1
|
Venkateshwarlu A, Akshayveer, Singh S, Melnik R. Piezoelectricity and flexoelectricity in biological cells: the role of cell structure and organelles. Biomech Model Mechanobiol 2025; 24:47-76. [PMID: 39455540 DOI: 10.1007/s10237-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. A two-dimensional bio-electromechanical model for two distinct cell structures has been developed to analyze the behavior of the biological cell to the external electrical and mechanical responses. The piezoelectric and flexoelectric effects have been included via multiphysics coupling for the biological cell. All the governing equations have been discretized and solved by the finite element method. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ( V R , max ). It has been found that V R , max depends upon the orientation angle and shape of the microtubules. The magnitude of V R , max exhibit huge change when we change the shape and orientation of the organelles, which in some cases (boundary condition (BC)-3) can reach to three times of regular shape organelles. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behavior based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akepogu Venkateshwarlu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Akshayveer
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
2
|
Cardona S, Mostafazadeh N, Luan Q, Zhou J, Peng Z, Papautsky I. Numerical Modeling of Physical Cell Trapping in Microfluidic Chips. MICROMACHINES 2023; 14:1665. [PMID: 37763828 PMCID: PMC10538085 DOI: 10.3390/mi14091665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Microfluidic methods have proven to be effective in separation and isolation of cells for a wide range of biomedical applications. Among these methods, physical trapping is a label-free isolation approach that relies on cell size as the selective phenotype to retain target cells on-chip for follow-up analysis and imaging. In silico models have been used to optimize the design of such hydrodynamic traps and to investigate cancer cell transmigration through narrow constrictions. While most studies focus on computational fluid dynamics (CFD) analysis of flow over cells and/or pillar traps, a quantitative analysis of mechanical interaction between cells and trapping units is missing. The existing literature centers on longitudinally extended geometries (e.g., micro-vessels) to understand the biological phenomenon rather than designing an effective cell trap. In this work, we aim to make an experimentally informed prediction of the critical pressure for a cell to pass through a trapping unit as a function of cell morphology and trapping unit geometry. Our findings show that a hyperelastic material model accurately captures the stress-related softening behavior observed in cancer cells passing through micro-constrictions. These findings are used to develop a model capable of predicting and extrapolating critical pressure values. The validity of the model is assessed with experimental data. Regression analysis is used to derive a mathematical framework for critical pressure. Coupled with CFD analysis, one can use this formulation to design efficient microfluidic devices for cell trapping and potentially perform downstream analysis of trapped cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Wei J, Li M. Interplay of Fluid Mechanics and Matrix Stiffness in Tuning the Mechanical Behaviors of Single Cells Probed by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1309-1319. [PMID: 36633932 DOI: 10.1021/acs.langmuir.2c03137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is well known that both fluid mechanics and matrix stiffness present within the cellular microenvironments play an essential role in the physiological and pathological processes of cells. However, so far, knowledge of the interplay of fluid mechanics and matrix stiffness in tuning the mechanical behaviors of single cells is still extremely limited. Particularly, atomic force microscopy (AFM) is now an important and standard tool for characterizing the mechanical properties of single living cells. Nevertheless, studies of utilizing AFM to detect cellular mechanics are commonly performed in static medium conditions, which are unable to access the effects of fluidic media on cellular behaviors. Here, by integrating AFM with a fluidic cell medium device and hydrogel technology, the combined effects of fluid mechanics and matrix stiffness on cell mechanics were investigated. A fluidic medium device with tunable fluid mechanics was established to simulate the shear flow effects, and hydrogels were used to fabricate substrates with different stiffnesses for cell growth. Especially, the cantilever of the AFM probe was modified with a microsphere to indent cells for probing cell mechanics. Based on the established experimental platform, the elastic and viscous properties of single living cells grown on substrates with tunable matrix stiffness under fluidic microenvironments were quantitatively measured, and the remarkable alterations in the mechanical properties of cells were unraveled. The subcellular structure changes of cells in fluidic microenvironments were observed by fluorescence microscopy. Further, AFM morphological imaging was used to image living cells grown in fluidic medium conditions, and significant changes in the surface structure and roughness of cells were observed. The study provides a novel way to investigate the synergistic effects of fluid mechanics and matrix stiffness on the behaviors of single cells, which will benefit unveiling the underlying mechanical cues involved the interactions between microenvironments and cells.
