1
|
Werner M, Drossel WG, Löffler S, Hammer N. Time-dependent effects of ethanol-glycerin embalming on iliotibial band biomechanics. J Mech Behav Biomed Mater 2025; 163:106887. [PMID: 39823785 DOI: 10.1016/j.jmbbm.2025.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
When conducting biomechanical testing or clinical training using embalmed human soft tissues, it is essential to understand their impact on biomechanical properties and their time dependence. Previous studies have investigated this influence, but specific variations over different embalming durations have not been thoroughly addressed to date. Ninety-seven human iliotibial band specimens were obtained from nine donors. All specimens were embalmed in ethanol-glycerin for varying durations: one day, eight days, and fourteen days. Prior to the mechanical trials, the specimens underwent osmotic water adjustment, tapering and standardized clamping. Uniaxial tensile tests were conducted to determine elastic modulus, ultimate tensile strength, and ultimate strain. Surface strain measurements were performed using a digital image correlation system. Ethanol-glycerin embalming of soft tissues significantly affects ultimate strain after one day of submersion time, elastic modulus after eight days, and the ultimate tensile strength after fourteen days. For applications requiring consistent and reliable material properties reflecting a (supra-)vital state, caution is advised against using embalmed tissues even following short submersion durations in ethanol-glycerin.
Collapse
Affiliation(s)
- Michael Werner
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | | | - Sabine Löffler
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Ma R, Gao X, Jin Y, Wang X, Li R, Qiao R, Wang X, Liu D, Xie Z, Wang L, Zhang J, Xu W, Hu Y. Is there a duration-characteristic relationship for trypsin exposure on tendon? A study on anterior cruciate ligament reconstruction in a rabbit model. Front Med (Lausanne) 2024; 11:1417930. [PMID: 39234049 PMCID: PMC11371708 DOI: 10.3389/fmed.2024.1417930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background Decellularized allograft tendons are highly regarded for their accessibility and the reduced risk of immune rejection, making them a promising choice for grafting due to their favorable characteristics. However, effectively integrating reconstructed tendons with host bone remains a significant clinical challenge. Purpose This study aims to investigate the relationship between the duration of tendon exposure to trypsin and its impact on tendon biomechanical properties and healing capacity. Methods Morphological assessments and biochemical quantifications were conducted. Allograft tendons underwent heterotopic transplantation into the anterior cruciate ligament (ACL) in a rabbit model, with specimens harvested 6 weeks post-surgery for a comparative analysis of cell adhesion strength and mechanical performance. Duration-response curves were constructed using maximum stress and cell adhesion quantity as primary indicators. Results The trypsin treatment enhanced cell adhesion on the tendon surface. Adhesion rates in the control group vs. the experimental groups were as follows: 3.10 ± 0.56% vs. 4.59 ± 1.51%, 5.36 ± 1.24%, 6.12 ± 1.98%, and 8.27 ± 2.34% (F = 6.755, p = 0.001). However, increasing treatment duration led to a decline in mechanical properties, with the ultimate load (N) in the control vs. experimental groups reported as 103.30 ± 10.51 vs. 99.59 ± 4.37, 93.15 ± 12.38, 90.42 ± 7.87, and 82.68 ± 6.89, F = 4.125 (p = 0.013). Conclusion The findings reveal an increasing trend in adhesion effectiveness with prolonged exposure duration, while mechanical strength declines. The selection of the optimal processing duration should involve careful consideration of the benefits derived from both outcomes.
