1
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
2
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
3
|
Hui I, Pasquier E, Solberg A, Agrenius K, Håkansson J, Chinga-Carrasco G. Biocomposites containing poly(lactic acid) and chitosan for 3D printing - Assessment of mechanical, antibacterial and in vitro biodegradability properties. J Mech Behav Biomed Mater 2023; 147:106136. [PMID: 37774439 DOI: 10.1016/j.jmbbm.2023.106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
New bone repair materials are needed for treatment of trauma- and disease-related skeletal defects as they still represent a major challenge in clinical practice. Additionally, new strategies are required to combat orthopedic device-related infections (ODRI), given the rising incidence of total joint replacement and fracture fixation surgeries in increasingly elderly populations. Recently, the convergence of additive manufacturing (AM) and bone tissue engineering (BTE) has facilitated the development of bone healthcare to achieve personalized three-dimensional (3D) scaffolds. This study focused on the development of a 3D printable bone repair material, based on the biopolymers poly(lactic acid) (PLA) and chitosan. Two different types of PLA and chitosan differing in their molecular weight (MW) were explored. The novel feature of this research was the successful 3D printing using biocomposite filaments composed of PLA and 10 wt% chitosan, with clear chitosan entrapment within the PLA matrix confirmed by Scanning Electron Microscopy (SEM) images. Tensile testing of injection molded samples indicated an increase in stiffness, compared to pure PLA scaffolds, suggesting potential for improved load-bearing characteristics in bone scaffolds. However, the potential benefit of chitosan on the biocomposite stiffness could not be reproduced in compression testing of 3D printed cylinders. The antibacterial assays confirmed antibacterial activity of chitosan when dissolved in acetic acid. The study also verified the biodegradability of the scaffolds, with a process producing an acidic environment that could potentially be neutralized by chitosan. In conclusion, the study indicated the feasibility of the proposed PLA/chitosan biocomposite for 3D printing, demonstrating adequate mechanical strength, antibacterial properties and biodegradability, which could serve as a new material for bone repair.
Collapse
Affiliation(s)
- Isabel Hui
- Swiss Federal Institute of Technology Zurich, Switzerland
| | | | | | - Karin Agrenius
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115, Borås, Sweden
| | - Joakim Håkansson
- Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, SE-50115, Borås, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-40530, Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | | |
Collapse
|
4
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
5
|
Yahia S, Khalil IA, Ghoniem MG, El-Sherbiny IM. 3D-bioimplants mimicking the structure and function of spine units for the treatment of spinal tuberculosis. RSC Adv 2023; 13:17340-17353. [PMID: 37304785 PMCID: PMC10251188 DOI: 10.1039/d3ra02351f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
Approximately 1-2% of the reported tuberculosis (TB) cases have skeletal system problems, particularly spinal TB. The complications of spinal TB involve the destruction of vertebral body (VB) and intervertebral disc (IVD) which consequently leads to kyphosis. This work aimed at utilizing different technologies to develop, for the first time, a functional spine unit (FSU) replacement to mimic the structure and function of the VB and IVD along with a good ability to treat spinal TB. 3D-printed scaffolds with different porous patterns (hexagonal or grid) were fabricated from biocompatible acrylonitrile butadiene styrene, and polylactic acid to replace damaged VB and IVD, respectively. The VB scaffold is filled with gelatine-based semi-IPN hydrogel containing mesoporous silica nanoparticles loaded with two antibiotics, rifampicin and levofloxacin, to act against TB. The IVD scaffold incorporates a gelatin hydrogel loaded with regenerative platelet-rich plasma and anti-inflammatory simvastatin-loaded mixed nanomicelles. The obtained results confirmed the superior mechanical strength of both 3D-printed scaffolds and loaded hydrogels as compared to normal bone and IVD with high in vitro (cell proliferation, anti-inflammation and anti-TB), and in vivo biocompatibility profiles. Moreover, the custom-designed replacements have achieved the expected prolonged release of antibiotics up to 60 days. Given the promising study findings, the utilization of the developed drug-eluting scaffold system can be extrapolated to treat not only spinal TB but also to resolve diverse backbone/spine problems that need a critical surgical process including degenerative IVD and its consequences like atherosclerosis, sliding or spondylolisthesis and severe traumatic bone fracture.
