molecular variability of the pollen Cu,Zn-SOD family, we carried out biochemical, transcriptomic and localization studies of pollen grains from different olive cultivars and other allergenic species. RESULTS Olive pollen showed a high rate of total SOD activity in all cultivars assayed, which did not correlate with pollen viability. Mass spectrometry analysis together with activity assays and Western blotting experiments enabled us to identify new forms of Cu,Zn-SOD enzyme (including chloroplastidic and peroxisomal forms) as well as differentially expressed Mn-, Fe- and Cu,Zn-SOD isoenzymes among the pollen of different olive cultivars and allergenic species. Ultrastructural localization of Cu,Zn-SOD revealed its plastidial localization in the pollen grain. We also identified the occurrence of a shorter form of one of the cytosolic Cu,Zn-SOD enzymes, likely as the result of alternative splicing. This shorter enzyme showed lower SOD activity as compared to the full length form. CONCLUSIONS The presence of multiple SOD isoenzymes in the olive pollen could be related to the need of finely tuning the ROS metabolism during the transition from its quiescent condition at maturity to a highly metabolically active state at germination.
Collapse
Grants
- BFU2016-77243-P Secretaría de Estado de Investigación, Desarrollo e Innovación
- RTC-2016-4824-2 Secretaría de Estado de Investigación, Desarrollo e Innovación
- RTC-2015-4181-2 Secretaría de Estado de Investigación, Desarrollo e Innovación
- BFU2011-22779 Secretaría de Estado de Investigación, Desarrollo e Innovación
- 201540E065 Consejo Superior de Investigaciones Científicas
- 201840E055 Consejo Superior de Investigaciones Científicas
- P2010-AGR6274 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- P2011-CVI-7487 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
Collapse
Affiliation(s)
- Adoración Zafra
- Plant Reproductive Biology Research Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Department of Biochemistry, Cell and Molecular Biology of Plants, Profesor Albareda 1, 18008 Granada, Spain
| | - Antonio Jesús Castro
- Plant Reproductive Biology Research Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Department of Biochemistry, Cell and Molecular Biology of Plants, Profesor Albareda 1, 18008 Granada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Research Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Department of Biochemistry, Cell and Molecular Biology of Plants, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
33
|
Goyal VD, Magliery TJ. Phylogenetic spread of sequence data affects fitness of SOD1 consensus enzymes: Insights from sequence statistics and structural analyses. Proteins 2018; 86:609-620. [PMID: 29490429 DOI: 10.1002/prot.25486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Non-natural protein sequences with native-like structures and functions can be constructed successfully using consensus design. This design strategy is relatively well understood in repeat proteins with simple binding function, however detailed studies are lacking in globular enzymes. The SOD1 family is a good model for such studies due to the availability of large amount of sequence and structure data motivated by involvement of human SOD1 in the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). We constructed two consensus SOD1 enzymes from multiple sequence alignments from all organisms and eukaryotic organisms. A significant difference in their catalytic activities shows that the phylogenetic spread of the sequences used affects the fitness of the construct obtained. A mutation in an electrostatic loop and overall design incompatibilities between bacterial and eukaryotic sequences were implicated in this disparity. Based on this analysis, a bioinformatics approach was used to classify mutations thought to cause familial ALS providing a unique high level view of the physical basis of disease-causing aggregation of human SOD1.
