1
|
Ziaie B, Velay X, Saleem W. Developing porous hip implants implementing topology optimization based on the bone remodelling model and fatigue failure. J Mech Behav Biomed Mater 2025; 163:106864. [PMID: 39700652 DOI: 10.1016/j.jmbbm.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
In contemporary orthopaedic practice, total hip arthroplasty (THA) is a reliable surgical technique for hip joint replacement. However, introducing solid implants into human bone tissue can lead to complications, notably stress shielding and cortical hypertrophy. These issues often stem from mechanical mismatches, particularly stiffness disparities, between the solid implants and the bone tissue. A potential solution lies in adopting porous implant structures with lower stiffness and tuneable mechanical properties based on morphological parameters such as porosity, relative density, and unit cell sizes. This study, which is of significant importance to orthopaedic implant development, aims to develop porous implants that meet biological and manufacturing requirements, employing topology optimization methods to address the challenges associated with conventional solid implants. To achieve this objective, we conducted finite element analyses to compare the stress distribution within healthy bones with solid and newly developed porous implants under real-life loading conditions. The porous implants were designed with triply periodic minimal surface structures, featuring uniform relative density and gradient relative density mapping derived from topology optimization results considering additive manufacturing capabilities and biological constraints. Our findings provide critical insights into the impact on the bone's mechanical environment about the choice of implant. Specifically, solid implants significantly decrease applied stress within the cortical bone, leading to stress shielding and subsequent bone resorption, consistent with bone remodelling principles and Wolff's law. However, replacing the solid implant with uniform porosity with maximum compliance and employing gradient porous implants based on topology optimization methods significantly increases the strain energy density ratio. Specifically, the uniform gyroid, uniform diamond, gradient gyroid, and gradient diamond stems exhibited increases of 43%, 39%, 27%, and 25%, respectively, compared to the solid stem, effectively mitigating the stress shielding effect. However, amongst porous stems, only gradient designs could meet the mechanical strength requirements with a safety factor greater than one, rendering them suitable replacements for solid implants aimed at addressing associated complications. These results hold promise, particularly with the advancements in additive manufacturing methods capable of fabricating these porous implants with acceptable precision.
Collapse
Affiliation(s)
- Babak Ziaie
- Department of Mechanical and Manufacturing Engineering, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland.
| | - Xavier Velay
- Department of Mechanical and Manufacturing Engineering, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
| | - Waqas Saleem
- Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; School of Mechanical Engineering, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Alcántara-Arreola EA, Silva-Garcés KN, Mendoza-Martínez J, Cardoso-Palomares MA, Torres-SanMiguel CR. Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue. J Funct Biomater 2024; 15:238. [PMID: 39194675 DOI: 10.3390/jfb15080238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cortical tissues reorganize and remodel in response to tensile forces acting on them, while compressive forces cause atrophy. However, implants support most of the payload. Bones do not regenerate, and stress shielding occurs. The aim is to analyze the biomechanical behavior of a lumbar cage to study the implant's stress shielding. The ASTM E-9 standard was used with the necessary adjustments to perform compression tests on lumbar and thoracic porcine spinal vertebrae. Twelve cases were analyzed: six with the metal prosthesis and six with the PEEK implant. A mathematical model based on the Hertz contact theory is proposed to assess the stress shielding for endoprosthesis used in spine pathologies. The lumbar spacer (screw) helps to reduce the stress shielding effect due to the ACME thread. The best interspinous spacer is the PEEK screw. It does not embed in bone. The deformation capability increases by 11.5% and supports 78.6 kg more than a system without any interspinous spacer.
Collapse
Affiliation(s)
- Elliot Alonso Alcántara-Arreola
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Karla Nayeli Silva-Garcés
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Jocabed Mendoza-Martínez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Miguel Antonio Cardoso-Palomares
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| | - Christopher René Torres-SanMiguel
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Sección de Estudios de Posgrado e Investigación, Ciudad de México 07738, Mexico
| |
Collapse
|
3
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
4
|
Talukdar RG, Saviour CM, Dhara S, Gupta S. Biomechanical analysis of functionally graded porous interbody cage for lumbar spinal fusion. Comput Biol Med 2023; 164:107281. [PMID: 37481948 DOI: 10.1016/j.compbiomed.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Functionally graded porous (FGP) interbody cage might offer a trade-off between porosity-based reduction of stiffness and mechanical properties. Using finite element models of intact and implanted lumbar functional spinal unit (FSU), the study investigated the quantitative deviations in load transfer and adaptive changes in bone density distributions around FGP interbody cages. The cage had three graded porosities: FGP-A, -B, and -C corresponded to a maximum porosity levels of 48%, 65% and 78%, respectively. Efficacy of the FGP cages were evaluated by comparing the numerically predicted results of solid-Ti and uniformly porous 78% porosity (P78) cage. Variations in stiffness and interface condition affected the strain distribution and bone remodelling around the cages. Peak strains of 0.5-1% were observed in less number of peri-prosthetic bone elements for the FGP cages as compared to the solid-Ti cage. Strains and bone apposition were considerably higher for the bonded implant-bone interface condition than the debonded case. For the FGP-C with bonded interface condition, bone apposition of 11-20% was predicted in the L4 and L5 regions of interest (ROIs); whereas the debonded model exhibited 6-10% increase in bone density. The deviations in bone density change between FGP-C and P78 model were 3-8% for L4 and L5 ROIs. FGP resulted in a reduced average micromotion (∼70-106 μm) as compared to solid-Ti (116 μm), for all physiologic movements. Compared to solid-Ti and uniformly porous cages, the FGP cage seems to be a viable alternative considering the conflicting nature of strength and porosity.
