1
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
2
|
Liao Z, Gopalasingam CC, Kameya M, Gerle C, Shigematsu H, Ishii M, Arakawa T, Fushinobu S. Structural insights into thermophilic chaperonin complexes. Structure 2024; 32:679-689.e4. [PMID: 38492570 DOI: 10.1016/j.str.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.
Collapse
Affiliation(s)
- Zengwei Liao
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 1-1-1, Japan
| | - Masafumi Kameya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 1-1-1, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Masaharu Ishii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Takatoshi Arakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| | - Shinya Fushinobu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| |
Collapse
|
3
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
4
|
Bu Y, Liu Y, Li J, Liu T, Gong P, Zhang L, Wang Y, Yi H. Analyses of plantaricin Q7 synthesis by Lactobacillus plantarum Q7 based on comparative transcriptomics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Viljoen A, Foster SJ, Fantner GE, Hobbs JK, Dufrêne YF. Scratching the Surface: Bacterial Cell Envelopes at the Nanoscale. mBio 2020; 11:e03020-19. [PMID: 32098817 PMCID: PMC7042696 DOI: 10.1128/mbio.03020-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bacterial cell envelope is essential for viability, the environmental gatekeeper and first line of defense against external stresses. For most bacteria, the envelope biosynthesis is also the site of action of some of the most important groups of antibiotics. It is a complex, often multicomponent structure, able to withstand the internally generated turgor pressure. Thus, elucidating the architecture and dynamics of the cell envelope is important, to unravel not only the complexities of cell morphology and maintenance of integrity but also how interventions such as antibiotics lead to death. To address these questions requires the capacity to visualize the cell envelope in situ via high-spatial resolution approaches. In recent years, atomic force microscopy (AFM) has brought novel molecular insights into the assembly, dynamics, and functions of bacterial cell envelopes. The ultrafine resolution and physical sensitivity of the technique have revealed a wealth of ultrastructural features that are invisible to traditional optical microscopy techniques or imperceptible in their true physiological state by electron microscopy. Here, we discuss recent progress in our use of AFM imaging for understanding the architecture and dynamics of the bacterial envelope. We survey recent studies that demonstrate the power of the technique to observe isolated membranes and live cells at (sub)nanometer resolution and under physiological conditions and to track in vitro structural dynamics in response to growth or to drugs.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jamie K Hobbs
- Krebs Institute, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
6
|
Sumino A, Sumikama T, Uchihashi T, Oiki S. High-speed AFM reveals accelerated binding of agitoxin-2 to a K + channel by induced fit. SCIENCE ADVANCES 2019; 5:eaax0495. [PMID: 31281899 PMCID: PMC6609221 DOI: 10.1126/sciadv.aax0495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Agitoxin-2 (AgTx2) from scorpion venom is a potent blocker of K+ channels. The docking model has been elucidated, but it remains unclear whether binding dynamics are described by a two-state model (AgTx2-bound and AgTx2-unbound) or a more complicated mechanism, such as induced fit or conformational selection. Here, we observed the binding dynamics of AgTx2 to the KcsA channel using high-speed atomic force microscopy. From images of repeated binding and dissociation of AgTx2 to the channel, single-molecule kinetic analyses revealed that the affinity of the channel for AgTx2 increased during persistent binding and decreased during persistent dissociation. We propose a four-state model, including high- and low-affinity states of the channel, with relevant rate constants. An induced-fit pathway was dominant and accelerated binding by 400 times. This is the first analytical imaging of scorpion toxin binding in real time, which is applicable to various biological dynamics including channel ligands, DNA-modifier proteins, and antigen-antibody complexes.