Collapse
Affiliation(s)
- Venuka Durani Goyal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210.,Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
34
|
Lewandowski Ł, Kepinska M, Milnerowicz H. Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:105-113. [PMID: 29310006 DOI: 10.1016/j.etap.2017.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The function of Cu,Zn-SOD is to dismutate superoxide into hydrogen peroxide and oxygen. This task is fulfilled due to structural nuances of the enzyme. Many environmental xenobiotics have been proved to inhibit Cu,Zn-SOD. Those compounds could be found not only in industrial sewage, cigarettes and various chemical agents - some of them are used as drugs, drug production substrates or are the product of drug biotransformation. Cu,Zn-SOD exposition to these compounds leads to inhibition due to: copper ion chelation, unfolding the structure of the enzyme, affecting residues vital for activity maintenance. This review covers a selection of Cu,Zn-SOD inhibitors, referring to in vivo and in vitro study.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
35
|
Valdez CE, Morgenstern A, Eberhart ME, Alexandrova AN. Predictive methods for computational metalloenzyme redesign - a test case with carboxypeptidase A. Phys Chem Chem Phys 2018; 18:31744-31756. [PMID: 27841396 DOI: 10.1039/c6cp02247b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Computational metalloenzyme design is a multi-scale problem. It requires treating the metal coordination quantum mechanically, extensive sampling of the protein backbone, and additionally accounting for the polarization of the active site by both the metal cation and the surrounding protein (a phenomenon called electrostatic preorganization). We bring together a combination of theoretical methods that jointly offer these desired qualities: QM/DMD for mixed quantum-classical dynamic sampling, quantum theory of atoms in molecules (QTAIM) for the assessment of electrostatic preorganization, and Density Functional Theory (DFT) for mechanistic studies. Within this suite of principally different methods, there are both complementarity of capabilities and cross-validation. Using these methods, predictions can be made regarding the relative activities of related enzymes, as we show on the native Zn2+-dependent carboxypeptidase A (CPA), and its mutant proteins, which are hypothesized to hydrolyze modified substrates. For the native CPA, we replicated the catalytic mechanism and the rate in close agreement with the experiment, giving validity to the QM/DMD predicted structure, the DFT mechanism, and the QTAIM assessment of catalytic activity. For most sequences of the modified substrate and tried CPA mutants, substantially worsened activity is predicted. However, for the substrate mutant that contains Asp instead of Phe at the C-terminus, one CPA mutant exhibits a reasonable activity, as predicted across the theoretical methods. CPA is a well-studied system, and here it serves as a testing ground for the offered methods.
Collapse
Affiliation(s)
- Crystal E Valdez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Amanda Morgenstern
- Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Mark E Eberhart
- Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA. and California NanoSystems Institute, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Tompa DR, Kadhirvel S. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. J Biomol Struct Dyn 2017; 36:4085-4098. [PMID: 29157189 DOI: 10.1080/07391102.2017.1407675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| | - Saraboji Kadhirvel
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| |
Collapse
|
37
|
Srinivasan E, Rajasekaran R. Deciphering the loss of metal binding due to mutation D83G of human SOD1 protein causing FALS disease. Int J Biol Macromol 2017; 107:521-529. [PMID: 28899654 DOI: 10.1016/j.ijbiomac.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023]
Abstract
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) protein are found to be the causative factor, behind the majority of familial amyotrophic later sclerosis (FALS) cases. The mutations particularly on the metal (Zn) binding residues are found to increase the disease onset in the individuals suffering from FALS, while the presence of the metal ion (Zn) is essential for the catalytic activity and retaining the protein stability. Thus in our study, we focused on one such metal binding mutant (D83G) and assessed the impact of the mutation on protein structure and function. The influence of mutation was examined dynamically, using discrete molecular dynamics on both the native and mutant SOD1 protein respectively. Accordingly, the variation in conformational stability, residual flexibility and protein compactness along with the change in conformational free energy were monitored over the entire dynamic period. Moreover, the motion of native and mutant SOD1 was also observed via the essential dynamics. Besides, the disparity in Zn ion binding was inspected through distance analysis and steered molecular dynamics, correspondingly. Therefore, the study provides a better understanding over the profound effect of mutation on SOD1, both structurally and functionally, using computational approaches.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics lab, Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics lab, Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