Collapse
Affiliation(s)
- Rahul Gautam Talukdar
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Ceby Mullakkara Saviour
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| |
Collapse
|
5
|
Zhang C, Zeng C, Wang Z, Zeng T, Wang Y. Optimization of stress distribution of bone-implant interface (BII). BIOMATERIALS ADVANCES 2023; 147:213342. [PMID: 36841109 DOI: 10.1016/j.bioadv.2023.213342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Many studies have found that the threshold of occlusal force tolerated by titanium-based implants is significantly lower than that of natural teeth due to differences in biomechanical mechanisms. Therefore, implants are considered to be susceptible to occlusal trauma. In clinical practice, many implants have shown satisfactory biocompatibility, but the balance between biomechanics and biofunction remains a huge clinical challenge. This paper comprehensively analyzes and summarizes various stress distribution optimization methods to explore strategies for improving the resistance of the implants to adverse stress. Improving stress resistance reduces occlusal trauma and shortens the gap between implants and natural teeth in occlusal function. The study found that: 1) specific implant-abutment connection design can change the force transfer efficiency and force conduction direction of the load at the BII; 2) reasonable implant surface structure and morphological character design can promote osseointegration, maintain alveolar bone height, and reduce the maximum effective stress at the BII; and 3) the elastic modulus of implants matched to surrounding bone tissue can reduce the stress shielding, resulting in a more uniform stress distribution at the BII. This study concluded that the core BII stress distribution optimization lies in increasing the stress distribution area and reducing the local stress peak value at the BII. This improves the biomechanical adaptability of the implants, increasing their long-term survival rate.
Collapse
Affiliation(s)
- Chunyu Zhang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| | - Chunyu Zeng
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Zhefu Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Ting Zeng
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Mahmud S, Hafizh M, Ayari MA, Khandakar A, Alam MK, Nezhad EZ. Design and Performance Evaluation of a Novel Spiral Head-Stem Trunnion for Hip Implants Using Finite Element Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041466. [PMID: 36837096 PMCID: PMC9962303 DOI: 10.3390/ma16041466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/27/2023]
Abstract
With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail. To optimize the design, multiple experiments with various trunnion geometries have been performed by researchers to examine the wear rate and associated mechanical performance characteristics of the existing head-stem trunnion. The objective of this work is to quantify and evaluate the performance parameters of smooth and novel spiral head-stem trunnion types under dynamic loading situations. This study proposes a finite element method for estimating head-stem trunnion performance characteristics, namely contact pressure and sliding distance, for both trunnion types under walking and jogging dynamic loading conditions. The wear rate for both trunnion types was computed using the Archard wear model for a standard number of gait cycles. The experimental results indicated that the spiral trunnion with a uniform contact pressure distribution achieved more fixation than the smooth trunnion. However, the average contact pressure distribution was nearly the same for both trunnion types. The maximum and average sliding distances were both shorter for the spiral trunnion; hence, the summed sliding distance was approximately 10% shorter for spiral trunnions than that of the smooth trunnion over a complete gait cycle. Owing to a lower sliding ability, hip implants with spiral trunnions achieved more stability than those with smooth trunnions. The anticipated wear rate for spiral trunnions was 0.039 mm3, which was approximately 10% lower than the smooth trunnion wear rate of 0.048 mm3 per million loading cycles. The spiral trunnion achieved superior fixation stability with a shorter sliding distance and a lower wear rate than the smooth trunnion; therefore, the spiral trunnion can be recommended for future hip implant systems.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Muhammad Hafizh
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Erfan Zal Nezhad
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
7
|
Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review. J Orthop Surg Res 2023; 18:42. [PMID: 36647070 PMCID: PMC9841707 DOI: 10.1186/s13018-022-03492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Total joint replacements are an established treatment for patients suffering from reduced mobility and pain due to severe joint damage. Aseptic loosening due to stress shielding is currently one of the main reasons for revision surgery. As this phenomenon is related to a mismatch in mechanical properties between implant and bone, stiffness reduction of implants has been of major interest in new implant designs. Facilitated by modern additive manufacturing technologies, the introduction of porosity into implant materials has been shown to enable significant stiffness reduction; however, whether these devices mitigate stress-shielding associated complications or device failure remains poorly understood. METHODS In this systematic review, a broad literature search was conducted in six databases (Scopus, Web of Science, Medline, Embase, Compendex, and Inspec) aiming to identify current design approaches to target stress shielding through controlled porous structures. The search keywords included 'lattice,' 'implant,' 'additive manufacturing,' and 'stress shielding.' RESULTS After the screening of 2530 articles, a total of 46 studies were included in this review. Studies focusing on hip, knee, and shoulder replacements were found. Three porous design strategies were identified, specifically uniform, graded, and optimized designs. The latter included personalized design approaches targeting stress shielding based on patient-specific data. All studies reported a reduction of stress shielding achieved by the presented design. CONCLUSION Not all studies used quantitative measures to describe the improvements, and the main stress shielding measures chosen varied between studies. However, due to the nature of the optimization approaches, optimized designs were found to be the most promising. Besides the stiffness reduction, other factors such as mechanical strength can be considered in the design on a patient-specific level. While it was found that controlled porous designs are overall promising to reduce stress shielding, further research and clinical evidence are needed to determine the most superior design approach for total joint replacement implants.
