1
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
2
|
Zhu Y, Huang H, Chen Z, Tao Y, Liao LY, Gao SH, Wang YJ, Gao CY. Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice. Neurosci Bull 2024; 40:182-200. [PMID: 37578635 PMCID: PMC10838862 DOI: 10.1007/s12264-023-01098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 08/15/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhi Chen
- Department of Special Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Hao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Da Vela S, Saudino G, Lucarelli F, Banci L, Svergun DI, Ciofi-Baffoni S. Structural plasticity of NFU1 upon interaction with binding partners: insights into the mitochondrial [4Fe-4S] cluster pathway. J Mol Biol 2023:168154. [PMID: 37211204 PMCID: PMC10388178 DOI: 10.1016/j.jmb.2023.168154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In humans, the biosynthesis and trafficking of mitochondrial [4Fe-4S]2+ clusters is a highly coordinated process that requires a complex protein machinery. In a mitochondrial pathway among various proposed to biosynthesize nascent [4Fe-4S]2+ clusters, two [2Fe-2S]2+ clusters are converted into a [4Fe-4S]2+ cluster on a ISCA1-ISCA2 complex. Along this pathway, this cluster is then mobilized from this complex to mitochondrial apo recipient proteins with the assistance of accessory proteins. NFU1 is the accessory protein that first receives the [4Fe-4S]2+ cluster from ISCA1-ISCA2 complex. A structural view of the protein-protein recognition events occurring along the [4Fe-4S]2+ cluster trafficking as well as how the globular N-terminal and C-terminal domains of NFU1 act in such process is, however, still elusive. Here, we applied small-angle X-ray scattering coupled with on-line size-exclusion chromatography and paramagnetic NMR to disclose structural snapshots of ISCA1-, ISCA2- and NFU1-containing apo complexes as well as the coordination of [4Fe-4S]2+ cluster bound to the ISCA1-NFU1 complex, which is the terminal stable species of the [4Fe-4S]2+ cluster transfer pathway involving ISCA1-, ISCA2- and NFU1 proteins. The structural modelling of ISCA1-ISCA2, ISCA1-ISCA2-NFU1 and ISCA1-NFU1 apo complexes, here reported, reveals that the structural plasticity of NFU1 domains is crucial to drive protein partner recognition and modulate [4Fe-4S]2+ cluster transfer from the cluster-assembly site in ISCA1-ISCA2 complex to the cluster-binding site in ISCA1-NFU1 complex. These structures allowed us to provide a first rational for the molecular function of the N-domain of NFU1, which can act as a modulator in the [4Fe-4S]2+ cluster transfer.
Collapse
Affiliation(s)
- Stefano Da Vela
- EMBL Hamburg Site, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Lucarelli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Dmitri I Svergun
- EMBL Hamburg Site, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy.
| |
Collapse
|
4
|
Schulz V, Freibert SA, Boss L, Mühlenhoff U, Stehling O, Lill R. Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett 2023; 597:102-121. [PMID: 36443530 DOI: 10.1002/1873-3468.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Linda Boss
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| |
Collapse
|
5
|
Wang J, Jiang M, Yue G, Zhu L, Wang X, Liang M, Wu X, Li B, Pang Y, Tan G, Li J. ISCA2 deficiency leads to heme synthesis defects and impaired erythroid differentiation in K562 cells by indirect ROS-mediated IRP1 activation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119307. [PMID: 35714932 DOI: 10.1016/j.bbamcr.2022.119307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Iron‑sulfur (Fe-S) clusters have been shown to play important roles in various cellular physiological process. Iron‑sulfur cluster assembly 2 (ISCA2) is a vital component of the [4Fe-4S] cluster assembly machine. Several studies have shown that ISCA2 is highly expressed during erythroid differentiation. However, the role and specific regulatory mechanisms of ISCA2 in erythroid differentiation and erythroid cell growth remain unclear. RNA interference was used to deplete ISCA2 expression in human erythroid leukemia K562 cells. The proliferation, apoptosis, and erythroid differentiation ability of the cells were assessed. We show that knockdown of ISCA2 has profound effects on [4Fe-4S] cluster formation, diminishing mitochondrial respiratory chain complexes, leading to reactive oxygen species (ROS) accumulation and mitochondrial damage, inhibiting cell proliferation. Excessive ROS can inhibit the activity of cytoplasmic aconitase (ACO1) and promote ACO1, a bifunctional protein, to perform its iron-regulating protein 1(IRP1) function, thus inhibiting the expression of 5'-aminolevulinate synthase 2 (ALAS2), which is a key enzyme in heme synthesis. Deficiency of ISCA2 results in the accumulation of iron divalent. In addition, the combination of excessive ferrous iron and ROS may lead to damage of the ACO1 cluster and higher IRP1 function. In brief, ISCA2 deficiency inhibits heme synthesis and erythroid differentiation by double indirect downregulation of ALAS2 expression. We conclude that ISCA2 is essential for normal functioning of mitochondria, and is necessary for erythroid differentiation and cell proliferation.