1
|
Karkali K, Jorba I, Navajas D, Martin-Blanco E. Measuring ventral nerve cord stiffness in live flat-dissected Drosophila embryos by atomic force microscopy. STAR Protoc 2022; 3:101901. [PMID: 36595903 PMCID: PMC9732408 DOI: 10.1016/j.xpro.2022.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Drosophila is an amenable system for addressing the mechanics of morphogenesis. We describe a workflow for characterizing the mechanical properties of its ventral nerve cord (VNC), at different developmental stages, in live, flat-dissected embryos employing atomic force microscopy (AFM). AFM is performed with spherical probes, and stiffness (Young's modulus) is calculated by fitting force curves with Hertz's contact model. For complete details on the use and execution of this protocol, please refer to Karkali et al. (2022).
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain,Corresponding author
| | - Ignasi Jorba
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain,Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain,Corresponding author
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain,Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Mechanical stretching of 3D hydrogels for neural stem cell differentiation. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Méndez M, Fabregues F, Ferreri J, Calafell JM, Villarino A, Otero J, Farre R, Carmona F. Biomechanical characteristics of the ovarian cortex in POI patients and functional outcomes after drug-free IVA. J Assist Reprod Genet 2022; 39:1759-1767. [PMID: 35904669 PMCID: PMC9428073 DOI: 10.1007/s10815-022-02579-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE There is increasing evidence that the ovarian extracellular matrix (ECM) plays a critical role in follicle development. The rigidity of the cortical ECM limits expansion of the follicle and consequently oocyte maturation, maintaining the follicle in its quiescent state. Quiescent primordial, primary, and secondary follicles still exist in primary ovarian insufficiency (POI) patients, and techniques as in vitro activation (IVA) and drug-free IVA have recently been developed aiming to activate these follicles based on the Hippo signaling disruption that is essential in mechanotransduction. In this context, we analyze the effect of drug-free IVA in POI patients, comparing the relationship between possible resumption ovarian function and biomechanical properties of ovarian tissue. METHODS Nineteen POI patients according to ESHRE criteria who underwent drug-free IVA by laparoscopy between January 2018 and December 2019 and were followed up for a year after the intervention. A sample of ovarian cortex taken during the intervention was analyzed by atomic force microscopy (AFM) in order to quantitatively measure tissue stiffness (Young's elastic modulus, E) at the micrometer scale. Functional outcomes after drug-free were analyzed. RESULTS Resumption of ovarian function was observed in 10 patients (52.6%) and two of them became pregnant with live births. There were no differences in clinical characteristics (age and duration of amenorrhea) and basal hormone parameters (FSH and AMH) depending on whether or not there was activation after surgery. However, ovarian cortex stiffness was significantly greater in patients with ovarian activity after drug-free IVA: median E = 5519 Pa (2260-11,296) vs 1501 (999-3474); p-value < 0.001. CONCLUSIONS Biomechanical properties of ovarian cortex in POI patients have a great variability, and higher ovarian tissue stiffness entails a more favorable status when drug-free IVA is applied in their treatment. This status is probably related to an ovary with more residual follicles, which would explain a greater possibility of ovarian follicular reactivations after treatment.
