1
|
Wu X, Ai H, Mao J, Cai H, Liang LJ, Tong Z, Deng Z, Zheng Q, Liu L, Pan M. Structural visualization of HECT-type E3 ligase Ufd4 accepting and transferring ubiquitin to form K29/K48-branched polyubiquitination. Nat Commun 2025; 16:4313. [PMID: 40341121 PMCID: PMC12062229 DOI: 10.1038/s41467-025-59569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The K29/K48-linked ubiquitination generated by the cooperative catalysis of E3 ligase Ufd4 and Ubr1 is an enhanced protein degradation signal, in which Ufd4 is responsible for introducing K29-linked ubiquitination to K48-linked ubiquitin chains to augment polyubiquitination. How HECT-E3 ligase Ufd4 mediates the ubiquitination event remains unclear. Here, we biochemically determine that Ufd4 preferentially catalyses K29-linked ubiquitination on K48-linked ubiquitin chains to generate K29/K48-branched ubiquitin chains and capture structural snapshots of Ub transfer cascades for Ufd4-mediated ubiquitination. The N-terminal ARM region and HECT domain C-lobe of Ufd4 are identified and characterized as key structural elements that together recruit K48-linked diUb and orient Lys29 of its proximal Ub to the active cysteine of Ufd4 for K29-linked branched ubiquitination. These structures not only provide mechanistic insights into the architecture of the Ufd4 complex but also provide structural visualization of branched ubiquitin chain formation by a HECT-type E3 ligase.
Collapse
Affiliation(s)
- Xiangwei Wu
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Huasong Ai
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China
| | - Junxiong Mao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hongyi Cai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Lu-Jun Liang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qingyun Zheng
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Man Pan
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China.
- Center for Future Foods, Muyuan Laboratory, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Sun L, Zhang H, Li Y. The E3 ligase HUWE1 interacts with ubiquitin non-covalently via key residues in the HECT domain. FEBS Lett 2025; 599:559-570. [PMID: 39543712 DOI: 10.1002/1873-3468.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
HUWE1, a HECT E3 ligase, is critical for processes like protein degradation and tumor development. Contrary to previous findings which suggested minimal non-covalent interactions between the HUWE1 HECT domain and ubiquitin, we identified a non-covalent interaction between the HUWE1 HECT N-lobe and ubiquitin using NMR spectroscopy, revealing a conserved ubiquitin-binding mode shared across HECT E3 ligases. Molecular dynamics simulations not only confirmed the stability of this interaction but also uncovered conformational changes in key residues, which likely influence binding affinity. Additionally, we highlighted the roles of both conserved and unique residues in ubiquitin binding. These findings advance our understanding of the interactions between the HUWE1 HECT domain and ubiquitin, and highlight potential targets for therapeutic intervention in the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Li Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Jiang H, Miller BD, Viennet T, Kim H, Lee K, Arthanari H, Cole PA. Protein semisynthesis reveals plasticity in HECT E3 ubiquitin ligase mechanisms. Nat Chem 2024; 16:1894-1905. [PMID: 39030419 DOI: 10.1038/s41557-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
Lys ubiquitination is catalysed by E3 ubiquitin ligases and is central to the regulation of protein stability and cell signalling in normal and disease states. There are gaps in our understanding of E3 mechanisms, and here we use protein semisynthesis, chemical rescue, microscale thermophoresis and other biochemical approaches to dissect the role of catalytic base/acid function and conformational interconversion in HECT-domain E3 catalysis. We demonstrate that there is plasticity in the use of the terminal side chain or backbone carboxylate for proton transfer in HECT E3 ubiquitin ligase reactions, with yeast Rsp5 orthologues appearing to be possible evolutionary intermediates. We also show that the HECT-domain ubiquitin covalent intermediate appears to eject the E2 conjugating enzyme, promoting catalytic turnover. These findings provide key mechanistic insights into how protein ubiquitination occurs and provide a framework for understanding E3 functions and regulation.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bryant D Miller
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Hyojeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang Z, Fan F, Li Z, Ye F, Wang Q, Gao R, Qiu J, Lv Y, Lin M, Xu W, Luo C, Yu X. Structural insights into the functional mechanism of the ubiquitin ligase E6AP. Nat Commun 2024; 15:3531. [PMID: 38670961 PMCID: PMC11053172 DOI: 10.1038/s41467-024-47586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fengying Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihai Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingxia Wang
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongchao Gao
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxuan Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Lv
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Min Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenwen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, South Dong Qing Road, Huaxi District, Guizhou, 550025, China.