Collapse
Affiliation(s)
- Rongxing Ma
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaokang Gao
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yangyang Jin
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaolong Wang
- The People's Hospital of Chengyang Qingdao, Qingdao, Shandong, China
| | - Ruifeng Li
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Ruiqi Qiao
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Xinliang Wang
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Dayong Liu
- Department of Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Zhitao Xie
- Department of Orthopedics, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Limin Wang
- Beijing Wonderful Medical Biomaterials Co., Ltd., Beijing, China
| | - Jingyu Zhang
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Weiguo Xu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yongcheng Hu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Yagi M, Taniguchi M, Tateuchi H, Yamagata M, Hirono T, Asayama A, Umehara J, Nojiri S, Kobayashi M, Ichihashi N. Properties of the iliotibial band and their relationships with gait parameters among patients with knee osteoarthritis. J Orthop Res 2022; 41:1177-1185. [PMID: 36222472 DOI: 10.1002/jor.25466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
This study aimed to determine the thickness and stiffness of the iliotibial band (ITB) in patients with knee osteoarthritis (KOA) and to identify the gait parameters that are associated with ITB properties. Eighteen female patients with radiographically diagnosed medial KOA and knee pain (age: 69.7 ± 5.9 years, body mass index: 23.0 ± 3.1 kg/m2 ) and 22 age-matched female individuals without knee pain (age: 69.1 ± 7.0 years, body mass index: 21.6 ± 3.6 kg/m2 ) were included. Shear wave elastography images were obtained at the height of the proximal pole of the patella with the participants in the supine position, and the ITB thickness and shear wave velocity, which is a surrogate measure of stiffness, were calculated. In patients with KOA, the knee and hip joint angles and moments during walking were calculated using a motion analysis system. The shear wave velocity was significantly higher in patients with KOA than in asymptomatic adults (11.3 ± 1.0 vs. 10.0 ± 1.8 m/s, respectively; p = 0.010); however, the thickness did not differ between them (2.1 ± 0.3 vs. 2.0 ± 0.3 mm, respectively; p = 0.705). The time-integral value of the knee adduction moment (β = 0.507, p = 0.032) and maximum value of the hip flexion moment (β = 0.498, p = 0.036) were associated with the shear wave velocity. Meanwhile, no parameters were associated with the thickness. The ITB was stiffer in patients with KOA than in asymptomatic adults; such a stiffer ITB was associated with greater knee adduction and hip flexion moments during walking. Clinical Significance: Greater mechanical loading was associated with a stiffer ITB in patients with KOA.
Collapse
Affiliation(s)
- Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshige Tateuchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, Chiyoda-ku, Tokyo, Japan.,School of Health and Sport Science, Chukyo University, Toyota, Aichi, Japan
| | - Akihiro Asayama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jun Umehara
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Faculty of Rehabilitation, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shusuke Nojiri
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Zwirner J, Ondruschka B, Scholze M, Hammer N. Surface coating and speckling of the human iliotibial tract does not affect its load-deformation properties. Sci Rep 2020; 10:20747. [PMID: 33247150 PMCID: PMC7695729 DOI: 10.1038/s41598-020-77299-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 01/23/2023] Open
Abstract
Stochastic surface patterns form an important requirement to facilitate digital image correlation and to subsequently quantify material properties of various tissues when loaded and deformed without artefacts arising from material slippage. Depending on the samples' natural colour, a surface pattern is created by speckling with colour or dye only, or it requires combined surface coating and speckling before to enhance the contrast, to facilitate high-quality data recording for mechanical evaluation. However, it is unclear to date if the colours deployed for coating and speckling do significantly alter the biomechanical properties of soft tissues. The given study investigated the biomechanical properties of 168 human iliotibial tract samples as a model for collagen-rich soft tissues, separated into four groups: untreated, graphite speckling only, water-based coating plus graphite speckling and solvent-based coating plus graphite speckling following a standardized approach of application and data acquisition. The results reveal that elastic modulus, ultimate tensile strength and strain at maximum force of all groups were similar and statistically non-different (p ≥ 0.69). Qualitatively, the speckle patterns revealed increasing contrast differences in the following order: untreated, graphite speckling only, water-based coating plus graphite speckling and solvent-based coating plus graphite speckling. Conclusively, both coating by water- and solvent-based paints, as well as exclusive graphite speckling, did not significantly influence the load-deformation parameters of the here used human iliotibial tract as a model for collagen-rich soft tissues. In consequence, water- and solvent-based coating paints seem equally suitable to coat collagen-rich soft tissues for digital image correlation, resulting in suitable speckle patterns and unbiased data acquisition.