Collapse
Affiliation(s)
- Jiajia Wei
- State Key Laboratory of Robotics, Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang110169, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang110169, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Sheng JY, Mo C, Li GY, Zhao HC, Cao Y, Feng XQ. AFM-based indentation method for measuring the relaxation property of living cells. J Biomech 2021; 122:110444. [PMID: 33933864 DOI: 10.1016/j.jbiomech.2021.110444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Probing the mechanical properties of cells is critical for understanding their deformation behaviors and biological functions. Although some methods have been proposed to characterize the elastic properties of cells, it is still difficult to measure their time-dependent properties. This paper investigates the use of atomic force microscope (AFM) to determine the reduced relaxation modulus of cells. In principle, AFM is hard to perform an indentation relaxation test that requires a constant indenter displacement during load relaxation, whereas the real AFM indenter displacement usually varies with time during relaxation due to the relatively small bending stiffness of its cantilever. We investigate this issue through a combined theoretical, computational, and experimental effort. A protocol relying on the choice of appropriate cantilever bending stiffness is proposed to perform an AFM-based indentation relaxation test of cells, which enables the measurement of reduced relaxation modulus with high accuracy. This protocol is first validated by performing nanoindentation relaxation tests on a soft material and by comparing the results with those from independent measurements. Then indentation tests of cartilage cells are conducted to demonstrate this method in determining time-dependent properties of living cells. Finally, the change in the viscoelasticity of MCF-7 cells under hyperthermia is investigated.
Collapse
Affiliation(s)
- Jun-Yuan Sheng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Chi Mo
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Guo-Yang Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Yanping Cao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China.
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Singh S, Krishnaswamy JA, Melnik R. Biological cells and coupled electro-mechanical effects: The role of organelles, microtubules, and nonlocal contributions. J Mech Behav Biomed Mater 2020; 110:103859. [PMID: 32957179 DOI: 10.1016/j.jmbbm.2020.103859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Biological cells are exposed to a variety of mechanical loads throughout their life cycles that eventually play an important role in a wide range of cellular processes. The understanding of cell mechanics under the application of external stimuli is important for capturing the nuances of physiological and pathological events. Such critical knowledge will play an increasingly vital role in modern medical therapies such as tissue engineering and regenerative medicine, as well as in the development of new remedial treatments. At present, it is well known that the biological molecules exhibit piezoelectric properties that are of great interest for medical applications ranging from sensing to surgery. In the current study, a coupled electro-mechanical model of a biological cell has been developed to better understand the complex behaviour of biological cells subjected to piezoelectric and flexoelectric properties of their constituent organelles under the application of external forces. Importantly, a more accurate modelling paradigm has been presented to capture the nonlocal flexoelectric effect in addition to the linear piezoelectric effect based on the finite element method. Major cellular organelles considered in the developed computational model of the biological cell are the nucleus, mitochondria, microtubules, cell membrane and cytoplasm. The effects of variations in the applied forces on the intrinsic piezoelectric and flexoelectric contributions to the electro-elastic response have been systematically investigated along with accounting for the variation in the coupling coefficients. In addition, the effect of mechanical degradation of the cytoskeleton on the electro-elastic response has also been quantified. The present studies suggest that flexoelectricity could be a dominant electro-elastic coupling phenomenon, exhibiting electric fields that are four orders of magnitude higher than those generated by piezoelectric effects alone. Further, the output of the coupled electro-mechanical model is significantly dependent on the variation of flexoelectric coefficients. We have found that the mechanical degradation of the cytoskeleton results in the enhancement of both the piezo and flexoelectric responses associated with electro-mechanical coupling. In general, our study provides a framework for more accurate quantification of the mechanical/electrical transduction within the biological cells that can be critical for capturing the complex mechanisms at cellular length scales.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2L 3C5, Canada.
