1
|
Su Q, Wang T, Hou G, Cui H, Chen L, An Y, Zhou H, Chen J. A Study on the Preparation and Cavitation Erosion Mechanism of Polyether Polyurethane Coating. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8204. [PMID: 36431689 PMCID: PMC9698824 DOI: 10.3390/ma15228204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Polyurethane elastomers are anticipated to be applied in the field of cavitation erosion (CE) resistance, but their protection and damage mechanisms are not clear, which greatly restricts their further development. In this article, five polyether polyurethanes (PUx) with different crosslinking densities were prepared. Their mechanical properties, thermal properties, water absorption, surface morphology and chemical structure before and after CE tests were compared with ESEM, OM, TG-DSC, FTIR and XPS in detail. The results showed that with an increase in crosslinking density, the tensile strength of PUx increased first and then decreased, elongation at break and water absorption reduced gradually and thermal decomposition temperature and adhesion strength increased steadily. During the CE process, cavitation load aggravated the degree of microphase separation and made brittle hard segments concentrate on the coating surface; meanwhile, cavitation heat accelerated hydrolysis, pyrolysis, oxidation and the fracture of molecular chains. As a result, the mechano-thermal coupling intensified the formation and propagation of fatigue cracks, which should be the fundamental reason for the CE damage of polyurethane elastomer. PU0.4 exhibited the best CE resistance among the five coatings thanks to its good comprehensive properties and may find potential applications on the surface of hydraulic components.
Collapse
Affiliation(s)
- Qiong Su
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Tiancong Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guoliang Hou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haixia Cui
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yulong An
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huidi Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianmin Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Skjöldebrand C, Tipper JL, Hatto P, Bryant M, Hall RM, Persson C. Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Mater Today Bio 2022; 15:100270. [PMID: 35601891 PMCID: PMC9118168 DOI: 10.1016/j.mtbio.2022.100270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 10/29/2022] Open
Abstract
Hip and knee joint replacements are common and largely successful procedures that utilise implants to restore mobility and relieve pain for patients suffering from e.g. osteoarthritis. However, metallic ions and particles released from both the bearing surfaces and non-articulating interfaces, as in modular components, can cause hypersensitivity and local tissue necrosis, while particles originating from a polymer component have been associated with aseptic loosening and osteolysis. Implant coatings have the potential to improve properties compared to both bulk metal and ceramic alternatives. Ceramic coatings have the potential to increase scratch resistance, enhance wettability and reduce wear of the articulating surfaces compared to the metallic substrate, whilst maintaining overall toughness of the implant ensuring a lower risk of catastrophic failure of the device compared to use of a bulk ceramic. Coatings can also act as barriers to inhibit ion release from the underlying material caused by corrosion. This review aims to provide a comprehensive overview of wear-resistant coatings for joint replacements - both those that are in current clinical use as well as those under investigation for future use. While the majority of coatings belong predominantly in the latter group, a few coated implants have been successfully marketed and are available for clinical use in specific applications. Commercially available coatings for implants include titanium nitride (TiN), titanium niobium nitride (TiNbN), oxidized zirconium (OxZr) and zirconium nitride (ZrN) based coatings, whereas current research is focused not only on these, but also on diamond-like-carbon (DLC), silicon nitride (SiN), chromium nitride (CrN) and tantalum-based coatings (TaN and TaO). The coating materials referred to above that are still at the research stage have been shown to be non-cytotoxic and to reduce wear in a laboratory setting. However, the adhesion of implant coatings remains a main area of concern, as poor adhesion can cause delamination and excessive wear. In clinical applications zirconium implant surfaces treated to achieve a zirconium oxide film and TiNbN coated implants have however been proven comparable to traditional cobalt chromium implants with regards to revision numbers. In addition, the chromium ion levels measured in the plasma of patients were lower and allergy symptoms were relieved. Therefore, coated implants could be considered an alternative to uncoated metal implants, in particular for patients with metal hypersensitivity. There have also been unsuccessful introductions to the market, such as DLC coated implants, and therefore this review also attempts to summarize the lessons learnt.