| | - Xuekui Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
5
|
Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat Chem Biol 2024; 20:190-200. [PMID: 37620400 PMCID: PMC10830417 DOI: 10.1038/s41589-023-01414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David A Pérez Berrocal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
6
|
Düring J, Wolter M, Toplak JJ, Torres C, Dybkov O, Fokkens TJ, Bohnsack KE, Urlaub H, Steinchen W, Dienemann C, Lorenz S. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat Struct Mol Biol 2024; 31:364-377. [PMID: 38332367 PMCID: PMC10873202 DOI: 10.1038/s41594-023-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.
Collapse
Affiliation(s)
- Jonas Düring
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Madita Wolter
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia J Toplak
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Camilo Torres
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- 'Bioanalytics', Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Göttingen, Göttingen, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial ligases reveal fundamental principles of polyubiquitin specificity. Mol Cell 2023; 83:4538-4554.e4. [PMID: 38091999 PMCID: PMC10872931 DOI: 10.1016/j.molcel.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
Homologous to E6AP C terminus (HECT) E3 ubiquitin (Ub) ligases direct substrates toward distinct cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal attached. How polyUb specificity is achieved has been a long-standing mystery, despite extensive study in various hosts, ranging from yeast to human. The bacterial pathogens enterohemorrhagic Escherichia coli and Salmonella Typhimurium encode outlying examples of "HECT-like" (bHECT) E3 ligases, but commonalities to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. We expanded the bHECT family with examples in human and plant pathogens. Three bHECT structures in primed, Ub-loaded states resolved key details of the entire Ub ligation process. One structure provided a rare glimpse into the act of ligating polyUb, yielding a means to rewire polyUb specificity of both bHECT and eHECT ligases. Studying this evolutionarily distinct bHECT family has revealed insight into the function of key bacterial virulence factors as well as fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Negron Teron KI, Das C. Cocrystallization of ubiquitin-deubiquitinase complexes through disulfide linkage. Acta Crystallogr D Struct Biol 2023; 79:1044-1055. [PMID: 37877948 PMCID: PMC10619426 DOI: 10.1107/s2059798323008501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Structural characterization of the recognition of ubiquitin (Ub) by deubiquitinases (DUBs) has largely relied on covalent complexation of the DUB through its catalytic cysteine with a Ub C-terminal electrophile. The Ub electrophiles are accessed through intein chemistry in conjunction with chemical synthesis. Here, it was asked whether DUB-Ub covalent complexes could instead be accessed by simpler disulfide chemistry using a Ub cysteine mutant in which the last glycine has been replaced with a cysteine. The Ub cysteine mutant displayed a wide variability in disulfide formation across a panel of eukaryotic and prokaryotic DUBs, with some showing no detectable reaction while others robustly produced a disulfide complex. Using this approach, two disulfide-linked ubiquitin-bound complexes were crystallized, one involving the Legionella pneumophila effector SdeA DUB and the other involving the Orientia effector OtDUB. These DUBs had previously been crystallized in Ub-bound forms using the C-terminal electrophile strategy and noncovalent complexation, respectively. While the disulfide-linked SdeA DUB-Ub complex crystallized as expected, in the OtDUB complex the disulfide bond to the Ub mutant involved a cysteine that differed from the catalytic cysteine. Disulfide formation with the SdeA DUB catalytic cysteine was accompanied by local distortion of the helix carrying the active-site cysteine, whereas OtDUB reacted with the Ub mutant using a surface-exposed cysteine.