Collapse
|
8
|
A Review of Biomaterials and Associated Performance Metrics Analysis in Pre-Clinical Finite Element Model and in Implementation Stages for Total Hip Implant System. Polymers (Basel) 2022; 14:polym14204308. [PMID: 36297885 PMCID: PMC9607025 DOI: 10.3390/polym14204308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Total hip replacement (THR) is a common orthopedic surgery technique that helps thousands of individuals to live normal lives each year. A hip replacement replaces the shattered cartilage and bone with an implant. Most hip implants fail after 10–15 years. The material selection for the total hip implant systems is a major research field since it affects the mechanical and clinical performance of it. Stress shielding due to excessive contact stress, implant dislocation due to a large deformation, aseptic implant loosening due to the particle propagation of wear debris, decreased bone remodeling density due to the stress shielding, and adverse tissue responses due to material wear debris all contribute to the failure of hip implants. Recent research shows that pre-clinical computational finite element analysis (FEA) can be used to estimate four mechanical performance parameters of hip implants which are connected with distinct biomaterials: von Mises stress and deformation, micromotion, wear estimates, and implant fatigue. In vitro, in vivo, and clinical stages are utilized to determine the hip implant biocompatibility and the unfavorable local tissue reactions to different biomaterials during the implementation phase. This research summarizes and analyses the performance of the different biomaterials that are employed in total hip implant systems in the pre-clinical stage using FEA, as well as their performances in in vitro, in vivo, and in clinical studies, which will help researchers in gaining a better understanding of the prospects and challenges in this field.
Collapse
|
9
|
Mirulla AI, Muccioli GMM, Fratini S, Zaffagnini S, Ingrassia T, Bragonzoni L, Innocenti B. Analysis of different geometrical features to achieve close-to-bone stiffness material properties in medical device: A feasibility numerical study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106875. [PMID: 35588661 DOI: 10.1016/j.cmpb.2022.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE In orthopedic medical devices, elasto-plastic behavior differences between bone and metallic materials could lead to mechanical issues at the bone-implant interface, as stress shielding. Those issue are mainly related to knee and hip arthroplasty, and they could be responsible for implant failure. To reduce mismatching-related adverse events between bone and prosthesis mechanical properties, modifying the implant's internal geometry varying the bulk stiffness and density could be the right approach. Therefore, this feasibility study aims to assess which in-body gap geometry improves, by reducing, the bulk stiffness. METHODS Using five finite element models, a uniaxial compression test in five cubes with a 20 mm thickness was simulated and analyzed. The displacements, strain and Young Modulus were calculated in four cubes, each containing internal prismatic gaps with different transversal sections (squared, hexagonal, octagonal, and circular). Those were compared with a fifth full-volume cube used as control. RESULTS The most significant difference have been achieved in displacement values, in cubes containing internal gaps with hexagonal and circular transversal sections (82 µm and 82.5 µm, respectively), when compared to the full-volume cube (69.3 µm). CONCLUSIONS This study suggests that hexagonal and circular shape of the gaps allows obtaining the lower rigidity in a size range of 4 mm, offering a starting approach to achieve a "close-to-bone" material, with a potential use in prosthetic devices with limited thickness.
Collapse
Affiliation(s)
- Agostino Igor Mirulla
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, Palermo 90128, Italy; Department for Life Quality Studies, University of Bologna, Rimini 47921, Italy.
| | - Giulio Maria Marcheggiani Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40136, Italy; 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Stefano Fratini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40136, Italy
| | - Stefano Zaffagnini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40136, Italy; 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Tommaso Ingrassia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, Palermo 90128, Italy
| | - Laura Bragonzoni
- Department for Life Quality Studies, University of Bologna, Rimini 47921, Italy
| | - Bernardo Innocenti
- BEAMS Department (Bio Electro and Mechanical Systems), Université Libre de Bruxelles, Bruxelles 1050, Belgium
| |
Collapse
|