1
|
Piovesan D, Del Conte A, Mehdiabadi M, Aspromonte M, Blum M, Tesei G, von Bülow S, Lindorff-Larsen K, Tosatto SE. MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins. Nucleic Acids Res 2025; 53:D495-D503. [PMID: 39470701 PMCID: PMC11701742 DOI: 10.1093/nar/gkae969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
The MobiDB database (URL: https://mobidb.org/) aims to provide structural and functional information about intrinsic protein disorder, aggregating annotations from the literature, experimental data, and predictions for all known protein sequences. Here, we describe the improvements made to our resource to capture more information, simplify access to the aggregated data, and increase documentation of all MobiDB features. Compared to the previous release, all underlying pipeline modules were updated. The prediction module is ten times faster and can detect if a predicted disordered region is structurally extended or compact. The PDB component is now able to process large cryo-EM structures extending the number of processed entries. The entry page has been restyled to highlight functional aspects of disorder and all graphical modules have been completely reimplemented for better flexibility and faster rendering. The server has been improved to optimise bulk downloads. Annotation provenance has been standardised by adopting ECO terms. Finally, we propagated disorder function (IDPO and GO terms) from the DisProt database exploiting sequence similarity and protein embeddings. These improvements, along with the addition of comprehensive training material, offer a more intuitive interface and novel functional knowledge about intrinsic disorder.
Collapse
Affiliation(s)
- Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padua 35131, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padua 35131, Italy
| | - Mahta Mehdiabadi
- Department of Biomedical Sciences, University of Padova, Padua 35131, Italy
| | | | - Matthias Blum
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padua 35131, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| |
Collapse
|
2
|
Zhang F, Kurgan L. Evaluation of predictions of disordered binding regions in the CAID2 experiment. Comput Struct Biotechnol J 2024; 27:78-88. [PMID: 39811792 PMCID: PMC11732247 DOI: 10.1016/j.csbj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
A large portion of the Intrinsically Disordered Regions (IDRs) in protein sequences interact with proteins, nucleic acids, and other types of ligands. Correspondingly, dozens of sequence-based predictors of binding IDRs were developed. A recently completed second community-based Critical Assessments of protein Intrinsic Disorder prediction (CAID2) evaluated 32 predictors of binding IDRs. However, CAID2 considered a rather narrow scenario by testing on 78 proteins with binding IDRs and not differentiating between different ligands, in spite that virtually all predictors target IDRs that interact with specific types of ligands. In that scenario, several intrinsic disorder predictors predict binding IDRs with accuracy equivalent to the best predictors of binding IDRs since large majority of IDRs in the 78 test proteins are binding. We substantially extended the CAID2's evaluation by using the entire CAID2 dataset of 348 proteins and considering several arguably more practical scenarios. We assessed whether predictors accurately differentiate binding IDRs from other types of IDRs and how they perform when predicting IDRs that interact with different ligand types. We found that intrinsic disorder predictors cannot accurately identify binding IDRs among other disordered regions, majority of the predictors of binding IDRs are ligand type agnostic (i.e., they cross predict binding in IDRs that interact with ligands that they do not cover), and only a handful of predictors of binding IDRs perform relatively well and generate reasonably low amounts of cross predictions. We also suggest a number of future research directions that would move this active field of research forward.