Collapse
Affiliation(s)
- Sarah Yahia
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology 6th of October City 12578 Giza Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST) 6th of October Giza 12582 Egypt
| | - Monira G Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology 6th of October City 12578 Giza Egypt
| |
Collapse
|
6
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
7
|
Kumari N, Mohan C, Negi A. An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films. Polymers (Basel) 2023; 15:polym15081922. [PMID: 37112069 PMCID: PMC10145312 DOI: 10.3390/polym15081922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aims to explore the impact of pristine and surfactant-modified clays (montmorillonite, bentonite and vermiculite) on the thermomechanical properties of a poly (vinyl chloride) (PVC) polymer film. Initially, clay was modified by employing the ion exchange method. The modification of clay minerals was confirmed by the XRD pattern and thermogravimetric analysis. Pristine PVC polymer film and clay (montmorillonite, bentonite and vermiculite)-based PVC polymer composite films were fabricated using solution casting. The ideal dispersion of surfactant-modified organo-clays was observed in the PVC polymer matrix due to the hydrophobic nature of modified clays. The resultant pure polymer film and clay polymer composite film were characterized using XRD and TGA, and their mechanical properties were determined using a tensile strength tester and Durometer. From the XRD pattern, the intercalation of the PVC polymer film was found in the interlayer of organo-clay while exfoliation or partial intercalation and exfoliation were observed for pristine clay mineral-based PVC polymer composite films. Thermal analysis indicated a lowering of the decomposition temperature of the composite film as clay promotes the thermal degradation temperature of PVC. Improvement in the tensile strength and hardness was found to be more frequent in the case of organo-clay-based PVC polymer films, which is only due to the hydrophobic nature of organ clays, resulting in greater compatibility with the polymer matrix.
Collapse
Affiliation(s)
- Neeraj Kumari
- Department of Chemistry, SBAS, K. R. Mangalam University, Gurugram 122103, India
| | - Chandra Mohan
- Department of Chemistry, SBAS, K. R. Mangalam University, Gurugram 122103, India
| | - Arvind Negi
- Faculty of Pharmacy, DIT University, Dehradun 248009, India
| |
Collapse
|
8
|
Zhang W, Chen S, Chen S, Wang G, Han S, Guo J, Yang L, Hu J. Physical cross-linked aliphatic polycarbonate with shape-memory and self-healing properties. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
9
|
Wang Q, Li Y, Xiao J, Xia L. Intelligent Eucommia ulmoides Rubber/Ionomer Blends with Thermally Activated Shape Memory and Self-Healing Properties. Polymers (Basel) 2023; 15:1182. [PMID: 36904423 PMCID: PMC10006959 DOI: 10.3390/polym15051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Intelligent Eucommia ulmoides rubber (EUR) and ionomer Surlyn resin (SR) blends were prepared and studied in this manuscript. This is the first paper to combine EUR with SR to prepare blends with both the shape memory effect and self-healing capability. The mechanical, curing, thermal, shape memory and self-healing properties were studied by a universal testing machine, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. Experimental results showed that the increase in ionomer content not only improved mechanical and shape memory properties but also endowed the compounds with excellent self-healing ability under the appropriate environmental conditions. Notably, the self-healing efficiency of the composites reached 87.41%, which is much higher than the efficiency of other covalent cross-linking composites. Therefore, these novel shape memory and self-healing blends can expand the use of natural Eucommia ulmoides rubber, such as in special medical devices, sensors and actuators.
Collapse
Affiliation(s)
| | | | | | - Lin Xia
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24010814. [PMID: 36614258 PMCID: PMC9821376 DOI: 10.3390/ijms24010814] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The repair of severe bone defects is still a formidable clinical challenge, requiring the implantation of bone grafts or bone substitute materials. The development of three-dimensional (3D) bioprinting has received considerable attention in bone tissue engineering over the past decade. However, 3D printing has a limitation. It only takes into account the original form of the printed scaffold, which is inanimate and static, and is not suitable for dynamic organisms. With the emergence of stimuli-responsive materials, four-dimensional (4D) printing has become the next-generation solution for biological tissue engineering. It combines the concept of time with three-dimensional printing. Over time, 4D-printed scaffolds change their appearance or function in response to environmental stimuli (physical, chemical, and biological). In conclusion, 4D printing is the change of the fourth dimension (time) in 3D printing, which provides unprecedented potential for bone tissue repair. In this review, we will discuss the latest research on shape memory materials and 4D printing in bone tissue repair.