Collapse
Affiliation(s)
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
10
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial mimicry of eukaryotic HECT ubiquitin ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543783. [PMID: 37333152 PMCID: PMC10274628 DOI: 10.1101/2023.06.05.543783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic Escherichia coli and Salmonella Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, bona fide examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S. Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Warren GD, Kitao T, Franklin TG, Nguyen JV, Geurink PP, Kubori T, Nagai H, Pruneda JN. Mechanism of Lys6 poly-ubiquitin specificity by the L. pneumophila deubiquitinase LotA. Mol Cell 2023; 83:105-120.e5. [PMID: 36538933 PMCID: PMC9825671 DOI: 10.1016/j.molcel.2022.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The versatility of ubiquitination to control vast domains of eukaryotic biology is due, in part, to diversification through differently linked poly-ubiquitin chains. Deciphering signaling roles for some chain types, including those linked via K6, has been stymied by a lack of specificity among the implicated regulatory proteins. Forged through strong evolutionary pressures, pathogenic bacteria have evolved intricate mechanisms to regulate host ubiquitin during infection. Herein, we identify and characterize a deubiquitinase domain of the secreted effector LotA from Legionella pneumophila that specifically regulates K6-linked poly-ubiquitin. We demonstrate the utility of LotA for studying K6 poly-ubiquitin signals. We identify the structural basis of LotA activation and poly-ubiquitin specificity and describe an essential "adaptive" ubiquitin-binding domain. Without LotA activity during infection, the Legionella-containing vacuole becomes decorated with K6 poly-ubiquitin as well as the AAA ATPase VCP/p97/Cdc48. We propose that LotA's deubiquitinase activity guards Legionella-containing vacuole components from ubiquitin-dependent extraction.
Collapse
Affiliation(s)
- Gus D Warren
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Tyler G Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul P Geurink
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Nair RM, Seenivasan A, Liu B, Chen D, Lowe ED, Lorenz S. Reconstitution and Structural Analysis of a HECT Ligase-Ubiquitin Complex via an Activity-Based Probe. ACS Chem Biol 2021; 16:1615-1621. [PMID: 34403242 PMCID: PMC8453484 DOI: 10.1021/acschembio.1c00433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin activity-based probes have proven invaluable in elucidating structural mechanisms in the ubiquitin system by stabilizing transient macromolecular complexes of deubiquitinases, ubiquitin-activating enzymes, and the assemblies of ubiquitin-conjugating enzymes with ubiquitin ligases of the RING-Between-RING and RING-Cysteine-Relay families. Here, we demonstrate that an activity-based probe, ubiquitin-propargylamine, allows for the preparative reconstitution and structural analysis of the interactions between ubiquitin and certain HECT ligases. We present a crystal structure of the ubiquitin-linked HECT domain of HUWE1 that defines a catalytically critical conformation of the C-terminal tail of the ligase for the transfer of ubiquitin to an acceptor protein. Moreover, we observe that ubiquitin-propargylamine displays selectivity among HECT domains, thus corroborating the notion that activity-based probes may provide entry points for the development of specific, active site-directed inhibitors and reporters of HECT ligase activities.
Collapse
Affiliation(s)
- Rahul M. Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | | | - Bing Liu
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Dan Chen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, United Kingdom
| | - Sonja Lorenz
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
13
|
HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domain. Nat Chem Biol 2021; 17:1084-1092. [PMID: 34294896 PMCID: PMC7611724 DOI: 10.1038/s41589-021-00831-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure where the C-terminal HECT domain heads an extended alpha solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.