Collapse
Affiliation(s)
- M. Méndez
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain
| | - F. Fabregues
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain ,August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - J. Ferreri
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain
| | - J. M. Calafell
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain
| | - A. Villarino
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - J. Otero
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain ,CIBER of Respiratory Diseases, Madrid, Spain
| | - R. Farre
- August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain ,Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain ,CIBER of Respiratory Diseases, Madrid, Spain
| | - F. Carmona
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain ,August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
6
|
Attier-Zmudka J, Sérot JM, Valluy J, Saffarini M, Douadi Y, Malinowski KP, Balédent O. Sleep Apnea Syndrome in an Elderly Population Admitted to a Geriatric Unit: Prevalence and Effect on Cognitive Function. Front Aging Neurosci 2020; 11:361. [PMID: 31998116 PMCID: PMC6966603 DOI: 10.3389/fnagi.2019.00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sleep apnea leads to cognitive impairment in older patients, but its association with neurodegeneration remains controversial, and most studies do not distinguish between the more common obstructive form (OSAS) and the rarer central form (CSAS). Objective The purpose of this study was to assess the prevalence of the different forms of sleep apnea in a cohort of cognitively impaired elderly patients (>70 years) and to investigate their associations with cognitive deficit, weighted against known risk factors for neurodegeneration. Methods Overnight polygraphy was performed for 76 consecutive patients admitted to our geriatric unit. Their cognitive function was assessed using the Mini Mental-State Exam (MMSE), Mattis Dementia Rating Scale (MDRS) and Stroop test. Multivariable analyses were performed to determine associations between cognitive function and independent variables describing demographics, sleep apnea measures, and cardiovascular risk factors. Results The cohort comprised 58 women and 18 men aged a mean of 84 years (range, 73-96). Sleep apnea syndrome (SAS) was diagnosed in 48 patients (63%), of which 31 (41%) with OSAS and 17 (22%) with CSAS. Multivariable regression analysis revealed that MDRS was lower in patients with OSAS (β = -10.03, p = 0.018), that Stroop Colors and Words delays increased with AHI (β = 0.17, p = 0.030 and β = 0.31, p = 0.047) and that that Stroop Interference delay was higher in patients with CSAS (β = 24.45, p = 0.002). Conclusion Sleep apnea is thus highly prevalent in elderly patients with cognitive impairment. OSAS was associated with lower general cognitive function, while CSAS was only associated with increased Stroop Interference delays. Elderly patients with cognitive deficit could benefit from sleep apnea screening and treatment.
Collapse
Affiliation(s)
- Jadwiga Attier-Zmudka
- Department of Gerontology, Saint-Quentin Hospital, Saint-Quentin, France.,CHIMERE, EA 7516 Head & Neck Research Group, University of Picardy Jules Verne, Amiens, France
| | - Jean-Marie Sérot
- Department of Gerontology, Saint-Quentin Hospital, Saint-Quentin, France
| | | | | | - Youcef Douadi
- Department of Pulmonology, Saint-Quentin Hospital, Saint-Quentin, France
| | - Krzysztof Piotr Malinowski
- Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Olivier Balédent
- CHIMERE, EA 7516 Head & Neck Research Group, University of Picardy Jules Verne, Amiens, France.,BioFlowImage, Image Processing Unit, University Hospital of Amiens, Amiens, France
| |
Collapse
|
7
|
Otero J, Navajas D, Alcaraz J. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy. Methods Cell Biol 2019; 156:59-83. [PMID: 32222227 DOI: 10.1016/bs.mcb.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tissue elasticity is a critical regulator of cell behavior in normal and diseased conditions like fibrosis and cancer. Since the extracellular matrix (ECM) is a major regulator of tissue elasticity and function, several ECM-based models have emerged in the last decades, including in vitro endogenous ECM, decellularized tissue ECM and ECM hydrogels. The development of such models has urged the need to quantify their elastic properties particularly at the nanometer scale, which is the relevant length scale for cell-ECM interactions. For this purpose, the versatility of atomic force microscopy (AFM) to quantify the nanomechanical properties of soft biomaterials like ECM models has emerged as a very suitable technique. In this chapter we provide a detailed protocol on how to assess the Young's elastic modulus of ECM models by AFM, discuss some of the critical issues, and provide troubleshooting guidelines as well as illustrative examples of AFM measurements, particularly in the context of cancer.
