2
|
Shokrollahi N, Tehrani Fateh S, Nouri M, Behnam A, Moghimi P, Sadeghi H, Mirfakhraie R, Roudgari H, Jamshidi S, Miryounesi M, Ghasemi MR. The first Iranian patient with You-Hoover-Fong syndrome and a review of the literature on 27 cases: expanding the genotypic and phenotypic spectrum. Neurol Sci 2024; 45:3979-3987. [PMID: 38421525 DOI: 10.1007/s10072-024-07413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The ultra-rare autosomal recessive genetic disorder, You-Hoover-Fong Syndrome (YHFS), is caused by defects in the TELO2 gene and is characterized by intellectual disability, developmental delay, and ocular impairments. This study aims to contribute to a better understanding of YHFS by reviewing previous cases and introducing a novel variant in a new case. METHODS Whole exome sequencing (WES) was conducted on the proband to identify genetic variants, and Sanger sequencing was used to confirm variants within the family. This article presents a comprehensive collection of reported cases of YHFS, incorporating both molecular and clinical data, through an extensive literature search and analysis of English-language studies published until June 2023. RESULTS Using WES, a novel homozygous missense variant, c.1799A > G (p. Tyr600Cys), was identified in the TELO2 gene in a 4-year-old Iranian male patient. Novel clinical features, including choanal atresia and clubfoot, were also identified. A comprehensive literature review identified 27 patients with YHFS, with 20 variants in the TELO2 gene. Missense pathogenic variants were the most common type of pathogenic variant, and the most common features were microcephaly and intellectual impairment. CONCLUSION This study presents the first case of pathogenic variants in TELO2 gene in Iran, expands the genotypic and phenotypic spectrum of YHFS and contributes to the growing body of literature pertaining to YHFS. Furthermore, our findings highlight the importance of genetic testing for non-consanguineous carrier screening, as compound heterozygosity may be a significant factor in the development of YHFS. Further research is needed to clarify the molecular mechanisms underlying YHFS pathogenesis.
Collapse
Affiliation(s)
- Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parinaz Moghimi
- School of Medicine, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Roudgari
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Serey-Gaut M, Cortes M, Makrythanasis P, Suri M, Taylor AMR, Sullivan JA, Asleh AN, Mitra J, Dar MA, McNamara A, Shashi V, Dugan S, Song X, Rosenfeld JA, Cabrol C, Iwaszkiewicz J, Zoete V, Pehlivan D, Akdemir ZC, Roeder ER, Littlejohn RO, Dibra HK, Byrd PJ, Stewart GS, Geckinli BB, Posey J, Westman R, Jungbluth C, Eason J, Sachdev R, Evans CA, Lemire G, VanNoy GE, O'Donnell-Luria A, Mau-Them FT, Juven A, Piard J, Nixon CY, Zhu Y, Ha T, Buckley MF, Thauvin C, Essien Umanah GK, Van Maldergem L, Lupski JR, Roscioli T, Dawson VL, Dawson TM, Antonarakis SE. Bi-allelic TTI1 variants cause an autosomal-recessive neurodevelopmental disorder with microcephaly. Am J Hum Genet 2023; 110:499-515. [PMID: 36724785 PMCID: PMC10027477 DOI: 10.1016/j.ajhg.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Collapse
Affiliation(s)
- Margaux Serey-Gaut
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France.
