1
|
Li J, Wu B, Ji Y, Zhang S, Ge Y, Fan J. Detection and optimization of microbial expression systems for extracellular production and purification of Ca 2+-responsive phase-changing annexin fusions. Protein Expr Purif 2025; 226:106617. [PMID: 39486604 DOI: 10.1016/j.pep.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Previously, we identified the human annexin A1 as a purification tag for column-free purification with gentler calcium-responsive precipitation. In this work, we used the annexin A1 tagged green fluorescent protein constructs for detecting extracellular production in Escherichia coli, Bacillus subtilis, and Pichia pastoris, and identified that the leaderless fusion protein was transported extracellularly in E. coli with supply of additives including Triton X-100. The coexpressed enzymes, culture compositions, and induction conditions in E. coli extracellular expression systems were optimized. With coexpression of phospholipase C from Bacillus cereus and addition of 0.2 % Triton X-100 after induction for 60 h at 28 °C, the annexin A1 tagged green fluorescent protein and 5-aminolevulinate dehydratase from E. coli were overexpressed and purified from lysogeny broth by precipitation with 20 mM Ca2+ and redissolution with 25 mM EDTA with the acceptable protein purities and recoveries. The silica binding peptide was fused to the annexin A1 tagged fluorescent protein fusion for successive affinity precipitation and purification. With incubation of the specific protease, the released tag-free protein displayed higher purity via on-resin cleavage than that through cleavage of the free fusion protein. The tandem tag is applicable for two-step purification of small or large amounts of other fusion proteins in the culture and recovery of tag-free proteins at low cost.
Collapse
Affiliation(s)
- Jinjing Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Baokang Wu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Yiting Ji
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
2
|
Malkamäki M, Gandier JA, Meinander K, Linder MB. Specific Protein Quantification by Radioimmuno-Dot-Blot Assay for Complex Mixture Samples Utilizing Strep-Tag and Tritium-Labeled Strep-Tactin. Anal Chem 2025; 97:1087-1096. [PMID: 39763364 PMCID: PMC11755393 DOI: 10.1021/acs.analchem.4c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Accurately quantifying specific proteins from complex mixtures like cell lysates, for example, during in vivo studies, is difficult, especially for aggregation-prone proteins. Herein, we describe the development of a specific protein quantification method that combines a solid-state dot blot approach with radiolabel detection via liquid scintillation counting. The specific detection with high sensitivity is achieved by using the Twin-Strep protein affinity tag and tritium-labeled 3HStrep-TactinXT probe. While the assay was developed with the recombinant silk protein CBM-AQ12-CBM as a target, the method can be adapted to other recombinant proteins. Variations of the protein tag and Strep-Tactin probe were tested, and it was found that only the combination of Strep-TactinXT and Twin-Strep-tag performed adequately: with this combination, a precision of 95% and an accuracy of 86% were achieved with a linear region from 19 to 400 ng and a limit of quantification at 0.4 pmol. To achieve this, critical optimization steps were preventing nonspecific adsorption and promoting surface adhesion of the target protein to the solid nitrocellulose membrane. The often-overlooked challenges of sample preparation and protein immobilization in quantification assays are discussed and insights into overcoming such issues are provided.