Collapse
Affiliation(s)
- Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany
| | - Mario Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria
| | - Niels Hammer
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria.
- Department of Orthopaedic and Trauma Surgery, University of Leipzig, Leipzig, Germany.
- Fraunhofer IWU, Dresden, Germany.
| |
Collapse
|
5
|
Zwirner J, Scholze M, Ondruschka B, Hammer N. What is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues? - Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E520. [PMID: 33027931 PMCID: PMC7600870 DOI: 10.3390/medicina56100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
Background and Objectives: Profound knowledge on the load-dependent behavior of human soft tissues is required for the development of suitable replacements as well as for realistic computer simulations. Regarding the former, e.g., the anisotropy of a particular biological tissue has to be represented with site- and direction-dependent particular mechanical values. Contrary to this concept of consistent mechanical properties of a defined soft tissue, mechanical parameters of soft tissues scatter considerably when being determined in tensile tests. In spite of numerous measures taken to standardize the mechanical testing of soft tissues, several setup- and tissue-related factors remain to influence the mechanical parameters of human soft tissues to a yet unknown extent. It is to date unclear if measurement extremes should be considered a variation or whether these data have to be deemed incorrect measurement outliers. This given study aimed to determine mechanical parameters of the human cranial dura mater as a model for human soft tissues using a highly standardized protocol and based on this, critically evaluate the definition for the term mechanical "variation" of human soft tissue. Materials and Methods: A total of 124 human dura mater samples with an age range of 3 weeks to 94 years were uniformly retrieved, osmotically adapted and mechanically tested using customized 3D-printed equipment in a quasi-static tensile testing setup. Scanning electron microscopy of 14 samples was conducted to relate the mechanical parameters to morphological features of the dura mater. Results: The here obtained mechanical parameters were scattered (elastic modulus = 46.06 MPa, interquartile range = 33.78 MPa; ultimate tensile strength = 5.56 MPa, interquartile range = 4.09 MPa; strain at maximum force = 16.58%, interquartile range = 4.81%). Scanning electron microscopy revealed a multi-layered nature of the dura mater with varying fiber directions between its outer and inner surface. Conclusions: It is concluded that mechanical parameters of soft tissues such as human dura mater are highly variable even if a highly standardized testing setup is involved. The tissue structure and composition appeared to be the main contributor to the scatter of the mechanical parameters. In consequence, mechanical variation of soft tissues can be defined as the extremes of a biomechanical parameter due to an uncontrollable change in tissue structure and/or the respective testing setup.
Collapse
Affiliation(s)
- Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Mario Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, 09125 Chemnitz, Germany;
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
| | - Niels Hammer
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria
- Department of Orthopaedic and Trauma Surgery, University of Leipzig, 04103 Leipzig, Germany
- Fraunhofer IWU, 01187 Dresden, Germany
| |
Collapse
|
6
|
Sednieva Y, Viste A, Naaim A, Bruyère-Garnier K, Gras LL. Strain Assessment of Deep Fascia of the Thigh During Leg Movement: An in situ Study. Front Bioeng Biotechnol 2020; 8:750. [PMID: 32850692 PMCID: PMC7403494 DOI: 10.3389/fbioe.2020.00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
Fascia is a fibrous connective tissue present all over the body. At the lower limb level, the deep fascia that is overlying muscles of the outer thigh and sheathing them (fascia lata) is involved in various pathologies. However, the understanding and quantification of the mechanisms involved in these sheathing effects are still unclear. The aim of this study is to observe and quantify the strain field of the fascia lata, including the iliotibial tract (ITT), during a passive movement of the knee. Three fresh postmortem human subjects were studied. To measure hip and knee angles during knee flexion-extension, passive movements from 0° to around 120° were recorded with a motion analysis system and strain fields of the fascia were acquired using digital image correlation. Strains were computed for three areas of the fascia lata: anterior fascia, lateral fascia, and ITT. Mean principal strains showed different strain mechanisms depending on location on the fascia and knee angle. For the ITT, two strain mechanisms were observed depending on knee movement: compression is observed when the knee is extended relative to the reference position of 47°, however, tension and pure shear can be observed when the knee is flexed. For the anterior and lateral fascia, in most cases, minor strain is higher than major strain in absolute value, suggesting high tissue compression probably due to microstructural fiber rearrangements. This in situ study is the first attempt to quantify the superficial strain field of fascia lata during passive leg movement. The study presents some limitations but provides a step in understanding strain mechanism of the fascia lata during passive knee movement.