| | - Marisol Cortes
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Periklis Makrythanasis
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland; Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Ayat N Asleh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Biophysics and Biomedical Engineering, JHU Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Mohamad A Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amy McNamara
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Dugan
- Providence Medical Group Genetic Clinics, Spokane, WA, USA
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christelle Cabrol
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Computer-Aided Molecular Engineering, Department of Oncology, Ludwig Institute for Cancer Research Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; EA481 Integrative and Cognitive Neuroscience Research Unit, University of Franche-Comte, Besancon, France
| | - Zeynep Coban Akdemir
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; University Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca Okashah Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harpreet K Dibra
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Philip J Byrd
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Bilgen B Geckinli
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul 34722, Turkey
| | - Jennifer Posey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Westman
- Providence Medical Group Genetic Clinics, Spokane, WA, USA
| | | | - Jacqueline Eason
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA) Institute, Sydney, NSW, Australia
| | - Gabrielle Lemire
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Grace E VanNoy
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frédéric Tran Mau-Them
- UF6254 Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Aurélien Juven
- UF6254 Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Juliette Piard
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France
| | - Cheng Yee Nixon
- Neuroscience Research Australia (NeuRA) Institute, Sydney, NSW, Australia
| | - Ying Zhu
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Biophysics and Biomedical Engineering, JHU Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Christel Thauvin
- INSERM UMR1231 GAD, Bourgogne Franche-Comté University, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Dijon-Burgundy University Hospital, Dijon, France
| | - George K Essien Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lionel Van Maldergem
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France; Clinical Investigation Center 1431, National Institute of Health and Medical Research (INSERM), CHU, Besancon, France; EA481 Integrative and Cognitive Neuroscience Research Unit, University of Franche-Comte, Besancon, France
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Tony Roscioli
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) Institute, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stylianos E Antonarakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland; Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland.
| |
Collapse
|
7
|
Zhang LX, Yang X, Wu ZB, Liao ZM, Wang DG, Chen SW, Lu F, Wu YB, Zhu SQ. TTI1 promotes non-small-cell lung cancer progression by regulating the mTOR signaling pathway. Cancer Sci 2023; 114:855-869. [PMID: 36403197 PMCID: PMC9986064 DOI: 10.1111/cas.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/02/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
Abstract
The role of TELO2-interacting protein 1 (TTI1) in the progression of several types of cancer has been reported recently. The aim of this study was to estimate the expression and potential value of TTI1 in non-small-cell lung cancer (NSCLC) patients. The expression of TTI1 and its prognostic value in NSCLC from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were analyzed. To verify the bioinformatics findings, a tissue microarray containing 160 NSCLC and paired peritumoral tissues from NSCLC patients was analyzed by immunohistochemistry for TTI1. Subsequently, the roles of TTI1 in NSCLC cells were investigated in vivo by establishing xenograft models in nude mice and in vitro by transwell, CCK-8, wound healing, and colony formation assays. In addition, quantitative real-time polymerase chain reaction and western blot were applied to explore the underlying mechanism by which TTI1 promotes tumor progression. Finally, the relationship between TTI1 and Ki67 expression level in NSCLC was probed, and Kaplan-Meier and Cox analyses were performed to assess the prognostic merit of TTI1 and Ki67 in NSCLC patients. We found that the expression of TTI1 was significantly upregulated in NSCLC tissues compared to paired peritumoral tissues, which coincides with the bioinformatics findings from the TCGA and GEO databases. TTI1 was highly expressed in NSCLC patients with large tumors, advanced tumor stage, and lymphatic metastasis. In addition, the prognostic analysis identified TTI1 as an independent indication for poor prognosis of NSCLC patients. In vitro, upregulation of TTI1 in NSCLC cells could facilitate cell invasion, metastasis, viability, and proliferation. Mechanistically, our study verified that TTI1 could regulate mTOR activity, which has a pivotal role in human cancer. Consistently, the expressions of TTI1 and Ki67 had a positive relationship in NSCLC cells and tissues. Notably, patients with overexpression of TTI1 or Ki67 had a shorter overall survival rate and a higher disease-free survival rate compared to patients with low expression of TTI1 or Ki67, and the combination of TTI1 and Ki67 was an independent parameter predicting the prognosis and recurrence of NSCLC patients. We conclude that TTI1 promotes NSCLC cell proliferation, metastasis, and invasion by regulating mTOR activity, and the combination of TTI1 and Ki67 is a valuable molecular biomarker for the survival and recurrence of NSCLC patients.
Collapse
Affiliation(s)
- Ling-Xian Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Bo Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhong-Min Liao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ding-Guo Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shi-Wei Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Senko AN, Overall RW, Silhavy J, Mlejnek P, Malínská H, Hüttl M, Marková I, Fabel KS, Lu L, Stuchlik A, Williams RW, Pravenec M, Kempermann G. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet 2022; 18:e1009638. [PMID: 35377872 PMCID: PMC9060359 DOI: 10.1371/journal.pgen.1009638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/02/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
Collapse
Affiliation(s)
- Anna N. Senko
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klaus S. Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| |
Collapse
|