Collapse
Affiliation(s)
| | - Joanne L. Tipper
- University of Technology Sydney, School of Biomedical Engineering, Sydney, Australia
| | | | - Michael Bryant
- University of Leeds, Department of Mechanical Engineering, Leeds, United Kingdom
| | - Richard M. Hall
- University of Leeds, Department of Mechanical Engineering, Leeds, United Kingdom
| | - Cecilia Persson
- Uppsala University, Department of Materials Science and Engineering, Uppsala, Sweden
| |
Collapse
|
3
|
Improvement of CoCr Alloy Characteristics by Ti-Based Carbonitride Coatings Used in Orthopedic Applications. COATINGS 2020. [DOI: 10.3390/coatings10050495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The response of the human body to implanted biomaterials involves several complex reactions. The potential success of implantation depends on the knowledge of the interaction between the biomaterials and the corrosive environment prior to the implantation. Thus, in the present study, the in vitro corrosion behavior of biocompatible carbonitride-based coatings are discussed, based on microstructure, mechanical properties, roughness and morphology. TiCN and TiSiCN coatings were prepared by the cathodic arc deposition method and were analyzed as a possible solution for load bearing implants. It was found that both coatings have an almost stoichiometric structure, being solid solutions, which consist of a mixture of TiC and TiN, with a face-centered cubic (FCC) structure. The crystallite size decreased with the addition of Si into the TiCN matrix: the crystallite size of TiCN was 16.4 nm, while TiSiCN was 14.6 nm. The addition of Si into TiCN resulted in smaller Ra roughness values, indicating a beneficial effect of Si. All investigated surfaces have positive skewness, being adequate for the load bearing implants, which work in a corrosive environment. The hardness of the TiCN coating was 36.6 ± 2.9 GPa and was significantly increased to 47.4 ± 1 GPa when small amounts of Si were added into the TiCN layer structure. A sharp increase in resistance to plastic deformation (H3/E2 ratio) from 0.63 to 1.1 was found after the addition of Si into the TiCN matrix. The most electropositive value of corrosion potential was found for the TiSiCN coating (−14 mV), as well as the smallest value of corrosion current density (49.6 nA cm2), indicating good corrosion resistance in 90% DMEM + 10% FBS, at 37 ± 0.5 °C.
Collapse
|
4
|
Ajdari N, Tempelaere C, Masouleh MI, Abel R, Delfosse D, Emery R, Dini D, Hansen U. Hemiarthroplasties: the choice of prosthetic material causes different levels of damage in the articular cartilage. J Shoulder Elbow Surg 2020; 29:1019-1029. [PMID: 31948834 DOI: 10.1016/j.jse.2019.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hemiarthroplasty has clear advantages over alternative procedures and is used in 20% of all shoulder joint replacements. Because of cartilage wear, the clinical outcome of hemiarthroplasty is unreliable and controversial. This paper suggests that the optimal choice of prosthetic material may reduce cartilage degeneration and improve the reliability of the procedure. The specific objectives were to assess 3 materials and assess how the severity of arthritis might affect the choice of prosthetic material. METHODS A CoCr alloy, an AL2O3 ceramic, and a polycarbonate urethane polymer (PCU) were mechanically tested against 5 levels of human osteoarthritic cartilage (from intact to severely arthritic, n = 45). A high friction coefficient, a decrease in Young's modulus, an increase in permeability, a decrease in relaxation time, an increase in surface roughness, and a disrupted appearance of the cartilage after testing were used as measures of cartilage damage. The biomaterial that caused minimal cartilage damage was defined as superior. RESULTS The CoCr caused the most damage. This was followed by the AL2O3 ceramic, whereas the PCU caused the least amount of damage. Although the degree of arthritis had an effect on the results, it did not change the trend that CoCr performed worst and PCU the best. DISCUSSION AND CONCLUSION This study indicates that ceramic implants may be a better choice than metals, and the articulating surface should be as smooth as possible. Although our results indicate that the degree of arthritis should not affect the choice of prosthetic material, this suggestion needs to be further investigated.
Collapse
Affiliation(s)
- Niloofar Ajdari
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Christine Tempelaere
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK; Department of Orthopaedic Surgery, Bicetre Hospital, Le Kremlin-Bicêtre, France
| | - Maryam Imani Masouleh
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Richard Abel
- Department of Surgery and Cancer, Charing Cross Campus, London, UK
| | | | - Roger Emery
- Department of Surgery and Cancer, St. Mary's Hospital, London, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
5
|
The Effect of N, C, Cr, and Nb Content on Silicon Nitride Coatings for Joint Applications. MATERIALS 2020; 13:ma13081896. [PMID: 32316517 PMCID: PMC7216083 DOI: 10.3390/ma13081896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022]
Abstract
Ceramic coatings deposited on orthopedic implants are an alternative to achieve and maintain high wear resistance of the metallic device, and simultaneously allow for a reduction in metal ion release. Silicon nitride based (SiNx) coatings deposited by high power impulse magnetron sputtering (HiPIMS) have shown potential for use in joint replacements, as a result of an improved chemical stability in combination with a good adhesion. This study investigated the effect of N, C, Cr, and Nb content on the tribocorrosive performance of 3.7 to 8.8 µm thick SiNx coatings deposited by HiPIMS onto CoCrMo discs. The coating composition was assessed from X-ray photoelectron spectroscopy and the surface roughness by vertical scanning interferometry. Hardness and Young's modulus were measured by nanoindentation and coating adhesion was investigated by scratch tests. Multidirectional wear tests against ultrahigh molecular weight polyethylene pins were performed for 2 million cycles in bovine serum solution (25%) at 37 °C, at an estimated contact pressure of 2.1 MPa. Coatings with a relatively low hardness tended to fail earlier in the wear test, due to chemical reactions and eventually dissolution, accelerated by the tribological contact. In fact, while no definite correlation could be observed between coating composition (N: 42.6-55.5 at %, C: 0-25.7 at %, Cr: 0 or 12.8 at %, and Nb: 0-24.5 at %) and wear performance, it was apparent that high-purity and/or -density coatings (i.e., low oxygen content and high nitrogen content) were desirable to prevent coating and/or counter surface wear or failure. Coatings deposited with a higher energy fulfilled the target profile in terms of low surface roughness (Ra < 20 nm), adequate adhesion (Lc2 > 30 N), chemical stability over time in the tribocorrosive environment, as well as low polymer wear, presenting potential for a future application in joint bearings.