Collapse
Affiliation(s)
- Yuliia Sednieva
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Anthony Viste
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon Sud, Chirurgie Orthopédique, Pierre-Bénite, France
| | - Alexandre Naaim
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Karine Bruyère-Garnier
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Laure-Lise Gras
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, Lyon, France
- *Correspondence: Laure-Lise Gras,
| |
Collapse
|
7
|
Tensile properties of the human iliotibial tract depend on height and weight. Med Eng Phys 2019; 69:85-91. [DOI: 10.1016/j.medengphy.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/02/2019] [Accepted: 05/13/2019] [Indexed: 01/14/2023]
|
8
|
Water-content related alterations in macro and micro scale tendon biomechanics. Sci Rep 2019; 9:7887. [PMID: 31133713 PMCID: PMC6536550 DOI: 10.1038/s41598-019-44306-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
Though it is known that the water content of biological soft tissues alters mechanical properties, little attempt has been made to adjust the tissue water content prior to biomechanical testing as part of standardization procedures. The objective of this study was to examine the effects of altered water content on the macro and micro scale mechanical tissues properties. Human iliotibial band samples were obtained during autopsies to osmotically adapt their water content. Macro mechanical tensile testing of the samples was conducted with digital image correlation, and micro mechanical tests using atomic force microscopy. Analyses were conducted for elastic moduli, tensile strength, and strain at maximum force, and correlations for water content, anthropometric data, and post-mortem interval. Different mechanical properties exist at different water concentrations. Correlations to anthropometric data are more likely to be found at water concentrations close to the native state. These data underline the need for adapting the water content of soft tissues for macro and micro biomechanical experiments to optimize their validity. The osmotic stress protocol provides a feasible and reliable standardization approach to adjust for water content-related differences induced by age at death, post-mortem interval and tissue processing time with known impact on the stress-strain properties.
Collapse
|
9
|
Migrating Myofibroblastic Iliotibial Band-Derived Fibroblasts Represent a Promising Cell Source for Ligament Reconstruction. Int J Mol Sci 2019; 20:ijms20081972. [PMID: 31013670 PMCID: PMC6514966 DOI: 10.3390/ijms20081972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
The iliotibial band (ITB) is a suitable scaffold for anterior cruciate ligament (ACL) reconstruction, providing a sufficient mechanical resistance to loading. Hence, ITB-derived fibroblasts attract interest for ligament tissue engineering but have so far not been characterized. This present study aimed at characterizing ITB fibroblasts before, during, and after emigration from cadaveric ITB explants to decipher the emigration behavior and to utilize their migratory capacity for seeding biomaterials. ITB and, for comparison, ACL tissues were assessed for the content of alpha smooth muscle actin (αSMA) expressing fibroblasts and degeneration. The cell survival and αSMA expression were monitored in explants used for cell isolation, monolayer, self-assembled ITB spheroids, and spheroids seeded in polyglycolic acid (PGA) scaffolds. The protein expression profile of targets typically expressed by ligamentocytes (collagen types I-III, elastin, lubricin, decorin, aggrecan, fibronectin, tenascin C, CD44, β1-integrins, vimentin, F-actin, αSMA, and vascular endothelial growth factor A [VEGFA]) was compared between ITB and ACL fibroblasts. A donor- and age-dependent differing percentage of αSMA positive cells could be detected, which was similar in ITB and ACL tissues despite the grade of degeneration being significantly higher in the ACL due to harvesting them from OA knees. ITB fibroblasts survived for several months in an explant culture, continuously forming monolayers with VEGFA and an increased αSMA expression. They shared their expression profile with ACL fibroblasts. αSMA decreased during the monolayer to spheroid/scaffold transition. Using self-assembled spheroids, the migratory capacity of reversible myofibroblastic ITB cells can be utilized for colonizing biomaterials for ACL tissue engineering and to support ligament healing.