| | - Jagdish A Krishnaswamy
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2L 3C5, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2L 3C5, Canada; BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009, Bilbao, Spain
| |
Collapse
|
6
|
Liang W, Yang X, Wang J, Wang Y, Yang W, Liu L. Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances. MICROMACHINES 2020; 11:E513. [PMID: 32438680 PMCID: PMC7281274 DOI: 10.3390/mi11050513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Cell dielectric properties, a type of intrinsic property of cells, can be used as electrophysiological biomarkers that offer a label-free way to characterize cell phenotypes and states, purify clinical samples, and identify target cancer cells. Here, we present a review of the determination of cell dielectric properties using alternating current (AC) electrokinetic-based microfluidic mechanisms, including electro-rotation (ROT) and dielectrophoresis (DEP). The review covers theoretically how ROT and DEP work to extract cell dielectric properties. We also dive into the details of differently structured ROT chips, followed by a discussion on the determination of cell dielectric properties and the use of these properties in bio-related applications. Additionally, the review offers a look at the future challenges facing the AC electrokinetic-based microfluidic platform in terms of acquiring cell dielectric parameters. Our conclusion is that this platform will bring biomedical and bioengineering sciences to the next level and ultimately achieve the shift from lab-oriented research to real-world applications.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| |
Collapse
|
7
|
Makarova N, Kalaparthi V, Wang A, Williams C, Dokukin ME, Kaufman CK, Zon L, Sokolov I. Difference in biophysical properties of cancer-initiating cells in melanoma mutated zebrafish. J Mech Behav Biomed Mater 2020; 107:103746. [PMID: 32364948 DOI: 10.1016/j.jmbbm.2020.103746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022]
Abstract
Despite sharing oncogenetic mutations, only a small number of cells within a given tissue will undergo malignant transformation. Biochemical and physical factors responsible for this cancer-initiation process are not well understood. Here we study biophysical differences of pre-melanoma and melanoma cells in a BRAFV600E/P53 zebrafish model. The AFM indentation technique was used to study the cancer-initiating cells while the surrounding melanocytes were the control. We observed a statistically significant decrease in the modulus of elasticity (the effective Young's modulus) of cancer-initiating cells compared to the surrounding melanocytes. No significant differences in the pericellular coat surrounding cells were observed. These results contribute to a better understanding of the factors responsible for the initiation of cancer.
Collapse
Affiliation(s)
- N Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Vivek Kalaparthi
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Andrew Wang
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Chris Williams
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - M E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA; Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Charles K Kaufman
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO, USA
| | | | - I Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Department of Physics, Tufts University, Medford, MA, USA.
| |
Collapse
|
8
|
Song J, Meng X, Zhang H, Zhao K, Hu Y, Xie H. Probing Multidimensional Mechanical Phenotyping of Intracellular Structures by Viscoelastic Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1913-1923. [PMID: 31802656 DOI: 10.1021/acsami.9b19597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical phenotyping of complex cellular structures gives insight into the process and function of mechanotransduction in biological systems. Several methods have been developed to characterize intracellular elastic moduli, while direct viscoelastic characterization of intracellular structures is still challenging. Here, we develop a needle tip viscoelastic spectroscopy method to probe multidimensional mechanical phenotyping of intracellular structures during a mini-invasive penetrating process. Viscoelastic spectroscopy is determined by magnetically driven resonant vibration (about 15 kHz) with a tiny amplitude. It not only detects the unique dynamic stiffness, damping, and loss tangent of the cell membrane-cytoskeleton and nucleus-nuclear lamina but also bridges viscoelastic parameters between the mitotic phase and interphase. Self-defined dynamic mechanical ratios of these two phases can identify two malignant cervical cancer cell lines (HeLa-HPV18+, SiHa-HPV16+) whose membrane or nucleus elastic moduli are indistinguishable. This technique provides a quantitative method for studying mechanosensation, mechanotransduction, and mechanoresponse of intracellular structures from a dynamic mechanical perspective. This technique has the potential to become a reliable quantitative measurement method for dynamic mechanical studies of intracellular structures.