Collapse
Affiliation(s)
- Maaria Malkamäki
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
- The
Centre of Excellence in Life Inspired Hybrid Materials (LIBER), Aalto University, 00076 Aalto, Finland
| | - Julie-Anne Gandier
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
- The
Centre of Excellence in Life Inspired Hybrid Materials (LIBER), Aalto University, 00076 Aalto, Finland
| | - Kristoffer Meinander
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
- The
Centre of Excellence in Life Inspired Hybrid Materials (LIBER), Aalto University, 00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
- The
Centre of Excellence in Life Inspired Hybrid Materials (LIBER), Aalto University, 00076 Aalto, Finland
| |
Collapse
|
3
|
Tang J, Becker M, Lenhoff A, Chen W. Engineering of heterobifunctional biopolymers for tunable binding and precipitation of Strep-Tag proteins and virus-like nanoparticles. Biotechnol Bioeng 2024; 121:3860-3868. [PMID: 39279211 DOI: 10.1002/bit.28845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
Affinity precipitation is a powerful separation method in that it combines the binding selectivity of affinity chromatography with precipitation of captured biomolecules via phase separation triggered by small changes in the environment, e.g., pH, ionic strength, temperature, light, etc. Elastin-like polypeptides (ELPs) are thermally responsive biopolymers composed of pentapeptide repeats VPGVG that undergo reversible phase separation, where they aggregate when temperature and/or salt concentration are increased. Here we describe the generation of an ELP fusion to a soluble streptavidin mutant that enables rapid purification of any Strep-tag II fusion protein of interest. This heterobifunctional protein takes advantage of the native tetrameric structure of streptavidin, leading to binding-induced multivalent crosslinking upon protein capture. The efficient biotin-mediated dissociation of the bound Strep-tag II fusion protein from the streptavidin-ELP capturing scaffold allows for mild elution conditions. We also show that this platform is particularly effective in the purification of a virus-like particle (VLP)-like E2 protein nanoparticle, likely because the high valency of the protein particle causes binding-induced crosslinking and precipitation. Considering the importance of VLP for gene therapy applications, we believe this is a particularly exciting advance. We demonstrated this feasibility by the efficient purification of a VLP-like E2 protein nanoparticle as a surrogate.
Collapse
Affiliation(s)
- James Tang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Abraham Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Yarman A, Waffo AFT, Katz S, Bernitzky C, Kovács N, Borrero P, Frielingsdorf S, Supala E, Dragelj J, Kurbanoglu S, Neumann B, Lenz O, Mroginski MA, Gyurcsányi RE, Wollenberger U, Scheller FW, Caserta G, Zebger I. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Angew Chem Int Ed Engl 2024; 63:e202408979. [PMID: 38979660 DOI: 10.1002/anie.202408979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes. Here, we addressed this drawback by developing a polyscopoletin-based MIP that recognizes recombinant proteins via imprinting of the widely used Strep-tag II affinity peptide (Strep-MIP). Electrochemistry, surface-sensitive IR spectroscopy, and molecular dynamics simulations were employed to ensure an utmost control of the Strep-MIP electrosynthesis. The functionality of this novel platform was verified with two Strep-tagged enzymes: an O2-tolerant [NiFe]-hydrogenase, and an alkaline phosphatase. The enzymes preserved their biocatalytic activities after multiple utilization confirming the efficiency of Strep-MIP as a general biocompatible platform to confine recombinant proteins for exploitation in biotechnology.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad. No. 86, Beykoz, Istanbul, 34820, Türkiye
| | - Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Cornelius Bernitzky
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Norbert Kovács
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Paloma Borrero
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eszter Supala
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Jovan Dragelj
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Yenimahalle, Ankara, 06560, Turkey
| | - Bettina Neumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Róbert E Gyurcsányi
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
5
|
MalagodaPathiranage K, Banerjee R, Martin C. A new approach to RNA synthesis: immobilization of stably and functionally co-tethered promoter DNA and T7 RNA polymerase. Nucleic Acids Res 2024; 52:10607-10618. [PMID: 39011885 PMCID: PMC11417385 DOI: 10.1093/nar/gkae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Current approaches to RNA synthesis/manufacturing require substantial (and incomplete) purification post-synthesis. We have previously demonstrated the synthesis of RNA from a complex in which T7 RNA polymerase is tethered to promoter DNA. In the current work, we extend this approach to demonstrate an extremely stable system of functional co-tethered complex to a solid support. Using the system attached to magnetic beads, we carry out more than 20 rounds of synthesis using the initial polymerase-DNA construct. We further demonstrate the wide utility of this system in the synthesis of short RNA, a CRISPR guide RNA, and a protein-coding mRNA. In all cases, the generation of self-templated double stranded RNA (dsRNA) impurities are greatly reduced, by both the tethering itself and by the salt-tolerance that local co-tethering provides. Transfection of the mRNA into HEK293T cells shows a correlation between added salt in the transcription reaction (which inhibits RNA rebinding that generates RNA-templated extensions) and significantly increased expression and reduced innate immune stimulation by the mRNA reaction product. These results point in the direction of streamlined processes for synthesis/manufacturing of high-quality RNA of any length, and at greatly reduced costs.