Collapse
|
10
|
Scholze M, Singh A, Lozano PF, Ondruschka B, Ramezani M, Werner M, Hammer N. Utilization of 3D printing technology to facilitate and standardize soft tissue testing. Sci Rep 2018; 8:11340. [PMID: 30054509 PMCID: PMC6063914 DOI: 10.1038/s41598-018-29583-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
Abstract
Three-dimensional (3D) printing has become broadly available and can be utilized to customize clamping mechanisms in biomechanical experiments. This report will describe our experience using 3D printed clamps to mount soft tissues from different anatomical regions. The feasibility and potential limitations of the technology will be discussed. Tissues were sourced in a fresh condition, including human skin, ligaments and tendons. Standardized clamps and fixtures were 3D printed and used to mount specimens. In quasi-static tensile tests combined with digital image correlation and fatigue trials we characterized the applicability of the clamping technique. Scanning electron microscopy was utilized to evaluate the specimens to assess the integrity of the extracellular matrix following the mechanical tests. 3D printed clamps showed no signs of clamping-related failure during the quasi-static tests, and intact extracellular matrix was found in the clamping area, at the transition clamping area and the central area from where the strain data was obtained. In the fatigue tests, material slippage was low, allowing for cyclic tests beyond 105 cycles. Comparison to other clamping techniques yields that 3D printed clamps ease and expedite specimen handling, are highly adaptable to specimen geometries and ideal for high-standardization and high-throughput experiments in soft tissue biomechanics.
Collapse
Affiliation(s)
- Mario Scholze
- Department of Anatomy, University of Otago, New Zealand Department of Anatomy, Dunedin, New Zealand. .,Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany.
| | - Aqeeda Singh
- Department of Anatomy, University of Otago, New Zealand Department of Anatomy, Dunedin, New Zealand
| | - Pamela F Lozano
- Department of Anatomy, University of Otago, New Zealand Department of Anatomy, Dunedin, New Zealand
| | - Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Michael Werner
- Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, New Zealand Department of Anatomy, Dunedin, New Zealand. .,Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany.
| |
Collapse
|
11
|
Lohan A, Kohl B, Meier C, Schulze-Tanzil G. Tenogenesis of Decellularized Porcine Achilles Tendon Matrix Reseeded with Human Tenocytes in the Nude Mice Xenograft Model. Int J Mol Sci 2018; 19:ijms19072059. [PMID: 30011964 PMCID: PMC6073795 DOI: 10.3390/ijms19072059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Cultivation of autologous human tenocytes in a cell-free xenogenic extracellular tendon matrix (xECM) could present an approach for tendon reconstruction. The aim of this study was to achieve tendon-like tissue formation by implanting decellularized porcine Achilles tendons recellularized with human hamstring tendon-derived tenocytes into nude mice. The structure of decellularized xECM was histologically monitored before being dynamically reseeded with human tenocytes. After 6⁻12 weeks in vivo, construct quality was monitored using macroscopical and histological scoring systems, vitality assay and quantitative DNA and glycosaminoglycan (GAG) assays. For comparison to tendon xECM, a synthetic polyglycolic acid (PGA) polymer was implanted in a similar manner. Despite decellularized xECM lost some GAGs and structure, it could be recellularized in vitro with human tenocytes, but the cell distribution remained inhomogeneous, with accumulations at the margins of the constructs. In vivo, the xECM constructs revealed in contrast to the PGA no altered size, no inflammation and encapsulation and a more homogeneous cell distribution. xECM reseeded with tenocytes showed superior histological quality than cell-free implanted constructs and contained surviving human cells. Their DNA content after six and 12 weeks in vivo resembled that of native tendon and xECM recellularized in vitro. Results suggest that reseeded decellularized xECM formed a tendon-like tissue in vivo.