Collapse
|
9
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Gosenca Matjaž M, Škarabot M, Gašperlin M, Janković B. Lamellar liquid crystals maintain keratinocytes' membrane fluidity: An AFM qualitative and quantitative study. Int J Pharm 2019; 572:118712. [PMID: 31593808 DOI: 10.1016/j.ijpharm.2019.118712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/21/2023]
Abstract
Despite extensive investigations of lamellar liquid crystals for dermal application, the effects of these systems at the cellular level are still not well elucidated. The key aim of this study was to determine the elasticity and morphological features of keratinocytes after exposure to a lamellar liquid crystal system (LLCS) using atomic force microscopy (AFM) as the method of choice. Prior to AFM assessment, a cell proliferation test and light plus fluorescence imaging were applied to determine the sub-toxic concentration of LLCS. According to the AFM results, slightly altered morphology was observed in the case of fixed keratinocytes, while an intact morphology was visualized on live cells. From the quantitative study, decreased Young's moduli were determined for fixed cells (i.e., 8.6 vs. 15.2 MPa and 1.3 vs. 2.9 MPa for ethanol or PFA-fixed LLCS-treated vs. control cells, respectively) and live cells (i.e., ranging from 0.6 to 2.8 for LLCS-treated vs. 1.1-4.5 MPa for untreated cells), clearly demonstrating increased cell elasticity. This is related to improved membrane fluidity as a consequence of interactions between the acyl chains of cell membrane phosphatidylcholine and those of LLCS. What seems to be of major importance is that the study confirms the potential clinical relevance of such systems in treatment of aged skin with characteristically more rigid epithelial cells.
Collapse
Affiliation(s)
- Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Miha Škarabot
- Jožef Stefan Institute, Department of Condensed Matter Physics, Jamova cesta 39, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Biljana Janković
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Liu N, Du P, Xiao X, Liu Y, Peng Y, Yang C, Yue T. Microfluidic-Based Mechanical Phenotyping of Androgen-Sensitive and Non-sensitive Prostate Cancer Cells Lines. MICROMACHINES 2019; 10:E602. [PMID: 31547397 PMCID: PMC6780375 DOI: 10.3390/mi10090602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Cell mechanical properties have been identified to characterize cells pathologic states. Here, we report our work on high-throughput mechanical phenotyping of androgen-sensitive and non-sensitive human prostate cancer cell lines based on a morphological rheological microfluidic method. The theory for extracting cells' elastic modulus from their deformation and area, and the used experimental parameters were analyzed. The mechanical properties of three types of prostate cancer cells lines with different sensitivity to androgen including LNCaP, DU145, and PC3 were quantified. The result shows that LNCaP cell was the softest, DU145 was the second softest, and PC3 was the stiffest. Furthermore, atomic force microscopy (AFM) was used to verify the effectiveness of this high-throughput morphological rheological method.
Collapse
Affiliation(s)
- Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Panpan Du
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Xiaoxiao Xiao
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yan Peng
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Chen Yang
- Fudan Institute of Urology, Fudan University, Shanghai 200433, China.
| | - Tao Yue
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Li M, Xi N, Wang Y, Liu L. Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy. ACS Biomater Sci Eng 2019; 5:5036-5050. [DOI: 10.1021/acsbiomaterials.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Kowloon 999077, Hong Kong, China
| | | | | |
Collapse
|
13
|
Pierro E, Bottiglione F, Carbone G. Thermal Fluctuations and Dynamic Modeling of a dAFM Cantilever. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Elena Pierro
- Scuola di IngegneriaUniversità degli Studi della Basilicata 85100 Potenza Italy
| | - Francesco Bottiglione
- Department of Mechanics Mathematics and ManagementPolitecnico di Bari v.le Japigia 182 70126 Bari Italy
| | - Giuseppe Carbone
- Department of Mechanics Mathematics and ManagementPolitecnico di Bari v.le Japigia 182 70126 Bari Italy
- Physics Department M. MerlinCNR Institute for Photonics and Nanotechnologies U.O.S. Bari via Amendola 173 70126 Bari Italy
- Department of Mechanical EngineeringImperial College London South Kensington Campus, Exhibition Road London SW7 2AZ UK
- Center for Nonlinear ScienceUniversity of North Texas P.O. Box 311427 Denton TX 76203‐1427 USA
| |
Collapse
|