Collapse
Affiliation(s)
- A. Sumino
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - T. Sumikama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - T. Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems, National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - S. Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
7
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
8
|
Noshiro D, Ando T. Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed atomic force microscopy imaging. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0180. [PMID: 29735734 DOI: 10.1098/rstb.2017.0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 11/12/2022] Open
Abstract
A double-ring-shaped tetradecameric GroEL complex assists proper protein folding in cooperation with the cochaperonin GroES. The dynamic GroEL-GroES interaction reflects the allosteric intra- and inter-ring communications and the chaperonin reaction. Therefore, revealing this dynamic interaction is essential to understanding the allosteric communications and the operation mechanism of GroEL. Nevertheless, how this interaction proceeds in the chaperonin cycle has long been controversial. Here, we directly image the dynamic GroEL-GroES interaction under conditions with and without foldable substrate protein using high-speed atomic force microscopy. Then, the imaging results obtained under these conditions and our previous results in the presence of unfoldable substrate are compared. The molecular movies reveal that the entire reaction pathway is highly complicated but basically identical irrespective of the substrate condition. A prominent (but moderate) difference is in the population distribution of intermediate species: symmetric GroEL : GroES2 and asymmetric GroEL : GroES1 complexes, and GroES-unbound GroEL. This difference is mainly attributed to the longer lifetime of GroEL : GroES1 complexes in the presence of foldable substrate. Moreover, the inter-ring communication, which is the basis for the alternating action of the two rings, occurs at two distinct (GroES association and dissociation) steps in the main reaction pathway, irrespective of the substrate condition.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Daisuke Noshiro
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan .,CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
9
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
10
|
Uchihashi T, Scheuring S. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 2018; 1862:229-240. [DOI: 10.1016/j.bbagen.2017.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
|
11
|
Benning FMC, Sakiyama Y, Mazur A, Bukhari HST, Lim RYH, Maier T. High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase. ACS NANO 2017; 11:10852-10859. [PMID: 29023094 DOI: 10.1021/acsnano.7b04216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multienzymes, such as the protein metazoan fatty acid synthase (FAS), are giant and highly dynamic molecular machines for critical biosynthetic processes. The molecular architecture of FAS was elucidated by static high-resolution crystallographic analysis, while electron microscopy revealed large-scale conformational variability in FAS with some correlation to functional states in catalysis. However, little is known about time scales of conformational dynamics, the trajectory of motions in individual FAS molecules, and the extent of coupling between catalysis and structural changes. Here, we present an experimental single-molecule approach to film immobilized or selectively tethered FAS in solution at different viewing angles and high spatiotemporal resolution using high-speed atomic force microscopy. Mobility of individual regions of the multienzyme is recognized in video sequences, and correlation of shape features implies a convergence of temporal resolution and velocity of FAS dynamics. Conformational variety can be identified and grouped by reference-free 2D class averaging, enabling the tracking of conformational transitions in movies. The approach presented here is suited for comprehensive studies of the dynamics of FAS and other multienzymes in aqueous solution at the single-molecule level.
Collapse
Affiliation(s)
- Friederike M C Benning
- Biozentrum, ‡Swiss Nanoscience Institute, and §Research IT, Biozentrum, University of Basel , Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Yusuke Sakiyama
- Biozentrum, ‡Swiss Nanoscience Institute, and §Research IT, Biozentrum, University of Basel , Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Adam Mazur
- Biozentrum, ‡Swiss Nanoscience Institute, and §Research IT, Biozentrum, University of Basel , Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Habib S T Bukhari
- Biozentrum, ‡Swiss Nanoscience Institute, and §Research IT, Biozentrum, University of Basel , Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum, ‡Swiss Nanoscience Institute, and §Research IT, Biozentrum, University of Basel , Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, ‡Swiss Nanoscience Institute, and §Research IT, Biozentrum, University of Basel , Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
12
|
Mizobata T, Kawata Y. The versatile mutational "repertoire" of Escherichia coli GroEL, a multidomain chaperonin nanomachine. Biophys Rev 2017; 10:631-640. [PMID: 29181744 DOI: 10.1007/s12551-017-0332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
The bacterial chaperonins are highly sophisticated molecular nanomachines, controlled by the hydrolysis of ATP to dynamically trap and remove from the environment unstable protein molecules that are susceptible to denaturation and aggregation. Chaperonins also act to assist in the refolding of these unstable proteins, providing a means by which these proteins may return in active form to the complex environment of the cell. The Escherichia coli GroE chaperonin system is one of the largest protein supramolecular complexes known, whose quaternary structure is required for segregating aggregation-prone proteins. Over the course of more than two decades of research on GroE, it has become accepted that GroE, more specifically the GroEL subunit, is a "high-tolerance" molecular system, capable of accommodating numerous mutations, while retaining its molecular integrity. In some cases, a given site of mutation was revealed to be absolutely required for GroEL function, providing hints regarding the network of signals and triggers that propel this unique system. In other instances, however, a mutation has produced a more delicate response, altering only part of, or in some cases, only a single facet of, the molecular mechanism, and these mutants have often provided invaluable hints on the extent of the complexity underlying chaperonin-assisted protein folding. In this review, we highlight some examples of the latter type of GroEL mutants which compose the unique "mutational repertoire" of GroEL and touch upon the important clues that each mutant provided to the overall effort to elucidate the details of GroE action.