Collapse
|
6
|
Clinical outcomes of ceramicized ball heads in total hip replacement bearings: a literature review. J Appl Biomater Funct Mater 2017; 15:e1-e9. [PMID: 28009420 DOI: 10.5301/jabfm.5000330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Metallic ball heads for total hip replacement (THR) bearings with ceramicized surfaces were introduced in orthopedics during the second half of the 1980s, with the aim of decreasing the wear of polyethylene cups. METHODS An analysis was made of the literature regarding outcomes for metallic ball heads with ceramicized surfaces now in clinical use (TiN, TiNbN, ZrN, monoclinic ZrO2), as well as carbon coatings (pyrolytic carbon, diamond-like carbon) and silicon nitride as coatings in ball heads for THR bearings. RESULTS Notwithstanding the diffusion of ceramicized ball heads in THRs, there are few reports about their clinical outcomes in hip arthroplasty. In addition, several clinical studies and some registry data are putting under scrutiny the clinical advantages of ceramicized ball heads over cobalt chrome (CoCr) alloy and ceramic ball heads. CONCLUSIONS The wear of THR bearings with ceramicized ball heads looks like it depends more on the behavior of the polyethylene cups than on the treatment of the ball head surface. The risk of coating damage and of its consequences has to be taken into account in selecting this type of bearing.
Collapse
|
7
|
Schmidt S, Hänninen T, Goyenola C, Wissting J, Jensen J, Hultman L, Goebbels N, Tobler M, Högberg H. SiNx Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20385-20395. [PMID: 27414283 DOI: 10.1021/acsami.6b05830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reactive high power impulse magnetron sputtering (rHiPIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N2 as reactive gas. The effects of different N2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N2-to-Ar flow ratios of <0.16, while signals from ionized molecules rise with the N2-to-Ar flow ratio at the pulse end and during pulse-off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the N2-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS.
Collapse
Affiliation(s)
- Susann Schmidt
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Tuomas Hänninen
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Cecilia Goyenola
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Jonas Wissting
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Jens Jensen
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Lars Hultman
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| | - Nico Goebbels
- IHI Ionbond AG , Industriestraße 211, CH-4600 Olten, Switzerland
| | - Markus Tobler
- IHI Ionbond AG , Industriestraße 211, CH-4600 Olten, Switzerland
| | - Hans Högberg
- Thin Film Physics Division, Department of Physics (IFM), Linköping University , SE-581 83 Linköping, Sweden
| |
Collapse
|
8
|
Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements. J Mech Behav Biomed Mater 2013; 25:41-7. [PMID: 23726925 DOI: 10.1016/j.jmbbm.2013.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022]
Abstract
Total joint replacements currently have relatively high success rates at 10-15 years; however, increasing ageing and an active population places higher demands on the longevity of the implants. A wear resistant configuration with wear particles that resorb in vivo can potentially increase the lifetime of an implant. In this study, silicon nitride (SixNy) and silicon carbon nitride (SixCyNz) coatings were produced for this purpose using reactive high power impulse magnetron sputtering (HiPIMS). The coatings are intended for hard bearing surfaces on implants. Hardness and elastic modulus of the coatings were evaluated by nanoindentation, cohesive, and adhesive properties were assessed by micro-scratching and the tribological performance was investigated in a ball-on-disc setup run in a serum solution. The majority of the SixNy coatings showed a hardness close to that of sintered silicon nitride (~18 GPa), and an elastic modulus close to that of cobalt chromium (~200 GPa). Furthermore, all except one of the SixNy coatings offered a wear resistance similar to that of bulk silicon nitride and significantly higher than that of cobalt chromium. In contrast, the SixCyNz coatings did not show as high level of wear resistance.
Collapse
|