Collapse
Affiliation(s)
- Fuhao Zhang
- College of Information Engineering, Northwest A & F University, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Abstract
There are over 100 computational predictors of intrinsic disorder. These methods predict amino acid-level propensities for disorder directly from protein sequences. The propensities can be used to annotate putative disordered residues and regions. This unit provides a practical and holistic introduction to the sequence-based intrinsic disorder prediction. We define intrinsic disorder, explain the format of computational prediction of disorder, and identify and describe several accurate predictors. We also introduce recently released databases of intrinsic disorder predictions and use an illustrative example to provide insights into how predictions should be interpreted and combined. Lastly, we summarize key experimental methods that can be used to validate computational predictions. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
4
|
Kotb HM, Davey NE. xProtCAS: A Toolkit for Extracting Conserved Accessible Surfaces from Protein Structures. Biomolecules 2023; 13:906. [PMID: 37371487 DOI: 10.3390/biom13060906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The identification of protein surfaces required for interaction with other biomolecules broadens our understanding of protein function, their regulation by post-translational modification, and the deleterious effect of disease mutations. Protein interaction interfaces are often identifiable as patches of conserved residues on a protein's surface. However, finding conserved accessible surfaces on folded regions requires an understanding of the protein structure to discriminate between functional and structural constraints on residue conservation. With the emergence of deep learning methods for protein structure prediction, high-quality structural models are now available for any protein. In this study, we introduce tools to identify conserved surfaces on AlphaFold2 structural models. We define autonomous structural modules from the structural models and convert these modules to a graph encoding residue topology, accessibility, and conservation. Conserved surfaces are then extracted using a novel eigenvector centrality-based approach. We apply the tool to the human proteome identifying hundreds of uncharacterised yet highly conserved surfaces, many of which contain clinically significant mutations. The xProtCAS tool is available as open-source Python software and an interactive web server.
Collapse
Affiliation(s)
- Hazem M Kotb
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
5
|
Peng Z, Li Z, Meng Q, Zhao B, Kurgan L. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information. Brief Bioinform 2023; 24:6858950. [PMID: 36458437 DOI: 10.1093/bib/bbac502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/04/2022] Open
Abstract
One of key features of intrinsically disordered regions (IDRs) is facilitation of protein-protein and protein-nucleic acids interactions. These disordered binding regions include molecular recognition features (MoRFs), short linear motifs (SLiMs) and longer binding domains. Vast majority of current predictors of disordered binding regions target MoRFs, with a handful of methods that predict SLiMs and disordered protein-binding domains. A new and broader class of disordered binding regions, linear interacting peptides (LIPs), was introduced recently and applied in the MobiDB resource. LIPs are segments in protein sequences that undergo disorder-to-order transition upon binding to a protein or a nucleic acid, and they cover MoRFs, SLiMs and disordered protein-binding domains. Although current predictors of MoRFs and disordered protein-binding regions could be used to identify some LIPs, there are no dedicated sequence-based predictors of LIPs. To this end, we introduce CLIP, a new predictor of LIPs that utilizes robust logistic regression model to combine three complementary types of inputs: co-evolutionary information derived from multiple sequence alignments, physicochemical profiles and disorder predictions. Ablation analysis suggests that the co-evolutionary information is particularly useful for this prediction and that combining the three inputs provides substantial improvements when compared to using these inputs individually. Comparative empirical assessments using low-similarity test datasets reveal that CLIP secures area under receiver operating characteristic curve (AUC) of 0.8 and substantially improves over the results produced by the closest current tools that predict MoRFs and disordered protein-binding regions. The webserver of CLIP is freely available at http://biomine.cs.vcu.edu/servers/CLIP/ and the standalone code can be downloaded from http://yanglab.qd.sdu.edu.cn/download/CLIP/.
Collapse
Affiliation(s)
- Zhenling Peng
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.,Frontier Science Center for Nonlinear Expectations, Ministry of Education, Qingdao, 266237, China
| | - Zixia Li
- Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China
| | - Qiaozhen Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Piovesan D, Del Conte A, Clementel D, Monzon A, Bevilacqua M, Aspromonte M, Iserte J, Orti FE, Marino-Buslje C, Tosatto SE. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res 2022; 51:D438-D444. [PMID: 36416266 PMCID: PMC9825420 DOI: 10.1093/nar/gkac1065] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The MobiDB database (URL: https://mobidb.org/) is a knowledge base of intrinsically disordered proteins. MobiDB aggregates disorder annotations derived from the literature and from experimental evidence along with predictions for all known protein sequences. MobiDB generates new knowledge and captures the functional significance of disordered regions by processing and combining complementary sources of information. Since its first release 10 years ago, the MobiDB database has evolved in order to improve the quality and coverage of protein disorder annotations and its accessibility. MobiDB has now reached its maturity in terms of data standardization and visualization. Here, we present a new release which focuses on the optimization of user experience and database content. The major advances compared to the previous version are the integration of AlphaFoldDB predictions and the re-implementation of the homology transfer pipeline, which expands manually curated annotations by two orders of magnitude. Finally, the entry page has been restyled in order to provide an overview of the available annotations along with two separate views that highlight structural disorder evidence and functions associated with different binding modes.