Collapse
|
14
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
15
|
Du C, Hansen LJ, Singh SX, Wang F, Sun R, Moure CJ, Roso K, Greer PK, Yan H, He Y. A PRMT5-RNF168-SMURF2 Axis Controls H2AX Proteostasis. Cell Rep 2020; 28:3199-3211.e5. [PMID: 31533041 DOI: 10.1016/j.celrep.2019.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
H2AX safeguards genomic stability in a dose-dependent manner; however, mechanisms governing its proteostasis are poorly understood. Here, we identify a PRMT5-RNF168-SMURF2 cascade that regulates H2AX proteostasis. We show that PRMT5 sustains the expression of RNF168, an E3 ubiquitin ligase essential for DNA damage response (DDR). Suppression of PRMT5 occurs in methylthioadenosine phosphorylase (MTAP)-deficient glioblastoma cells and attenuates the expression of RNF168, leading to destabilization of H2AX by E3 ubiquitin ligase SMURF2. RNF168 and SMURF2 serve as a stabilizer and destabilizer of H2AX, respectively, via their dynamic interactions with H2AX. In supporting an important role of this signaling cascade in regulating H2AX, MTAP-deficient glioblastoma cells display higher levels of DNA damage spontaneously or in response to genotoxic agents. These findings reveal a regulatory mechanism of H2AX proteostasis and define a signaling cascade that is essential to DDR and that is disrupted by the loss of a metabolic enzyme in tumor cells.
Collapse
Affiliation(s)
- Changzheng Du
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Gastrointestinal Cancer Center, Peking University Cancer Hospital, Beijing 100142, China
| | - Landon J Hansen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Pathology Graduate Program, Duke University Medical Center, Durham, NC, USA
| | - Feiyifan Wang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ran Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Beasley SA, Kellum CE, Orlomoski RJ, Idrizi F, Spratt DE. An Angelman syndrome substitution in the HECT E3 ubiquitin ligase C-terminal Lobe of E6AP affects protein stability and activity. PLoS One 2020; 15:e0235925. [PMID: 32639967 PMCID: PMC7343168 DOI: 10.1371/journal.pone.0235925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by speech impairment, intellectual disability, ataxia, and epilepsy. AS is caused by mutations in the maternal copy of UBE3A located on chromosome 15q11-13. UBE3A codes for E6AP (E6 Associated Protein), a prominent member of the HECT (Homologous to E6AP C-Terminus) E3 ubiquitin ligase family. E6AP catalyzes the posttranslational attachment of ubiquitin via its HECT domain onto various intracellular target proteins to regulate DNA repair and cell cycle progression. The HECT domain consists of an N-lobe, required for E2~ubiquitin recruitment, while the C-lobe contains the conserved catalytic cysteine required for ubiquitin transfer. Previous genetic studies of AS patients have identified point mutations in UBE3A that result in amino acid substitutions or premature termination during translation. An AS transversion mutation (codon change from ATA to AAA) within the region of the gene that codes for the catalytic HECT domain of E6AP has been annotated (I827K), but the molecular basis for this loss of function substitution remained elusive. Here, we demonstrate that the I827K substitution destabilizes the 3D fold causing protein aggregation of the C-terminal lobe of E6AP using a combination of spectropolarimetry and nuclear magnetic resonance (NMR) spectroscopy. Our fluorescent ubiquitin activity assays with E6AP-I827K show decreased ubiquitin thiolester formation and ubiquitin discharge. Using 3D models in combination with our biochemical and biophysical results, we rationalize why the I827K disrupts E6AP-dependent ubiquitylation. This work provides new insight into the E6AP mechanism and how its malfunction can be linked to the AS phenotype.
Collapse
Affiliation(s)
- Steven A. Beasley
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Chloe E. Kellum
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Rachel J. Orlomoski
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Feston Idrizi
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States of America
| |
Collapse
|
17
|
The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs 2020; 38:515-524. [PMID: 32008177 DOI: 10.1007/s10637-020-00894-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
E3 ligases are a class of critical enzymes that can catalyse the transfer of ubiquitin (Ub) from an E2 enzyme to the substrate and are essential to cellular processes. The E3 ligase HUWE1 (also known as ARF-BP1, HECTH9, HSPC272, Ib772, LASU1, MULE, URE-B1, UREB1, and HECT, UBA and WWE domain-containing E3 ubiquitin protein ligase 1) is encoded by the huwe1 gene. HUWE1 is a key regulator of the DNA damage response, transcription, autophagy, apoptosis and metabolism in a variety of cancers. Due to its pivotal role in conferring substrate specificity, HUWE1 has attracted enormous attention as a promising anticancer drug target. In this review, we indicate the specific molecular structure of HUWE1 and its role in various cellular signalling pathways and highlight new insights into HUWE1 in cancer. Finally, we discuss outstanding questions regarding HUWE1 in oncology and highlight its limitations in drug development and clinical guidance to better define the role of HUWE1 in multiple cancers.