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyao Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guanru Yue
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Lifei Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueqing Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengxiang Liang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaolin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Beibei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yilin Pang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guoqiang Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Trindade IB, Coelho A, Cantini F, Piccioli M, Louro RO. NMR of paramagnetic metalloproteins in solution: Ubi venire, quo vadis? J Inorg Biochem 2022; 234:111871. [DOI: 10.1016/j.jinorgbio.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
7
|
Camponeschi F, Ciofi-Baffoni S, Calderone V, Banci L. Molecular Basis of Rare Diseases Associated to the Maturation of Mitochondrial [4Fe-4S]-Containing Proteins. Biomolecules 2022; 12:biom12071009. [PMID: 35883565 PMCID: PMC9313013 DOI: 10.3390/biom12071009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of mitochondria in mammalian cells is widely known. Several biochemical reactions and pathways take place within mitochondria: among them, there are those involving the biogenesis of the iron–sulfur (Fe-S) clusters. The latter are evolutionarily conserved, ubiquitous inorganic cofactors, performing a variety of functions, such as electron transport, enzymatic catalysis, DNA maintenance, and gene expression regulation. The synthesis and distribution of Fe-S clusters are strictly controlled cellular processes that involve several mitochondrial proteins that specifically interact each other to form a complex machinery (Iron Sulfur Cluster assembly machinery, ISC machinery hereafter). This machinery ensures the correct assembly of both [2Fe-2S] and [4Fe-4S] clusters and their insertion in the mitochondrial target proteins. The present review provides a structural and molecular overview of the rare diseases associated with the genes encoding for the accessory proteins of the ISC machinery (i.e., GLRX5, ISCA1, ISCA2, IBA57, FDX2, BOLA3, IND1 and NFU1) involved in the assembly and insertion of [4Fe-4S] clusters in mitochondrial proteins. The disease-related missense mutations were mapped on the 3D structures of these accessory proteins or of their protein complexes, and the possible impact that these mutations have on their specific activity/function in the frame of the mitochondrial [4Fe-4S] protein biogenesis is described.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (S.C.-B.); (V.C.); Tel.: +39-055-4574192 (S.C.-B.); +39-055-4574276 (V.C.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (S.C.-B.); (V.C.); Tel.: +39-055-4574192 (S.C.-B.); +39-055-4574276 (V.C.)
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino, Italy; (F.C.); (L.B.)
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Saudino G, Ciofi-Baffoni S, Banci L. Protein-Interaction Affinity Gradient Drives [4Fe-4S] Cluster Insertion in Human Lipoyl Synthase. J Am Chem Soc 2022; 144:5713-5717. [PMID: 35343688 PMCID: PMC8991016 DOI: 10.1021/jacs.1c13626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Human lipoyl synthase (LIAS) is an enzyme containing two [4Fe-4S] clusters (named FeSRS and FeSaux) involved in the biosynthesis of the lipoyl cofactor. The mechanism by which a [4Fe-4S] cluster is inserted into LIAS has thus far remained elusive. Here we show that NFU1 and ISCA1 of the mitochondrial iron-sulfur cluster assembly machinery, via forming a heterodimeric complex, are the key factors for the insertion of a [4Fe-4S] cluster into the FeSRS site of LIAS. In this process, the crucial actor is the C-domain of NFU1, which, by exploiting a protein-interaction affinity gradient increasing from ISCA1 to LIAS, drives the cluster to its final destination.