Collapse
Affiliation(s)
- Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Damiano Clementel
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | - Javier A Iserte
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Fernando E Orti
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Zhao B, Kurgan L. Deep learning in prediction of intrinsic disorder in proteins. Comput Struct Biotechnol J 2022; 20:1286-1294. [PMID: 35356546 PMCID: PMC8927795 DOI: 10.1016/j.csbj.2022.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intrinsic disorder prediction is an active area that has developed over 100 predictors. We identify and investigate a recent trend towards the development of deep neural network (DNN)-based methods. The first DNN-based method was released in 2013 and since 2019 deep learners account for majority of the new disorder predictors. We find that the 13 currently available DNN-based predictors are diverse in their topologies, sizes of their networks and the inputs that they utilize. We empirically show that the deep learners are statistically more accurate than other types of disorder predictors using the blind test dataset from the recent community assessment of intrinsic disorder predictions (CAID). We also identify several well-rounded DNN-based predictors that are accurate, fast and/or conveniently available. The popularity, favorable predictive performance and architectural flexibility suggest that deep networks are likely to fuel the development of future disordered predictors. Novel hybrid designs of deep networks could be used to adequately accommodate for diversity of types and flavors of intrinsic disorder. We also discuss scarcity of the DNN-based methods for the prediction of disordered binding regions and the need to develop more accurate methods for this prediction.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
8
|
Piovesan D, Monzon AM, Quaglia F, Tosatto SCE. Databases for intrinsically disordered proteins. Acta Crystallogr D Struct Biol 2022; 78:144-151. [PMID: 35102880 PMCID: PMC8805306 DOI: 10.1107/s2059798321012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Intrinsically disordered regions (IDRs) lacking a fixed three-dimensional protein structure are widespread and play a central role in cell regulation. Only a small fraction of IDRs have been functionally characterized, with heterogeneous experimental evidence that is largely buried in the literature. Predictions of IDRs are still difficult to estimate and are poorly characterized. Here, an overview of the publicly available knowledge about IDRs is reported, including manually curated resources, deposition databases and prediction repositories. The types, scopes and availability of the various resources are analyzed, and their complementarity and overlap are highlighted. The volume of information included and the relevance to the field of structural biology are compared.
Collapse
Affiliation(s)
- Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Federica Quaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR–IBIOM), Bari, Italy
| | | |
Collapse
|
9
|
Abstract
INTRODUCTION Intrinsic disorder prediction field develops, assesses, and deploys computational predictors of disorder in protein sequences and constructs and disseminates databases of these predictions. Over 40 years of research resulted in the release of numerous resources. AREAS COVERED We identify and briefly summarize the most comprehensive to date collection of over 100 disorder predictors. We focus on their predictive models, availability and predictive performance. We categorize and study them from a historical point of view to highlight informative trends. EXPERT OPINION We find a consistent trend of improvements in predictive quality as newer and more advanced predictors are developed. The original focus on machine learning methods has shifted to meta-predictors in early 2010s, followed by a recent transition to deep learning. The use of deep learners will continue in foreseeable future given recent and convincing success of these methods. Moreover, a broad range of resources that facilitate convenient collection of accurate disorder predictions is available to users. They include web servers and standalone programs for disorder prediction, servers that combine prediction of disorder and disorder functions, and large databases of pre-computed predictions. We also point to the need to address the shortage of accurate methods that predict disordered binding regions.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|