Collapse
Affiliation(s)
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Beloborodov E, Iurova E, Sugak D, Rastorgueva E, Pogodina E, Fomin A, Viktorov D, Slesarev S, Saenko Y. Stabilizing Scaffold for Short Peptides Based on Knottins. Curr Cancer Drug Targets 2024; 24:1275-1285. [PMID: 38357956 DOI: 10.2174/0115680096285288240118090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Dmitrii Sugak
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russia
| | - Evgeniya Pogodina
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Denis Viktorov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Sergei Slesarev
- Department of Biology, Ecology and Natural Resources Management, Faculty of Ecology, Ulyanovsk State University, Ulyanovsk, Russia
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| |
Collapse
|
7
|
Ogasawara S. Replication-competent influenza virus with a protein-responsive multiplication ability. N Biotechnol 2023; 77:100-110. [PMID: 37586547 DOI: 10.1016/j.nbt.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Applications of influenza A viruses (IAV) for virotherapy and biotechnology have accelerated substantially with the development of reverse genetic technology and advances in the understanding of packaging signals. While the use of a replication-competent IAV is particularly promising, owing to its efficient transmission to organ depths with high infectivity, there is also a risk that its multiplication cannot be controlled in a cell-type-specific manner, causing an infectious disease. Therefore, here a simple and effective replication-competent IAV-based cell-targeting system has been developed. It was demonstrated that the activity of the ribonucleoprotein complex (RNP) of IAV could be regulated by the interaction between the endogenous protein and a nanobody fused to the subunit of RNA-dependent RNA polymerase (RdRp). To validate the feasibility of the method, it was demonstrated that RNP containing RdRp fused with Nb139, a nanobody against p53, is inactive in HEK293T cells expressing endogenous p53, but active in p53-defective Saos-2 cells. Finally, a replication-competent IAV was successfully generated that multiplies only in p53-defective tumor cells and an IAV vector was developed that can deliver a foreign gene in cell type-specific manner. The method is flexible because the nanobody can be easily altered to target a different cell type, offering a valuable platform for virotherapy and biotechnology.
Collapse
Affiliation(s)
- Shinzi Ogasawara
- Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
8
|
El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, Wagner A. Experimental phasing opportunities for macromolecular crystallography at very long wavelengths. Commun Chem 2023; 6:219. [PMID: 37828292 PMCID: PMC10570326 DOI: 10.1038/s42004-023-01014-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.
Collapse
Affiliation(s)
- Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Christian M Orr
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | | | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
| | - Vinay Grama
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
| | - Feng Qu
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kiran Bountra
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Hok Sau Kwong
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Maria Romano
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131, Naples, Italy
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Rosana I Reis
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Lutz Vogeley
- Charles River Discovery Research Services UK, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Luca Vecchia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - C David Owen
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Sina Wittmann
- Department of Biochemistry, University of Oxford, Oxford, UK
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Max Renner
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Naohiro Matsugaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Cristiane R Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Raymond J Owens
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - David G Brown
- Charles River Discovery Research Services UK, Chesterford Research Park, Saffron Walden, CB10 1XL, UK
| | - Dave I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Konstantinos Beis
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, -, OX110DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK.
| |
Collapse
|
9
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
Ali A, Happel D, Habermann J, Schoenfeld K, Macarrón Palacios A, Bitsch S, Englert S, Schneider H, Avrutina O, Fabritz S, Kolmar H. Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether-Bond-Forming Sactisynthase. Angew Chem Int Ed Engl 2022; 61:e202210883. [PMID: 36049110 PMCID: PMC9828075 DOI: 10.1002/anie.202210883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 01/12/2023]
Abstract
Sactipeptides are ribosomally synthesized peptides containing a unique sulfur to α-carbon crosslink. Catalyzed by sactisynthases, this thioether pattern endows sactipeptides with enhanced structural, thermal, and proteolytic stability, which makes them attractive scaffolds for the development of novel biotherapeutics. Herein, we report the in-depth study on the substrate tolerance of the sactisynthase AlbA to catalyze the formation of thioether bridges in sactipeptides. We identified a possible modification site within the sactipeptide subtilosin A allowing for peptide engineering without compromising formation of thioether bridges. A panel of natural and hybrid sactipeptides was produced to study the AlbA-mediated formation of thioether bridges, which were identified mass-spectrometrically. In a proof-of-principle study, we re-engineered subtilosin A to a thioether-bridged, specific streptavidin targeting peptide, opening the door for the functional engineering of sactipeptides.
