1
|
Weston TGR, Rees M, Gautel M, Fraternali F. Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. WIREs Mech Dis 2024; 16:e1638. [PMID: 38155593 DOI: 10.1002/wsbm.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Timir G R Weston
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
2
|
Wang Y, Yang J, Hu F, Yang Y, Huang K, Zhang K. Cryo-EM reveals how the mastigoneme assembles and responds to environmental signal changes. J Cell Biol 2023; 222:e202301066. [PMID: 37882754 PMCID: PMC10602792 DOI: 10.1083/jcb.202301066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Mastigonemes are thread-like structures adorning the flagella of protists. In Chlamydomonas reinhardtii, filamentous mastigonemes find their roots in the flagella's distal region, associated with the channel protein PKD2, implying their potential contribution to external signal sensing and flagellar motility control. Here, we present the single-particle cryo-electron microscopy structure of the mastigoneme at 3.4 Å. The filament unit, MST1, consists of nine immunoglobulin-like domains and six Sushi domains, trailed by an elastic polyproline-II helix. Our structure demonstrates that MST1 subunits are periodically assembled to form a centrosymmetric, non-polar filament. Intriguingly, numerous clustered disulfide bonds within a ladder-like spiral configuration underscore structural resilience. While defects in the mastigoneme structure did not noticeably affect general attributes of cell swimming, they did impact specific swimming properties, particularly under varied environmental conditions such as redox shifts and heightened viscosity. Our findings illuminate the potential role of mastigonemes in flagellar motility and suggest their involvement in diverse environmental responses.
Collapse
Affiliation(s)
- Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fangheng Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yuchen Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
4
|
Dassanayake Mudiyanselage SP, Gage MJ. Regulation of Poly-E Motif Flexibility by pH, Ca 2+ and the PPAK Motif. Int J Mol Sci 2022; 23:ijms23094779. [PMID: 35563177 PMCID: PMC9100103 DOI: 10.3390/ijms23094779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The disordered PEVK region of titin contains two main structural motifs: PPAK and poly-E. The distribution of these motifs in the PEVK region contributes to the elastic properties of this region, but the specific mechanism of how these motifs work together remains unclear. Previous work from our lab has demonstrated that 28-amino acid peptides of the poly-E motif are sensitive to shifts in pH, becoming more flexible as the pH decreases. We extend this work to longer poly-E constructs, including constructs containing PPAK motifs. Our results demonstrate that longer poly-E motifs have a much larger range of pH sensitivity and that the inclusion of the PPAK motif reduces this sensitivity. We also demonstrate that binding calcium can increase the conformational flexibility of the poly-E motif, though the PPAK motif can block this calcium-dependent change. The data presented here suggest a model where PPAK and calcium can alter the stiffness of the poly-E motif by modulating the degree of charge repulsion in the glutamate clusters.
Collapse
Affiliation(s)
| | - Matthew J. Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- UMass Movement Center (UMOVE), University of Massachusetts Lowell, Lowell, MA 01854, USA
- Correspondence:
| |
Collapse
|
5
|
Tsiros C, Punch E, Schaffter E, Apel S, Gage MJ. Identification of the domains within the N2A region of titin that regulate binding to actin. Biochem Biophys Res Commun 2021; 589:147-151. [PMID: 34922195 DOI: 10.1016/j.bbrc.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/02/2022]
Abstract
Titin, the largest muscle protein, plays an important role in passive tension, sarcomeric integrity and cell signaling within the muscle. Recent work has also highlighted a role for titin in active muscle and the N2A region found in skeletal muscle titin and in some isoforms of cardiac titin has been linked to this function. The N2A region is a multi-domain region composed of four immunoglobulin domains (I80-I83) and a disordered region called the insertion sequence. Previously, our lab has shown that the N2A region binds F-actin in a calcium dependent manner, but it is not known which domains within this region are critical for this binding to occur. In this work, we have used co-sedimentation to demonstrate that only constructs containing the I80 domain are capable of binding F-actin. In addition, binding was only observed in constructs containing at least 3 immunoglobulin domains suggesting a length-dependence to binding. Finally, the calcium-dependence of N2A binding is lost when I83 is not present, consistent with the calcium stabilization that has been reported for this domain. Based on these results, we propose that I80 is critical for initiating binding to F-actin and that I83 is responsible for the calcium dependence.
Collapse
Affiliation(s)
- Christopher Tsiros
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Emily Punch
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Emily Schaffter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Sabrina Apel
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
6
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Kelly C, Gage MJ. Protein Unfolding: Denaturant vs. Force. Biomedicines 2021; 9:biomedicines9101395. [PMID: 34680512 PMCID: PMC8533514 DOI: 10.3390/biomedicines9101395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
While protein refolding has been studied for over 50 years since the pioneering work of Christian Anfinsen, there have been a limited number of studies correlating results between chemical, thermal, and mechanical unfolding. The limited knowledge of the relationship between these processes makes it challenging to compare results between studies if different refolding methods were applied. Our current work compares the energetic barriers and folding rates derived from chemical, thermal, and mechanical experiments using an immunoglobulin-like domain from the muscle protein titin as a model system. This domain, I83, has high solubility and low stability relative to other Ig domains in titin, though its stability can be modulated by calcium. Our experiments demonstrated that the free energy of refolding was equivalent with all three techniques, but the refolding rates exhibited differences, with mechanical refolding having slightly faster rates. This suggests that results from equilibrium-based measurements can be compared directly but care should be given comparing refolding kinetics derived from refolding experiments that used different unfolding methods.
Collapse
Affiliation(s)
- Colleen Kelly
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Matthew J. Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- UMass Movement Center (UMOVE), University of Massachusetts Lowell, Lowell, MA 01854, USA
- Correspondence:
| |
Collapse
|
8
|
Adewale AO, Ahn YH. Titin N2A Domain and Its Interactions at the Sarcomere. Int J Mol Sci 2021; 22:ijms22147563. [PMID: 34299183 PMCID: PMC8305307 DOI: 10.3390/ijms22147563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosensing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity.
Collapse
|