Collapse
Affiliation(s)
- Tomohiro Mizobata
- Graduate School of Engineering and Graduate School of Medical Sciences, Tottori University, Tottori, 680-8552, Japan.
| | - Yasushi Kawata
- Graduate School of Engineering and Graduate School of Medical Sciences, Tottori University, Tottori, 680-8552, Japan.
| |
Collapse
|
13
|
Ke X, Zou W, Ren Y, Wang Z, Li J, Wu X, Zhao J. Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development. PLoS Genet 2017; 13:e1007036. [PMID: 28961247 PMCID: PMC5636168 DOI: 10.1371/journal.pgen.1007036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/11/2017] [Accepted: 09/20/2017] [Indexed: 02/03/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assist in the folding and assembly of a wide range of substrates. In plants, chloroplast chaperonins are composed of two different types of subunits, Cpn60α and Cpn60β, and duplication of Cpn60α and Cpn60β genes occurs in a high proportion of plants. However, the importance of multiple Cpn60α and Cpn60β genes in plants is poorly understood. In this study, we found that loss-of-function of CPNA2 (AtCpn60α2), a gene encoding the minor Cpn60α subunit in Arabidopsis thaliana, resulted in arrested embryo development at the globular stage, whereas the other AtCpn60α gene encoding the dominant Cpn60α subunit, CPNA1 (AtCpn60α1), mainly affected embryonic cotyledon development at the torpedo stage and thereafter. Further studies demonstrated that CPNA2 can form a functional chaperonin with CPNB2 (AtCpn60β2) and CPNB3 (AtCpn60β3), while the functional partners of CPNA1 are CPNB1 (AtCpn60β1) and CPNB2. We also revealed that the functional chaperonin containing CPNA2 could assist the folding of a specific substrate, KASI (β-ketoacyl-[acyl carrier protein] synthase I), and that the KASI protein level was remarkably reduced due to loss-of-function of CPNA2. Furthermore, the reduction in the KASI protein level was shown to be the possible cause for the arrest of cpna2 embryos. Our findings indicate that the two Cpn60α subunits in Arabidopsis play different roles during embryo development through forming distinct chaperonins with specific AtCpn60β to assist the folding of particular substrates, thus providing novel insights into functional divergence of Cpn60α subunits in plants. Chaperonins are large oligomeric complexes that are involved in the folding and assembly of numerous proteins in various species. In contrast to other types of chaperonins, chloroplast chaperonins are characterized by the hetero-oligomeric structure composed of two unique types of subunits, Cpn60α and Cpn60β, each of which is present in two or more paralogous forms in most of higher plants. However, the functional significance underlying the wide array of subunit types and complex oligomeric arrangement remains largely unknown. Here, we investigated the role of the minor Cpn60α subunit AtCpn60α2 in Arabidopsis embryo development, and found that AtCpn60α2 is important for the transition of globular embryos to heart-shaped embryos, whereas loss of the dominant Cpn60α subunit AtCpn60α1 affects embryonic cotyledon development. Further studies demonstrated that AtCpn60α2 could form functional chaperonins with AtCpn60β2 and AtCpn60β3 to specifically assist in folding of the substrate KASI, which is important for the formation of heart-shaped embryos. Our results suggest that duplication of Cpn60α genes in higher plants can increase the potential number of chloroplast chaperonin substrates and provide chloroplast chaperonins with more roles in plant growth and development, thus revealing the relationship between duplication and functional specialization of chaperonin genes.