Collapse
Affiliation(s)
- Ataurehman Ali
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Dominic Happel
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Jan Habermann
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Katrin Schoenfeld
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Arturo Macarrón Palacios
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Sebastian Bitsch
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Simon Englert
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Hendrik Schneider
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Olga Avrutina
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
| | - Sebastian Fabritz
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Harald Kolmar
- Department for Organic Chemistry and BiochemistryTechnische Universität DarmstadtAlarich-Weiß-Straße 464287DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64283DamstadtGermany
| |
Collapse
|
11
|
Schilz J, Clement C, Greiner F, Skerra A. Direct Affinity Purification of Long‐Acting PASylated Proteins with Therapeutic Potential Using L‐Prolinamide for Mild Elution. Angew Chem Int Ed Engl 2022; 61:e202200079. [PMID: 35325504 PMCID: PMC9320812 DOI: 10.1002/anie.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas Schilz
- Lehrstuhl für Biologische Chemie Technische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising (Weihenstephan) Germany
| | - Charlotte Clement
- Lehrstuhl für Biologische Chemie Technische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising (Weihenstephan) Germany
| | - Franziska Greiner
- Lehrstuhl für Biologische Chemie Technische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising (Weihenstephan) Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie Technische Universität München Emil-Erlenmeyer-Forum 5 85354 Freising (Weihenstephan) Germany
| |
Collapse
|
12
|
Schilz J, Clement C, Greiner F, Skerra A. Direct Affinity Purification of Long‐Acting PASylated Proteins with Therapeutic Potential Using L‐Prolinamide for Mild Elution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jonas Schilz
- TUM: Technische Universitat Munchen Biological Chemistry GERMANY
| | | | | | - Arne Skerra
- Technische Universität München Lehrstuhl für Biologische Chemie Emil-Erlenmeyer-Forum 5 85354 Freising GERMANY
| |
Collapse
|
13
|
Eichinger A, Neumaier I, Skerra A. The extracellular region of bovine milk butyrophilin exhibits closer structural similarity to human myelin oligodendrocyte glycoprotein than to immunological BTN family receptors. Biol Chem 2021; 402:1187-1202. [PMID: 34342946 DOI: 10.1515/hsz-2021-0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
Bovine butyrophilin (BTN1A1) is an abundant type I transmembrane glycoprotein exposed on the surface of milk fat globules. We have solved the crystal structure of its extracellular region via multiple wavelength anomalous dispersion after incorporation of selenomethionine into the bacterially produced protein. The butyrophilin ectodomain exhibits two subdomains with immunoglobulin fold, each comprising a β-sandwich with a central disulfide bridge as well as one N-linked glycosylation. The fifth Cys residue at position 193 is unpaired and prone to forming disulfide crosslinks. The apparent lack of a ligand-binding site or receptor activity suggests a function predominantly as hydrophilic coat protein to prevent coagulation of the milk fat droplets. While there is less structural resemblance to members of the human butyrophilin family such as BTN3A, which play a role as immune receptors, the N-terminal bovine butyrophilin subdomain shows surprising similarity to the human myelin oligodendrocyte glycoprotein, a protein exposed on the surface of myelin sheaths. Thus, our study lends structural support to earlier hypotheses of a correlation between the consumption of cow milk and prevalence of neurological autoimmune diseases and may offer guidance for the breeding of cattle strains that express modified butyrophilin showing less immunological cross-reactivity.
Collapse
Affiliation(s)
- Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Irmgard Neumaier
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|