| |
Collapse
|
38
|
Srinivasan E, Rajasekaran R. Exploring the cause of aggregation and reduced Zn binding affinity by G85R mutation in SOD1 rendering amyotrophic lateral sclerosis. Proteins 2017; 85:1276-1286. [PMID: 28321933 DOI: 10.1002/prot.25288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disorder is characterized by the degeneration of upper and lower motor neuron. ALS occurs due to various notably prominent missense mutations, in gene encoding Cu-Zn superoxide dismutase (SOD1) thereby leading to aggregation, dysfunction and reduced Zn binding affinity. In this study, one such mutation, G85R was explored in comparison with wild type SOD1, using discrete molecular dynamics (DMD). Accordingly, the conformational changes were significantly observed in mutant SOD1, through various geometrical parameters, which substantiated the difference in conformational deviation, flexibility and compactness, thus stipulating a root cause for aggregation. Followed by, analysis of essential dynamics further authenticated the cause behind the protein dysfunction. In particular, the high content of beta sheet with structural deviations, down to dysfunction was established in mutant as compared to wild type, while passing through secondary structure analysis. Subsequently, the deviation of distance in Zn binding residues was distinctly portrayed in mutant as compared to wild type, thus confirming the cause of reduced Zn binding affinity. In addition, the steered molecular dynamics analysis also authenticated the above results indicating the reduced Zn binding affinity in the mutant as compared to that of the wild type. Hence, this work revealed the theoretical mechanism to unravel the mutational effects of cofactor dependent protein. Proteins 2017; 85:1276-1286. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
39
|
Asani SC, Umrani RD, Paknikar KM. Differential dose-dependent effects of zinc oxide nanoparticles on oxidative stress-mediated pancreatic β-cell death. Nanomedicine (Lond) 2017; 12:745-759. [PMID: 28322605 DOI: 10.2217/nnm-2016-0426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To study the effects of zinc oxide nanoparticles (ZON) on oxidative stress-mediated pancreatic β-cell death. METHODS Cellular uptake of ZON, effects on antioxidant factors and apoptosis were studied. RESULTS ZON get internalized by endocytosis and increase intracellular zinc ion levels. ZON treatment (30 and 100 μg/ml) to RIN5f cells resulted in cytotoxicity, oxidative stress and apoptosis. ZON (1, 3, 10 μg/ml, subcytotoxic concentrations) increased super oxide dismutase activity and levels of reduced glutathione in RIN5f cells. Furthermore, ZON (subcytotoxic concentrations) protected RIN5f cells from H2O2-induced oxidative stress as evidenced by reduced reactive oxygen species levels; increased super oxide dismutase activity and glutathione levels; and reduced apoptotic death. CONCLUSION ZON (subcytotoxic concentrations) protect pancreatic β cells from oxidative-stress-mediated cell death.
Collapse
Affiliation(s)
- Swati C Asani
- Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Rinku D Umrani
- Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
| |
Collapse
|
40
|
Srinivasan E, Sethumadhavan R, Rajasekaran R. A theoretical study on Zn binding loop mutants instigating destabilization and metal binding loss in human SOD1 protein. J Mol Model 2017; 23:103. [PMID: 28271284 DOI: 10.1007/s00894-017-3286-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/20/2017] [Indexed: 01/22/2023]
Abstract
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) protein are a major cause of the devastating neurodegenerative disorder Amyotrophic lateral sclerosis. Evidence suggests that SOD1 functions as a free radical scavenger in humans. However, neither the mechanism nor a cure for this neurodegenerative disease are yet known. In the present study, we explored the effect of mutations on the mechanistic action on the Zn binding loop of SOD1 through discrete molecular dynamics. The results were analyzed in detail using statistical potential (BACH) to find the mutant structures having the least potential energy. Subsequently, we studied the impact of those mutations on metal ions bound in SOD1 using the program Check My Metal. Remarkably, our results recognized certain mutants, viz. His80Arg and Asp83Gly, that were more damaging to the Zn binding loop than all other mutants, leading to a loss of Zn binding with altered coordination of the Zn ion. Furthermore, the conformational stability, compactness, and secondary structural alteration of the His80Arg and Asp83Gly mutants were monitored using distinct parameters. Hence, at low computational expense, our study provides helpful insight into this emergent neurodegenerative disorder affecting mankind.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Laboratory, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Rao Sethumadhavan