Collapse
Affiliation(s)
- Xiaolong Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafang Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
14
|
Ando T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys Rev 2017; 9:421-429. [PMID: 28762198 DOI: 10.1007/s12551-017-0281-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins are dynamic in nature and work at the single molecule level. Therefore, directly watching protein molecules in dynamic action at high spatiotemporal resolution must be the most straightforward approach to understanding how they function. To make this observation possible, high-speed atomic force microscopy (HS-AFM) has been developed. Its current performance allows us to film biological molecules at 10-16 frames/s, without disturbing their function. In fact, dynamic structures and processes of various proteins have been successfully visualized, including bacteriorhodopsin responding to light, myosin V walking on actin filaments, and even intrinsically disordered proteins undergoing order/disorder transitions. The molecular movies have provided insights that could not have been reached in other ways. Moreover, the cantilever tip can be used to manipulate molecules during successive imaging. This capability allows us to observe changes in molecules resulting from dissection or perturbation. This mode of imaging has been successfully applied to myosin V, peroxiredoxin and doublet microtubules, leading to new discoveries. Since HS-AFM can be combined with other techniques, such as super-resolution optical microscopy and optical tweezers, the usefulness of HS-AFM will be further expanded in the near future.
Collapse
Affiliation(s)
- Toshio Ando
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,CREST, Japan Science and Technology Agency, Tokyo, 102-0075, Japan.
| |
Collapse
|
15
|
Weaver J, Jiang M, Roth A, Puchalla J, Zhang J, Rye HS. GroEL actively stimulates folding of the endogenous substrate protein PepQ. Nat Commun 2017; 8:15934. [PMID: 28665408 PMCID: PMC5497066 DOI: 10.1038/ncomms15934] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 05/13/2017] [Indexed: 12/29/2022] Open
Abstract
Many essential proteins cannot fold without help from chaperonins, like the GroELS system of Escherichia coli. How chaperonins accelerate protein folding remains controversial. Here we test key predictions of both passive and active models of GroELS-stimulated folding, using the endogenous E. coli metalloprotease PepQ. While GroELS increases the folding rate of PepQ by over 15-fold, we demonstrate that slow spontaneous folding of PepQ is not caused by aggregation. Fluorescence measurements suggest that, when folding inside the GroEL-GroES cavity, PepQ populates conformations not observed during spontaneous folding in free solution. Using cryo-electron microscopy, we show that the GroEL C-termini make physical contact with the PepQ folding intermediate and help retain it deep within the GroEL cavity, resulting in reduced compactness of the PepQ monomer. Our findings strongly support an active model of chaperonin-mediated protein folding, where partial unfolding of misfolded intermediates plays a key role. In the prevailing model for assisted protein folding, chaperonins act passively by preventing protein aggregation. Here, the authors use single-molecule fluorescence measurements and cryo-electron microscopy and show that the E. coli GroELS chaperonin system also has an active role in folding the endogenous bacterial protein PepQ.
Collapse
Affiliation(s)
- Jeremy Weaver
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845, USA
| | - Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845, USA.,State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845, USA
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845, USA
| | - Hays S Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845, USA
| |
Collapse
|
16
|
Weiss C, Jebara F, Nisemblat S, Azem A. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle. Front Mol Biosci 2016; 3:80. [PMID: 28008398 PMCID: PMC5143341 DOI: 10.3389/fmolb.2016.00080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
The GroEL–GroES chaperonin system is probably one of the most studied chaperone systems at the level of the molecular mechanism. Since the first reports of a bacterial gene involved in phage morphogenesis in 1972, these proteins have stimulated intensive research for over 40 years. During this time, detailed structural and functional studies have yielded constantly evolving concepts of the chaperonin mechanism of action. Despite of almost three decades of research on this oligomeric protein, certain aspects of its function remain controversial. In this review, we highlight one central aspect of its function, namely, the active intermediates of its reaction cycle, and present how research to this day continues to change our understanding of chaperonin-mediated protein folding.
Collapse
Affiliation(s)
- Celeste Weiss
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Fady Jebara
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Shahar Nisemblat
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Abdussalam Azem
- George S. Weiss Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|