Collapse
|
18
|
Ruetalo N, Anders S, Stollmaier C, Jäckl M, Schütz-Stoffregen MC, Stefan N, Wolf C, Wiesner S. The WW1 Domain Enhances Autoinhibition in Smurf Ubiquitin Ligases. J Mol Biol 2019; 431:4834-4847. [PMID: 31628949 DOI: 10.1016/j.jmb.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Downregulation of ubiquitin (Ub) ligase activity prevents premature ubiquitination and is critical for cellular homeostasis. Nedd4 Ub ligases share a common domain architecture and yet are regulated in distinct ways through interactions of the catalytic HECT domain with the N-terminal C2 domain or the central WW domain region. Smurf1 and Smurf2 are two highly related Nedd4 ligases with ~70% overall sequence identity. Here, we show that the Smurf1 C2 domain interacts with the HECT domain and inhibits ligase activity in trans. However, in contrast to Smurf2, we find that full-length Smurf1 is a highly active Ub ligase, and we can attribute this striking difference in regulation to the lack of one WW domain (WW1) in Smurf1. Using NMR spectroscopy and biochemical assays, we identified the WW1 region as an additional inhibitory element in Smurf2 that cooperates with the C2 domain to enhance HECT domain binding and Smurf2 inhibition. Our work provides important insights into Smurf regulation and highlights that the activities of highly related proteins can be controlled in distinct ways.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Samira Anders
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Carsten Stollmaier
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Magnus Jäckl
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Mira C Schütz-Stoffregen
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Nadine Stefan
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Christine Wolf
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| |
Collapse
|
19
|
Jiang H, Thomas SN, Chen Z, Chiang CY, Cole PA. Comparative analysis of the catalytic regulation of NEDD4-1 and WWP2 ubiquitin ligases. J Biol Chem 2019; 294:17421-17436. [PMID: 31578285 DOI: 10.1074/jbc.ra119.009211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
NEDD4-1 E3 ubiquitin protein ligase (NEDD4-1) and WW domain-containing E3 ubiquitin ligase (WWP2) are HECT family ubiquitin E3 ligases. They catalyze Lys ubiquitination of themselves and other proteins and are important in cell growth and differentiation. Regulation of NEDD4-1 and WWP2 catalytic activities is important for controlling cellular protein homeostasis, and their dysregulation may lead to cancer and other diseases. Previous work has implicated noncatalytic regions, including the C2 domain and/or WW domain linkers in NEDD4-1 and WWP2, in contributing to autoinhibition of the catalytic HECT domains by intramolecular interactions. Here, we explored the molecular mechanisms of these NEDD4-1 and WWP2 regulatory regions and their interplay with allosteric binding proteins such as Nedd4 family-interacting protein (NDFIP1), engineered ubiquitin variants, and linker phosphomimics. We found that in addition to influencing catalytic activities, the WW domain linker regions in NEDD4-1 and WWP2 can impact product distribution, including the degree of polyubiquitination and Lys-48 versus Lys-63 linkages. We show that allosteric activation by NDFIP1 or engineered ubiquitin variants is largely mediated by relief of WW domain linker autoinhibition. WWP2-mediated ubiquitination of WW domain-binding protein 2 (WBP2), phosphatase and tensin homolog (PTEN), and p62 proteins by WWP2 suggests that substrate ubiquitination can also be influenced by WW linker autoinhibition, although to differing extents. Overall, our results provide a deeper understanding of the intricate and multifaceted set of regulatory mechanisms in the control of NEDD4-1-related ubiquitin ligases.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Claire Y Chiang
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 .,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Ries LK, Sander B, Deol KK, Letzelter MA, Strieter ER, Lorenz S. Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity. J Biol Chem 2019; 294:6113-6129. [PMID: 30737286 PMCID: PMC6463701 DOI: 10.1074/jbc.ra118.007014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.