- Bioinformatics Laboratory, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Laboratory, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
41
|
Wright GSA, Antonyuk SV, Hasnain SS. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Sci Rep 2016; 6:27691. [PMID: 27282955 PMCID: PMC4901319 DOI: 10.1038/srep27691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
A proportion of Amyotrophic lateral sclerosis (ALS) cases result from impaired mutant superoxide dismutase-1 (SOD1) maturation. The copper chaperone for SOD1 (hCCS) forms a transient complex with SOD1 and catalyses the final stages of its maturation. We find that a neurodegenerative disease-associated hCCS mutation abrogates the interaction with SOD1 by inhibiting hCCS zinc binding. Analogously, SOD1 zinc loss has a detrimental effect on the formation, structure and disassociation of the hCCS-SOD1 heterodimer. This suggests that hCCS functionality is impaired by ALS mutations that reduce SOD1 zinc affinity. Furthermore, stabilization of wild-type SOD1 by chemical modification including cisplatination, inhibits complex formation. We hypothesize that drug molecules designed to stabilize ALS SOD1 mutants that also target the wild-type form will lead to characteristics common in SOD1 knock-outs. Our work demonstrates the applicability of chromatographic SAXS when studying biomolecules predisposed to aggregation or dissociation; attributes frequently reported for complexes involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Gareth S. A. Wright
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
42
|
Nechay MR, Gallup NM, Morgenstern A, Smith QA, Eberhart ME, Alexandrova AN. Histone Deacetylase 8: Characterization of Physiological Divalent Metal Catalysis. J Phys Chem B 2016; 120:5884-95. [DOI: 10.1021/acs.jpcb.6b00997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael R. Nechay
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Nathan M. Gallup
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Amanda Morgenstern
- Molecular
Theory Group, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Quentin A. Smith
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Mark E. Eberhart
- Molecular
Theory Group, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Anastassia N. Alexandrova
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Hadi-Alijanvand H, Proctor EA, Ding F, Dokholyan NV, Moosavi-Movahedi AA. A hidden aggregation-prone structure in the heart of hypoxia inducible factor prolyl hydroxylase. Proteins 2016; 84:611-23. [DOI: 10.1002/prot.25011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan Iran
- Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
| | - Elizabeth A. Proctor
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| | - Feng Ding
- Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
- Department of Physics and Astronomy; Clemson University; Clemson South Carolina 29634
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
- Curriculum in Bioinformatics and Computational Biology; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
- Program in Molecular and Cellular Biophysics; University of North Carolina at Chapel Hill, School of Medicine; Chapel Hill North Carolina 27599
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
- Center of Excellence in Biothermodynamics, Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
| |
Collapse
|
44
|
|
45
|
Cabaña-Muñoz ME, Parmigiani-Izquierdo JM, Bravo-González LA, Kyung HM, Merino JJ. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma. PLoS One 2015; 10:e0126339. [PMID: 26076368 PMCID: PMC4468144 DOI: 10.1371/journal.pone.0126339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/01/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. OBJECTIVES To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. MATERIALS AND METHODS 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). FINDINGS Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. CONCLUSIONS Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- Centro CIROM, Centro de Implantología y Rehabilitación Oral Multidisciplinaria, Murcia, Spain
- Facultad de Medicina, Universidad de Murcia, UMU, Unidad Docente de Ortodoncia, Murcia, Spain
- * E-mail: (JJM); (MEC)
| | | | | | - Hee-Moon Kyung
- Department of Orthodontics, Dental School, Kyungpook Nacional University, Daegu, Korea
| | - José Joaquín Merino
- IUIN, Instituto de Investigación Neuroquímica, Universidad Complutense de Madrid, (U.C.M), Madrid, Spain
- * E-mail: (JJM); (MEC)
| |
Collapse
|
46
|
Nechay MR, Valdez CE, Alexandrova AN. Computational Treatment of Metalloproteins. J Phys Chem B 2015; 119:5945-56. [DOI: 10.1021/acs.jpcb.5b00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael R. Nechay
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Crystal E. Valdez
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|