1
|
Sun S, Lu YN, Li XD. Structure of the Inhibited Smooth Muscle Myosin and Its Implications on the Regulation of Insect Striated Muscle Myosin. Life (Basel) 2025; 15:379. [PMID: 40141724 PMCID: PMC11944230 DOI: 10.3390/life15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Class II myosin (myosin-2) is an actin-based motor protein found in nearly all eukaryotes. One critical question is how the motor function of myosin-2 is regulated. Vertebrate myosin-2 comprises non-muscle myosin, smooth muscle myosin and striated muscle myosin. Recent studies have shown that smooth muscle myosin, in its inhibited state, adopts a folded conformation in which the two heads interact with each other asymmetrically, and the tail is folded into three segments that wrap around the two heads. It has been proposed that the asymmetric head-to-head interaction is a conserved, fundamental structure essential for the regulation of all types of myosin-2. Nearly all insects have only a single striated muscle myosin heavy chain (MHC) gene, which produces all MHC isoforms through alternative splicing of mutually exclusive exons. Most of the alternative exon-encoded regions in insect MHC are located in the motor domain and are critical for generating isoform-specific contraction velocity and force production. However, it remains unclear whether these alternative exon-encoded regions participate in the regulation of insect striated muscle myosin. Here, we review the recently resolved structure of the inhibited state of smooth muscle myosin and discuss its implications on the regulation of insect striated muscle myosin. We propose that the alternative exon-encoded regions in insect MHC not only affect motor properties but also contribute to stabilizing the folded conformation and play a crucial role in regulating insect striated muscle myosin.
Collapse
Affiliation(s)
- Shaopeng Sun
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.S.); (Y.-N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ning Lu
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.S.); (Y.-N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.S.); (Y.-N.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Hao J, Liu C, Zhang N, Li J, Ni T, Qu M, Li XD. Alternative relay regulates the adenosine triphosphatase activity of Locusta migratoria striated muscle myosin. INSECT SCIENCE 2024; 31:435-447. [PMID: 37489033 DOI: 10.1111/1744-7917.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/26/2023]
Abstract
Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.
Collapse
Affiliation(s)
- Jie Hao
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Zhang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong Ni
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingbo Qu
- School of Bioengeering, Dalian University of Technology, Dalian, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kronert WA, Hsu KH, Madan A, Sarsoza F, Cammarato A, Bernstein SI. Myosin Transducer Inter-Strand Communication Is Critical for Normal ATPase Activity and Myofibril Structure. BIOLOGY 2022; 11:biology11081137. [PMID: 36009764 PMCID: PMC9404822 DOI: 10.3390/biology11081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
The R249Q mutation in human β-cardiac myosin results in hypertrophic cardiomyopathy. We previously showed that inserting this mutation into Drosophila melanogaster indirect flight muscle myosin yields mechanical and locomotory defects. Here, we use transgenic Drosophila mutants to demonstrate that residue R249 serves as a critical communication link within myosin that controls both ATPase activity and myofibril integrity. R249 is located on a β-strand of the central transducer of myosin, and our molecular modeling shows that it interacts via a salt bridge with D262 on the adjacent β-strand. We find that disrupting this interaction via R249Q, R249D or D262R mutations reduces basal and actin-activated ATPase activity, actin in vitro motility and flight muscle function. Further, the R249D mutation dramatically affects myofibril assembly, yielding abnormalities in sarcomere lengths, increased Z-line thickness and split myofibrils. These defects are exacerbated during aging. Re-establishing the β-strand interaction via a R249D/D262R double mutation restores both basal ATPase activity and myofibril assembly, indicating that these properties are dependent upon transducer inter-strand communication. Thus, the transducer plays an important role in myosin function and myofibril architecture.
Collapse
Affiliation(s)
- William A. Kronert
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
| | - Karen H. Hsu
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA; (A.M.); (A.C.)
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA; (A.M.); (A.C.)
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.A.K.); (K.H.H.); (F.S.)
- Correspondence:
| |
Collapse
|
4
|
Bloemink MJ, Hsu KH, Geeves MA, Bernstein SI. Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain. J Biol Chem 2020; 295:14522-14535. [PMID: 32817166 DOI: 10.1074/jbc.ra120.014684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/05/2020] [Indexed: 02/01/2023] Open
Abstract
We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal β-barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3-encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D ) in the absence of actin is completely reversed for each chimera compared with the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared with wild-type (WT) IFI, whereas for EMB-3b these values are increased compared with wild-type (WT) EMB. In the presence of actin, ADP affinity (KAD ) is unchanged for IFI-3a, compared with IFI, but ADP affinity for EMB-3b is increased, compared with EMB, and shifted toward IFI values. ATP-induced dissociation of acto-S1 (K1k +2 ) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicates that the exon 3-encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating actomyosin crossbridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.
Collapse
Affiliation(s)
- Marieke J Bloemink
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.,Biomolecular Research Group, School of Natural and Applied Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute, and SDSU Heart Institute, San Diego State University, San Diego, California, USA
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, and SDSU Heart Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|