1
|
Kang J, Park C, Lee G, Koo J, Oh H, Kim EH, Bae E, Suh JY. Structural Investigation of the Anti-CRISPR Protein AcrIE7. Proteins 2025. [PMID: 40318042 DOI: 10.1002/prot.26832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The CRISPR-Cas system is an adaptive immune system in prokaryotes that provides protection against bacteriophages. As a countermeasure, bacteriophages have evolved various anti-CRISPR proteins that neutralize CRISPR-Cas immunity. Here, we report the structural and functional investigation of AcrIE7, which inhibits the type I-E CRISPR-Cas system in Pseudomonas aeruginosa. We determined both crystal and solution structures of AcrIE7, which revealed a novel helical fold. In binding assays using various biochemical methods, AcrIE7 did not tightly interact with a single Cas component in the type I-E Cascade complex or the CRISPR adaptation machinery. In contrast, AlphaFold modeling with our experimentally determined AcrIE7 structure predicted that AcrIE7 interacts with Cas3 in the type I-E CRISPR-Cas system in P. aeruginosa. Our findings are consistent with a model where AcrIE7 inhibits Cas3 and also highlight the effectiveness and limitations of AlphaFold modeling.
Collapse
Affiliation(s)
- Jeehee Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Changkon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gyujin Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Eun-Hee Kim
- Biopharmaceutical Research Center, Korea Basic Science Institute, Ochang, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Wandera KG, Schmelz S, Migur A, Kibe A, Lukat P, Achmedov T, Caliskan N, Blankenfeldt W, Beisel CL. AcrVIB1 inhibits CRISPR-Cas13b immunity by promoting unproductive crRNA binding accessible to RNase attack. Mol Cell 2025; 85:1162-1175.e7. [PMID: 39965569 DOI: 10.1016/j.molcel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/17/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Anti-CRISPR proteins (Acrs) inhibit CRISPR-Cas immune defenses, with almost all known Acrs acting on the Cas nuclease-CRISPR (cr)RNA ribonucleoprotein (RNP) complex. Here, we show that AcrVIB1 from Riemerella anatipestifer, the only known Acr against Cas13b, principally acts upstream of RNP complex formation by promoting unproductive crRNA binding followed by crRNA degradation. AcrVIB1 tightly binds to Cas13b but not to the Cas13b-crRNA complex, resulting in enhanced rather than blocked crRNA binding. However, the more tightly bound crRNA does not undergo processing and fails to activate collateral RNA cleavage even with target RNA. The bound crRNA is also accessible to RNases, leading to crRNA turnover in vivo even in the presence of Cas13b. Finally, cryoelectron microscopy (cryo-EM) structures reveal that AcrVIB1 binds a helical domain of Cas13b responsible for securing the crRNA, keeping the domain untethered. These findings reveal an Acr that converts an effector nuclease into a crRNA sink to suppress CRISPR-Cas defense.
Collapse
Affiliation(s)
- Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Stefan Schmelz
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Angela Migur
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Peer Lukat
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
3
|
Shu X, Wang R, Li Z, Xue Q, Wang J, Liu J, Cheng F, Liu C, Zhao H, Hu C, Li J, Ouyang S, Li M. CRISPR-repressed toxin-antitoxin provides herd immunity against anti-CRISPR elements. Nat Chem Biol 2025; 21:337-347. [PMID: 39075253 DOI: 10.1038/s41589-024-01693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are highly vulnerable to phage-encoded anti-CRISPR (Acr) factors. How CRISPR-Cas systems protect themselves remains unclear. Here we uncovered a broad-spectrum anti-anti-CRISPR strategy involving a phage-derived toxic protein. Transcription of this toxin is normally repressed by the CRISPR-Cas effector but is activated to halt cell division when the effector is inhibited by any anti-CRISPR proteins or RNAs. We showed that this abortive infection-like effect efficiently expels Acr elements from bacterial population. Furthermore, we exploited this anti-anti-CRISPR mechanism to develop a screening method for specific Acr candidates for a CRISPR-Cas system and successfully identified two distinct Acr proteins that enhance the binding of CRISPR effector to nontarget DNA. Our data highlight the broad-spectrum role of CRISPR-repressed toxins in counteracting various types of Acr factors. We propose that the regulatory function of CRISPR-Cas confers host cells herd immunity against Acr-encoding genetic invaders whether they are CRISPR targeted or not.