Collapse
Affiliation(s)
- Giovanni Saudino
- Magnetic
Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Zhan F, Liu X, Ni R, Liu T, Cao Y, Wu J, Tian W, Luan X, Cao L. Novel IBA57 mutations in two chinese patients and literature review of multiple mitochondrial dysfunction syndrome. Metab Brain Dis 2022; 37:311-317. [PMID: 34709542 DOI: 10.1007/s11011-021-00856-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Multiple mitochondrial dysfunction syndrome (MMDS) refers to a class of mitochondrial diseases caused by nuclear gene mutations, which usually begins in early infancy and is classically characterized by markedly impaired neurological development, generalized muscle weakness, lactic acidosis, and hyperglycinemia, cavitating leukoencephalopathy, respiratory failure, as well as early fatality resulted from dysfunction of energy metabolism in multiple systems. So far, six types of MMDS have been identified based on different genotypes, which are caused by mutations in NFU1, BOLA3, IBA57, ISCA2, ISCA1 and PMPCB, respectively. IBA57 encodes a protein involved in the mitochondrial Fe/S cluster assembly process, which plays a vital role in the activity of multiple mitochondrial enzymes. Herein, detailed clinical investigation of 2 Chinese patients from two unrelated families were described, both of them showed mildly delay in developmental milestone before disease onset, the initial symptoms were all presented with acute motor and mental retrogression, and brain MRI showed diffused leukoencephalopathy with cavities, dysplasia of corpus callosum and cerebral atrophy. Exome sequencing revealed three IBA57 variants, one shared variant (c.286T>C) has been previously reported, the remaining two (c.189delC and c.580 A>G) are novel. To enhance the understanding of this rare disease, we further made a literature review about the current progress in clinical, genetic and treatment of the disorder. Due to the rapid progress of MMDS, early awareness is crucial to prompt and proper administration, as well as genetic counseling.
Collapse
Affiliation(s)
- Feixia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xiaoli Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China
| | - Ruilong Ni
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
- School of Medicine, Anhui University of Science and Technology, 232001, Huainan, China
| | - Taotao Liu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
- School of Medicine, Anhui University of Science and Technology, 232001, Huainan, China
| | - Yuwen Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Jingying Wu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
10
|
A Review of Multiple Mitochondrial Dysfunction Syndromes, Syndromes Associated with Defective Fe-S Protein Maturation. Biomedicines 2021; 9:biomedicines9080989. [PMID: 34440194 PMCID: PMC8393393 DOI: 10.3390/biomedicines9080989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial proteins carrying iron-sulfur (Fe-S) clusters are involved in essential cellular pathways such as oxidative phosphorylation, lipoic acid synthesis, and iron metabolism. NFU1, BOLA3, IBA57, ISCA2, and ISCA1 are involved in the last steps of the maturation of mitochondrial [4Fe-4S]-containing proteins. Since 2011, mutations in their genes leading to five multiple mitochondrial dysfunction syndromes (MMDS types 1 to 5) were reported. The aim of this systematic review is to describe all reported MMDS-patients. Their clinical, biological, and radiological data and associated genotype will be compared to each other. Despite certain specific clinical elements such as pulmonary hypertension or dilated cardiomyopathy in MMDS type 1 or 2, respectively, nearly all of the patients with MMDS presented with severe and early onset leukoencephalopathy. Diagnosis could be suggested by high lactate, pyruvate, and glycine levels in body fluids. Genetic analysis including large gene panels (Next Generation Sequencing) or whole exome sequencing is needed to confirm diagnosis.
Collapse
|
11
|
Saudino G, Suraci D, Nasta V, Ciofi-Baffoni S, Banci L. Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 2 Caused by CYS59TYR BOLA3 Mutation. Int J Mol Sci 2021; 22:4848. [PMID: 34063696 PMCID: PMC8125686 DOI: 10.3390/ijms22094848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple mitochondrial dysfunctions syndrome (MMDS) is a rare neurodegenerative disorder associated with mutations in genes with a vital role in the biogenesis of mitochondrial [4Fe-4S] proteins. Mutations in one of these genes encoding for BOLA3 protein lead to MMDS type 2 (MMDS2). Recently, a novel phenotype for MMDS2 with complete clinical recovery was observed in a patient containing a novel variant (c.176G > A, p.Cys59Tyr) in compound heterozygosity. In this work, we aimed to rationalize this unique phenotype observed in MMDS2. To do so, we first investigated the structural impact of the Cys59Tyr mutation on BOLA3 by NMR, and then we analyzed how the mutation affects both the formation of a hetero-complex between BOLA3 and its protein partner GLRX5 and the iron-sulfur cluster-binding properties of the hetero-complex by various spectroscopic techniques and by experimentally driven molecular docking. We show that (1) the mutation structurally perturbed the iron-sulfur cluster-binding region of BOLA3, but without abolishing [2Fe-2S]2+ cluster-binding on the hetero-complex; (2) tyrosine 59 did not replace cysteine 59 as iron-sulfur cluster ligand; and (3) the mutation promoted the formation of an aberrant apo C59Y BOLA3-GLRX5 complex. All these aspects allowed us to rationalize the unique phenotype observed in MMDS2 caused by Cys59Tyr mutation.
Collapse
Affiliation(s)
- Giovanni Saudino
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Dafne Suraci
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Veronica Nasta
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|