Collapse
Affiliation(s)
- J Otero
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - D Navajas
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - J Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
8
|
Mashaqi S, Gozal D. The impact of obstructive sleep apnea and PAP therapy on all-cause and cardiovascular mortality based on age and gender - a literature review. Respir Investig 2019; 58:7-20. [PMID: 31631059 DOI: 10.1016/j.resinv.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/28/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep disorder which negatively impacts different body systems, especially the cardiovascular system. The correlation between sleep related breathing disorders and cardiovascular diseases has been well studied. However, the impact of OSA on cardiovascular related mortality and the role of positive airway pressure therapy in decreasing mortality is unclear. We reviewed studies investigating the impact of OSA on all-cause and cardiovascular related mortality in both genders, and in different age groups. METHODS A literature search (PubMed) using two phrases "obstructive sleep apnea and co-morbidities in males and females" and "obstructive sleep apnea and co-morbidities by age" yielded a total of 214 articles. Nineteen articles met the inclusion criteria. RESULTS The studies reviewed showed conflicting results. Some showed that OSA increases all cause and cardiovascular related mortality predominantly in the middle-aged group (40-65) followed by a plateau or a reduction in mortality. Other studies showed a positive linear correlation between OSA and mortality up to the age of 80. The same controversy was noted for gender; some studies did not observe an increase in mortality in females with OSA, while others observed a trend for an increase in mortality in females. CONCLUSION There is a debate in the literature regarding the impact of OSA on all-cause and cardiovascular mortality in both genders and in different age groups. However, the variation in results might be related to different study designs and significant epidemiological prevalence of OSA in males and females.
Collapse
Affiliation(s)
- Saif Mashaqi
- Department of Sleep Medicine, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA.
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
9
|
Gozal D. The ageing brain in sleep apnoea: paradoxical resilience, survival of the fittest, or simply comparing apples and oranges? Eur Respir J 2018; 51:51/6/1800802. [PMID: 29903830 DOI: 10.1183/13993003.00802-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- David Gozal
- Dept of Pediatrics, Section of Sleep Medicine, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Menal MJ, Jorba I, Torres M, Montserrat JM, Gozal D, Colell A, Piñol-Ripoll G, Navajas D, Almendros I, Farré R. Alzheimer's Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea. Front Neurol 2018; 9:1. [PMID: 29403429 PMCID: PMC5780342 DOI: 10.3389/fneur.2018.00001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer's disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods Six-eight month old (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) AD mutant mice and wild-type (WT) littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day) or normoxia for 8 weeks. After euthanasia, the stiffness (E) of 200-μm brain cortex slices was measured by atomic force microscopy. Results Two-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT), but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice. Conclusion AD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.
Collapse
Affiliation(s)
- Maria José Menal
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Jorba
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Torres
- Sleep Laboratory, Hospital Clinic Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Josep M Montserrat
- Sleep Laboratory, Hospital Clinic Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - David Gozal
- Department of Pediatrics, Section of Pediatric Sleep Medicine, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| | - Anna Colell
- Department of Mort I Proliferació Cellular, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), IDIBAPS, CIBERNED, Madrid, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, IRBLleida-Hospital Universitari Santa Maria Lleida, Lleida, Spain
| | - Daniel Navajas
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Isaac Almendros
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Ramon Farré
- Unitat Biofísica I Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
11
|
Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 2018; 73:71-81. [DOI: 10.1016/j.semcdb.2017.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
12
|
Mosher KI, Schaffer DV. Influence of hippocampal niche signals on neural stem cell functions during aging. Cell Tissue Res 2017; 371:115-124. [PMID: 29124394 DOI: 10.1007/s00441-017-2709-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
The genesis of new neurons from neural stem cells in the adult brain offers the hope that this mechanism of plasticity can be harnessed for the treatment of brain injuries and diseases. However, neurogenesis becomes impaired during the normal course of aging; this is also the primary risk factor for most neurodegenerative diseases. The local microenvironment that regulates the function of resident neural stem cells (the "neurogenic niche") is a particularly complex network of various signaling mechanisms, rendering it especially challenging for the dissection of the control of these cells but offering the potential for the advancement of our understanding of the regulation/misregulation of neurogenesis. In this review, we examine the factors that control neurogenesis in an age-dependent manner, and we define these signals by the extrinsic mechanism through which they are presented to the neural stem cells. Secreted signals, cell-contact-dependent signals, and extracellular matrix cues all contribute to the regulation of the aging neurogenic niche and offer points of therapeutic intervention.
Collapse
Affiliation(s)
- Kira Irving Mosher
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|