Collapse
Affiliation(s)
- Anke Lohan
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Benjamin Kohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Carola Meier
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Strasse 1, 90419 Nuremberg, Germany.
| |
Collapse
|
12
|
The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Rev Rep 2017; 13:50-67. [PMID: 27826794 DOI: 10.1007/s12015-016-9699-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension. Graphical Abstract Synopsis of tissue engineering approaches based on cartilage-derived ECM.
Collapse
|
13
|
Gögele C, Schwarz S, Ondruschka B, Hammer N, Schulze-Tanzil G. Decellularized Iliotibial Band Recolonized with Allogenic Homotopic Fibroblasts or Bone Marrow-Derived Mesenchymal Stromal Cells. Methods Mol Biol 2017; 1577:55-69. [PMID: 28488244 DOI: 10.1007/7651_2017_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Decellularized scaffolds present promising biomimetic approaches in various fields of tissue engineering. Different tissues have been selected for decellularization, among them extracellular matrix (ECM)-rich tissues such as tendons, ligaments and cartilage. The dense ECM of ligaments is particularly challenging to achieve a completely non-immunogenic ECM void of any cells. Here, the methods for decellularization adapted to ligamentous tissue of the iliotibial band (ITB) are presented along with cell isolation and several recolonization techniques using allogenic ITB-derived fibroblasts or mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Str. 1, Nuremberg, 90419, Germany
| | - Silke Schwarz
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Str. 1, Nuremberg, 90419, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University of Leipzig, Johannisallee 28, Leipzig, 04103, Germany
| | - Niels Hammer
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Gundula Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof.-Ernst-Nathan Str. 1, Nuremberg, 90419, Germany.
| |
Collapse
|
14
|
Schleifenbaum S, Prietzel T, Hädrich C, Möbius R, Sichting F, Hammer N. Tensile properties of the hip joint ligaments are largely variable and age-dependent - An in-vitro analysis in an age range of 14-93 years. J Biomech 2016; 49:3437-3443. [PMID: 27667477 DOI: 10.1016/j.jbiomech.2016.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Hip joint stability is maintained by the surrounding ligaments, muscles, and the atmospheric pressure exerted via these structures. It is unclear whether the ligaments are capable of preventing dislocation solely due to their tensile properties, and to what extent they undergo age-related changes. This study aimed to obtain stress-strain data of the hip ligaments over a large age range. METHODS Stress-strain data of the iliofemoral (IL), ischiofemoral (IS) and pubofemoral ligament (PF) were obtained from cadavers ranging between 14 and 93 years using a highly standardized setting. Maximum strains were compared to the distances required for dislocation. RESULTS Elastic modulus was 24.4 (IL), 22.4 (IS) and 24.9N/mm2 (PF) respectively. Maximum strain was 84.5%, 86.1%, 72.4% and ultimate stress 10.0, 7.7 and 6.5N/mm2 for the IL, IS and PF respectively. None of these values varied significantly between ligaments or sides. The IS' elastic modulus was higher and maximum strain lower in males. Lower elastic moduli of the PF and higher maximum strains for the IS and PF were revealed in the ≥55 compared to the <55 population. Maximum strain exceeded the dislocation distance of the IS without external hip joint rotation in females, and of the IS and cranial IL under external rotation in both genders. DISCUSSION Tensile and failure load properties of the hip joint ligaments are largely variable. The IS and PF change age-dependently. Though the hip ligaments contribute to hip stability, the IS and cranial IL may not prevent dislocation due to their elasticity.
Collapse
Affiliation(s)
- Stefan Schleifenbaum
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Torsten Prietzel
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany; Department of Orthopedics and Trauma Surgery, HELIOS Clinic Blankenhain, Blankenhain, Germany
| | - Carsten Hädrich
- Institute of Forensic Medicine, University of Leipzig, Germany
| | - Robert Möbius
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Freddy Sichting
- Institute of Sport Science, Department Human Locomotion, Chemnitz University of Technology, Chemnitz, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
15
|
Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues. PLoS One 2016; 11:e0151223. [PMID: 26960134 PMCID: PMC4784745 DOI: 10.1371/journal.pone.0151223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin.
Collapse
|