Collapse
Affiliation(s)
- Xian Shu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Zhihua Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiajun Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jingfang Liu
- Institutional Center for Shared Technologies and Facilities of Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huiwei Zhao
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, Department of Biochemistry, Yong Loo Lin School of Medicine, Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, Singapore
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Ming Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang Y, Feng Y. A broad anti-anti-CRISPR strategy. Nat Chem Biol 2025; 21:312-313. [PMID: 39406979 DOI: 10.1038/s41589-024-01743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
5
|
How a bacterial immune system gets taken apart. Nature 2024:10.1038/d41586-024-02816-5. [PMID: 39227749 DOI: 10.1038/d41586-024-02816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
6
|
Getz LJ, Maxwell KL. Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. Annu Rev Virol 2024; 11:343-362. [PMID: 38950439 DOI: 10.1146/annurev-virology-100422-125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Karen L Maxwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
7
|
Jiang C, Yu C, Sun S, Lin J, Cai M, Wei Z, Feng L, Li J, Zhang Y, Dong K, Guo X, Qin J, Zhang Y. A new anti-CRISPR gene promotes the spread of drug-resistance plasmids in Klebsiella pneumoniae. Nucleic Acids Res 2024; 52:8370-8384. [PMID: 38888121 DOI: 10.1093/nar/gkae516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
The Klebsiella pneumoniae (K. pneumoniae, Kp) populations carrying both resistance-encoding and virulence-encoding mobile genetic elements (MGEs) significantly threaten global health. In this study, we identified a new anti-CRISPR gene (acrIE10) on a conjugative plasmid with self-target sequence in K. pneumoniae with type I-E* CRISPR-Cas system. AcrIE10 interacts with the Cas7* subunit of K. pneumoniae I-E* CRISPR-Cas system. The crystal structure of the AcrIE10-KpCas7* complex suggests that AcrIE10 suppresses the I-E* CRISPR-Cas by binding directly to Cas7 to prevent its hexamerization, thereby preventing the surveillance complex assembly and crRNA loading. Bioinformatic and functional analyses revealed that AcrIE10 is functionally widespread across diverse species. Our study reports a novel anti-CRISPR and highlights its potential role in spreading resistance and virulence among pathogens.
Collapse
Affiliation(s)
- Chunyu Jiang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Sun
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Lin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mufeng Cai
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenquan Wei
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingling Feng
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianhui Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ke Dong
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai 200025, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Trost CN, Yang J, Garcia B, Hidalgo-Reyes Y, Fung BCM, Wang J, Lu WT, Maxwell KL, Wang Y, Davidson AR. An anti-CRISPR that pulls apart a CRISPR-Cas complex. Nature 2024; 632:375-382. [PMID: 38961300 DOI: 10.1038/s41586-024-07642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
In biological systems, the activities of macromolecular complexes must sometimes be turned off. Thus, a wide variety of protein inhibitors has evolved for this purpose. These inhibitors function through diverse mechanisms, including steric blocking of crucial interactions, enzymatic modification of key residues or substrates, and perturbation of post-translational modifications1. Anti-CRISPRs-proteins that block the activity of CRISPR-Cas systems-are one of the largest groups of inhibitors described, with more than 90 families that function through diverse mechanisms2-4. Here, we characterize the anti-CRISPR AcrIF25, and we show that it inhibits the type I-F CRISPR-Cas system by pulling apart the fully assembled effector complex. AcrIF25 binds to the predominant CRISPR RNA-binding components of this complex, comprising six Cas7 subunits, and strips them from the RNA. Structural and biochemical studies indicate that AcrIF25 removes one Cas7 subunit at a time, starting at one end of the complex. Notably, this feat is achieved with no apparent enzymatic activity. To our knowledge, AcrIF25 is the first example of a protein that disassembles a large and stable macromolecular complex in the absence of an external energy source. As such, AcrIF25 establishes a paradigm for macromolecular complex inhibitors that may be used for biotechnological applications.
Collapse
Affiliation(s)
- Chantel N Trost
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jing Yang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Bianca Garcia
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yurima Hidalgo-Reyes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Beatrice C M Fung
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jiuyu Wang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wang-Ting Lu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yanli Wang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| | - Alan R Davidson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Wang R, Xu Q, Wu Z, Li J, Guo H, Liao T, Shi Y, Yuan L, Gao H, Yang R, Shi Z, Li F. The structural basis of the activation and inhibition of DSR2 NADase by phage proteins. Nat Commun 2024; 15:6185. [PMID: 39039073 PMCID: PMC11263360 DOI: 10.1038/s41467-024-50410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.
Collapse
Affiliation(s)
- Ruiwen Wang
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qi Xu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhuoxi Wu
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialu Li
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hao Guo
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tianzhui Liao
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ling Yuan
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haishan Gao
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Zhubing Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Antine SP, Johnson AG, Mooney SE, Leavitt A, Mayer ML, Yirmiya E, Amitai G, Sorek R, Kranzusch PJ. Structural basis of Gabija anti-phage defence and viral immune evasion. Nature 2024; 625:360-365. [PMID: 37992757 PMCID: PMC10781630 DOI: 10.1038/s41586-023-06855-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation1-5. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes1,6,7, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.
Collapse
Affiliation(s)
- Sadie P Antine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alex G Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E Mooney
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Megan L Mayer
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA, USA
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
11
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|