Collapse
Affiliation(s)
- Lena K Ries
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Bodo Sander
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Kirandeep K Deol
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Marie-Annick Letzelter
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Eric Robert Strieter
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003; Departments of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Sonja Lorenz
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
21
|
Weber J, Polo S, Maspero E. HECT E3 Ligases: A Tale With Multiple Facets. Front Physiol 2019; 10:370. [PMID: 31001145 PMCID: PMC6457168 DOI: 10.3389/fphys.2019.00370] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination plays a pivotal role in several cellular processes and is critical for protein degradation and signaling. E3 ubiquitin ligases are the matchmakers in the ubiquitination cascade, responsible for substrate recognition. In order to achieve selectivity and specificity on their substrates, HECT E3 enzymes are tightly regulated and exert their function in a spatially and temporally controlled fashion in the cells. These characteristics made HECT E3s intriguing targets in drug discovery in the context of cancer biology.
Collapse
Affiliation(s)
- Janine Weber
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Elena Maspero
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| |
Collapse
|
22
|
Liu J, Dong S, Li L, Wang H, Zhao J, Zhao Y. The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system. Cell Signal 2019; 58:91-98. [PMID: 30849519 DOI: 10.1016/j.cellsig.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
Thyroid transcription factor 1 (TTF1/NKX2.1), is a nuclear protein member of the NKX2 family of homeodomain transcription factors. It plays a critical role in regulation of multiple organ functions by promoting gene expression, such as thyroid hormone in thyroid and surfactant proteins in the lung. However, molecular regulation of TTF1 has not been well investigated, especially regarding its protein degradation. Here we show that protein kinase C agonist, phorbol esters (PMA), reduces TTF1 protein levels in time- and dose-dependent manners, without altering TTF1 mRNA levels. TTF1 is ubiquitinated and degraded in the proteasome in response to PMA, suggesting that PMA induces TTF1 degradation in the ubiquitin-proteasome system. Furthermore, we demonstrate that an E3 ubiquitin ligase, named HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 (HECW1), targets TTF1 for its ubiquitination and degradation, while downregulation of HECW1 attenuates PMA-induced TTF1 ubiquitination and degradation. A lysine residue lys151 was identified as the ubiquitin acceptor site within the TTF1. A lys151 to arginine mutant of TTF1 (TTF1K151R) is resistant to PMA- or HECW1-mediated ubiquitination and degradation. Further, we reveal that overexpression of TTF1 increases lung epithelial cell migration and proliferation, while the effects are reversed by HECW1. This study is the first to demonstrate that the E3 ubiquitin ligase HECW1 regulates TTF1 degradation by site-specific ubiquitination. This study will provide a new direction to clarify the molecular regulation of TTF1 in lung and its role in lung epithelial remodeling after injury.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Su Dong
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Chen D, Gehringer M, Lorenz S. Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities. Chembiochem 2018; 19:2123-2135. [PMID: 30088849 PMCID: PMC6471174 DOI: 10.1002/cbic.201800321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin system regulates countless physiological and disease-associated processes and has emerged as an attractive entryway for therapeutic efforts. With over 600 members in the human proteome, ubiquitin ligases are the most diverse class of ubiquitylation enzymes and pivotal in encoding specificity in ubiquitin signaling. Although considerable progress has been made in the identification of small molecules targeting RING ligases, relatively little is known about the "druggability" of HECT (homologous to E6AP C terminus) ligases, many of which are critically implicated in human pathologies. A major obstacle to optimizing the few available ligands is our incomplete understanding of their inhibitory mechanisms and the structural basis of catalysis in HECT ligases. Here, we survey recent approaches to manipulate the activities of HECT ligases with small molecules to showcase the particular challenges and opportunities these enzymes hold as therapeutic targets.
Collapse
Affiliation(s)
- Dan Chen
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| | - Matthias Gehringer
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical/Medicinal ChemistryUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| |
Collapse
|