1
|
Wen R, Huang R, Yang M, Yang J, Yi X. Regulation of protein arginine methyltransferase in osteoporosis: a narrative review. Front Cell Dev Biol 2025; 13:1453624. [PMID: 40342926 PMCID: PMC12058719 DOI: 10.3389/fcell.2025.1453624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
Osteoporosis (OP), a systemic bone disease characterised by increased bone fragility and susceptibility to fracture, is mainly caused by a decline in bone mineral density (BMD) and quality caused by an imbalance between bone formation and resorption. Protein arginine methyltransferases (PRMTs) are epigenetic factors and post-translational modification (PTM) enzymes participating in various biological processes, including mRNA splicing, DNA damage repair, transcriptional regulation, and cell signalling. They act by catalysing the transfer and modification of arginine residues and, thus, have become therapeutic targets for OP. In-depth studies have found that these enzymes also play key roles in bone matrix protein metabolism, skeletal cell proliferation and differentiation, and signal pathway regulation to regulate bone formation, bone resorption balance, or both and jointly maintain bone health and stability. However, the expression changes and mechanisms of action of multiple members of the PRMT family differ in OP. Therefore, this paper discusses the biological functions, mechanisms of action, and influencing factors of PRMTs in OP, which is expected to provide a new understanding of the pathogenesis of OP. Furthermore, we present theoretical support for the development of more precise and effective treatment strategies as well as for further study of the molecular mechanisms of PRMTs.
Collapse
Affiliation(s)
| | | | | | | | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Wu J, Li D, Wang L. Overview of PRMT1 modulators: Inhibitors and degraders. Eur J Med Chem 2024; 279:116887. [PMID: 39316844 DOI: 10.1016/j.ejmech.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Protein arginine methyltransferase 1 (PRMT1) is pivotal in executing normal cellular functions through its catalytic action on the methylation of arginine side chains on protein substrates. Emerging research has revealed a correlation between the dysregulation of PRMT1 expression and the initiation and progression of tumors, significantly influence on patient prognostication, attributed to the essential role played by PRMT1 in a number of biological processes, including transcriptional regulation, signal transduction or DNA repair. Therefore, PRMT1 emerged as a promising therapeutic target for anticancer drug discovery in the past decade. In this review, we first summarize the structure and biological functions of PRMT1 and its association with cancer. Next, we focus on the recent advances in the design and development of PRMT1 modulators, including isoform-selective PRMT1 inhibitors, pan type I PRMT inhibitors, PRMT1-based dual-target inhibitors, and PRMT1-targeting PROTAC degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for PRMT1-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Junwei Wu
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Lifang Wang
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Bae AA, Zheng YG. Hetero-oligomeric interaction as a new regulatory mechanism for protein arginine methyltransferases. Biochem Soc Trans 2024; 52:2193-2201. [PMID: 39324605 PMCID: PMC11624628 DOI: 10.1042/bst20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Protein arginine methylation is a versatile post-translational protein modification that has notable cellular roles such as transcriptional activation or repression, cell signaling, cell cycle regulation, and DNA damage response. However, in spite of their extensive significance in the biological system, there is still a significant gap in understanding of the entire function of the protein arginine methyltransferases (PRMTs). It has been well-established that PRMTs form homo-oligomeric complexes to be catalytically active, but in recent years, several studies have showcased evidence that different members of PRMTs can have cross-talk with one another to form hetero-oligomeric complexes. Additionally, these heteromeric complexes have distinct roles separate from their homomeric counterparts. Here, we review and highlight the discovery of the heterodimerization of PRMTs and discuss the biological implications of these hetero-oligomeric interactions.
Collapse
Affiliation(s)
- Angela A Bae
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
4
|
Hobble HV, Schaner Tooley CE. Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation. Epigenetics Chromatin 2024; 17:5. [PMID: 38429855 PMCID: PMC10908127 DOI: 10.1186/s13072-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024] Open
Abstract
Protein and nucleic acid methylation are important biochemical modifications. In addition to their well-established roles in gene regulation, they also regulate cell signaling, metabolism, and translation. Despite this high biological relevance, little is known about the general regulation of methyltransferase function. Methyltransferases are divided into superfamilies based on structural similarities and further classified into smaller families based on sequence/domain/target similarity. While members within superfamilies differ in substrate specificity, their structurally similar active sites indicate a potential for shared modes of regulation. Growing evidence from one superfamily suggests a common regulatory mode may be through heterooligomerization with other family members. Here, we describe examples of methyltransferase regulation through intrafamily heterooligomerization and discuss how this can be exploited for therapeutic use.
Collapse
Affiliation(s)
- Haley V Hobble
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Conner MM, Schaner Tooley CE. Three's a crowd - why did three N-terminal methyltransferases evolve for one job? J Cell Sci 2023; 136:jcs260424. [PMID: 36647772 PMCID: PMC10022744 DOI: 10.1242/jcs.260424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal methylation of the α-amine group (Nα-methylation) is a post-translational modification (PTM) that was discovered over 40 years ago. Although it is not the most abundant of the Nα-PTMs, there are more than 300 predicted substrates of the three known mammalian Nα-methyltransferases, METTL11A and METTL11B (also known as NTMT1 and NTMT2, respectively) and METTL13. Of these ∼300 targets, the bulk are acted upon by METTL11A. Only one substrate is known to be Nα-methylated by METTL13, and METTL11B has no proven in vivo targets or predicted targets that are not also methylated by METTL11A. Given that METTL11A could clearly handle the entire substrate burden of Nα-methylation, it is unclear why three distinct Nα-methyltransferases have evolved. However, recent evidence suggests that many methyltransferases perform important biological functions outside of their catalytic activity, and the Nα-methyltransferases might be part of this emerging group. Here, we describe the distinct expression, localization and physiological roles of each Nα-methyltransferase, and compare these characteristics to other methyltransferases with non-catalytic functions, as well as to methyltransferases with both catalytic and non-catalytic functions, to give a better understanding of the global roles of these proteins. Based on these comparisons, we hypothesize that these three enzymes do not just have one common function but are actually performing three unique jobs in the cell.
Collapse
Affiliation(s)
- Meghan M. Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Glockzin K, Meek TD, Katzfuss A. Characterization of adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei brucei: Only one of the two isoforms is kinetically active. PLoS Negl Trop Dis 2022; 16:e0009926. [PMID: 35104286 PMCID: PMC8836349 DOI: 10.1371/journal.pntd.0009926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/11/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (TDM); (AK)
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (TDM); (AK)
| |
Collapse
|
7
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
8
|
Campagnaro GD, Nay E, Plevin MJ, Cruz AK, Walrad PB. Arginine Methyltransferases as Regulators of RNA-Binding Protein Activities in Pathogenic Kinetoplastids. Front Mol Biosci 2021; 8:692668. [PMID: 34179098 PMCID: PMC8226133 DOI: 10.3389/fmolb.2021.692668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edward Nay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Michael J. Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B. Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom,*Correspondence: Pegine B. Walrad,
| |
Collapse
|