1
|
Li M, Xiong L, Chen W, Li Y, Khan A, Powell CA, Chen B, Zhang M. VirB11, a traffic ATPase, mediated flagella assembly and type IV pilus morphogenesis to control the motility and virulence of Xanthomonas albilineans. MOLECULAR PLANT PATHOLOGY 2024; 25:e70001. [PMID: 39223938 PMCID: PMC11369208 DOI: 10.1111/mpp.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Xanthomonas albilineans (Xal) is a gram-negative bacterial pathogen responsible for developing sugarcane leaf scald disease, which engenders significant economic losses within the sugarcane industry. In the current study, homologous recombination exchange was carried out to induce mutations within the virB/D4-like type IV secretion system (T4SS) genes of Xal. The results revealed that the virB11-deletion mutant (ΔvirB11) exhibited a loss in swimming and twitching motility. Application of transmission electron microscopy analysis further demonstrated that the ΔvirB11 failed to develop flagella formation and type IV pilus morphology and exhibited reduced swarming behaviour and virulence. However, these alterations had no discernible impact on bacterial growth. Comparative transcriptome analysis between the wild-type Xal JG43 and the deletion-mutant ΔvirB11 revealed 123 differentially expressed genes (DEGs), of which 28 and 10 DEGs were notably associated with flagellar assembly and chemotaxis, respectively. In light of these findings, we postulate that virB11 plays an indispensable role in regulating the processes related to motility and chemotaxis in Xal.
Collapse
Affiliation(s)
- Meilin Li
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Liya Xiong
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Wenhan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - YiSha Li
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Abdullah Khan
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | | | - Baoshan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Muqing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| |
Collapse
|
2
|
Dhindwal P, Boniecki MT, Moore SA. Helicobacter pylori FlgN binds its substrate FlgK and the flagellum ATPase FliI in a similar manner observed for the FliT chaperone. Protein Sci 2024; 33:e4882. [PMID: 38151822 PMCID: PMC10804663 DOI: 10.1002/pro.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In bacterial flagellum biogenesis, secretion of the hook-filament junction proteins FlgK and FlgL and completion of the flagellum requires the FlgN chaperone. Similarly, the related FliT chaperone is necessary for the secretion of the filament cap protein FliD and binds the flagellar export gate protein FlhA and the flagellum ATPase FliI. FlgN and FliT require FliJ for effective substrate secretion. In Helicobacter pylori, neither FlgN, FliT, nor FliJ have been annotated. We demonstrate that the genome location of HP1120 is identical to that of flgN in other flagellated bacteria and that HP1120 is the homolog of Campylobacter jejuni FlgN. A modeled HP1120 structure contains three α-helices and resembles the FliT chaperone, sharing a similar substrate-binding pocket. Using pulldowns and thermophoresis, we show that both HP1120 and a HP1120Δ126-144 deletion mutant bind to FlgK with nanomolar affinity, but not to the filament cap protein FliD, confirming that HP1120 is FlgN. Based on size-exclusion chromatography and multi-angle light scattering, H. pylori FlgN binds to FlgK with 1:1 stoichiometry. Overall structural similarities between FlgN and FliT suggest that substrate recognition on FlgN primarily involves an antiparallel coiled-coil interface between the third helix of FlgN and the C-terminal helix of the substrate. A FlgNΔ126-144 N100A, Y103A, S111I triple mutant targeting this interface significantly impairs the binding of FlgK. Finally, we demonstrate that FlgNΔ126-144 , like FliT, binds with sub-micromolar affinity to the flagellum ATPase FliI or its N-terminal domain. Hence FlgN and FliT likely couple delivery of low-abundance export substrates to the flagellum ATPase FliI.
Collapse
Affiliation(s)
- Poonam Dhindwal
- Department of Biochemistry, Microbiology and ImmunologyCollege of Medicine, University of SaskatchewanSaskatoonCanada
| | - Michal T. Boniecki
- Department of Biochemistry, Microbiology and ImmunologyCollege of Medicine, University of SaskatchewanSaskatoonCanada
| | - Stanley A. Moore
- Department of Biochemistry, Microbiology and ImmunologyCollege of Medicine, University of SaskatchewanSaskatoonCanada
| |
Collapse
|
3
|
Wang Y, Li X, Zhang G, Bi J, Hou H. Transcriptome Reveals Regulation of Quorum Sensing of Hafnia alvei H4 on the Coculture System of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525. Foods 2024; 13:336. [PMID: 38275703 PMCID: PMC10815324 DOI: 10.3390/foods13020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.
Collapse
Affiliation(s)
- Yanan Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| |
Collapse
|