Collapse
|
11
|
Staszczak M, Nabavian Kalat M, Golasiński KM, Urbański L, Takeda K, Matsui R, Pieczyska EA. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles. Polymers (Basel) 2022; 14:4775. [PMID: 36365780 PMCID: PMC9658389 DOI: 10.3390/polym14214775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 10/04/2023] Open
Abstract
Multifunctional polyurethane shape memory polymers (PU-SMPs) have been of increasing interest in various applications. Here we report structure characterization, detailed methodology, and obtained results on the identification of functional properties of a thermoset PU-SMP (MP4510) with glass transition temperature of 45 °C. The stable, chemically crosslinked network of this thermoset PU-SMP results in excellent shape memory behavior. Moreover, the proximity of the activation temperature range of this smart polymer to room and body temperature enables the PU-SMP to be used in more critical industrial applications, namely fast-response actuators. The thermomechanical behavior of a shape memory polymer determines the engineering applications of the material. Therefore, investigation of the shape memory behavior of this class of commercial PU-SMP is of particular importance. The conducted structural characterization confirms its shape memory properties. The shape fixity and shape recovery properties were determined by a modified experimental approach, considering the polymer's sensitivity to external conditions, i.e., the temperature and humidity variations. Three thermomechanical cycles were considered and the methodology used is described in detail. The obtained shape fixity ratio of the PU-SMP was approximately 98% and did not change significantly in the subsequent cycles of the thermomechanical loading due to the stability of chemical crosslinks in the thermoset materials structure. The shape recovery was found to be approximately 90% in the first cycle and reached a value higher than 99% in the third cycle. The results confirm the effect of the thermomechanical training on the improvement of the PU-SMP shape recovery after the first thermomechanical cycle as well as the effect of thermoset material stability on the repeatability of the shape memory parameters quantities.
Collapse
Affiliation(s)
- Maria Staszczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Mana Nabavian Kalat
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Karol Marek Golasiński
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Leszek Urbański
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kohei Takeda
- Aichi Institute of Technology, Toyota City 470-0392, Japan
| | - Ryosuke Matsui
- Aichi Institute of Technology, Toyota City 470-0392, Japan
| | | |
Collapse
|
12
|
Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the development of gastroretentive drug delivery systems. J Mech Behav Biomed Mater 2021; 124:104814. [PMID: 34534845 DOI: 10.1016/j.jmbbm.2021.104814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
The present paper aims at developing an integrated experimental/computational approach towards the design of shape memory devices fabricated by hot-processing with potential for use as gastroretentive drug delivery systems (DDSs) and for personalized therapy if 4D printing is involved. The approach was tested on a plasticized poly(vinyl alcohol) (PVA) of pharmaceutical grade, with a glass transition temperature close to that of the human body (i.e., 37 °C). A comprehensive experimental analysis was conducted in order to fully characterize the PVA thermo-mechanical response as well as to provide the necessary data to calibrate and validate the numerical predictions, based on a thermo-viscoelastic constitutive model, implemented within a finite element framework. Particularly, a thorough thermal, mechanical, and shape memory characterization under different testing conditions and on different sample geometries was first performed. Then, a prototype consisting of an S-shaped device was fabricated, deformed in a temporary compact configuration and tested. Simulation results were compared with the results obtained from shape memory experiments carried out on the prototype. The proposed approach provided useful results and recommendations for the design of PVA-based shape memory DDSs.
Collapse
|
13
|
Abstract
Magnetic soft materials (MSMs) and magnetic shape memory polymers (MSMPs) have been some of the most intensely investigated newly developed material types in the last decade, thanks to the great and versatile potential of their innovative characteristic behaviors such as remote and nearly heatless shape transformation in the case of MSMs. With regard to a number of properties such as shape recovery ratio, manufacturability, cost or programming potential, MSMs and MSMPs may exceed conventional shape memory materials such as shape memory alloys or shape memory polymers. Nevertheless, MSMs and MSMPs have not yet fully touched their scientific-industrial potential, basically due to the lack of detailed knowledge on various aspects of their constitutive response. Therefore, MSMs and MSMPs have been developed slowly but their importance will undoubtedly increase in the near future. This review emphasizes the development of MSMs and MSMPs with a specific focus on the role of the magnetic particles which affect the shape memory recovery and programming behavior of these materials. In addition, the synthesis and application of these materials are addressed.
Collapse
|
14
|
Willemen NGA, Morsink MAJ, Veerman D, da Silva CF, Cardoso JC, Souto EB, Severino P. From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
|
16
|
Quiñonez PA, Ugarte-Sanchez L, Bermudez D, Chinolla P, Dueck R, Cavender-Word TJ, Roberson DA. Design of Shape Memory Thermoplastic Material Systems for FDM-Type Additive Manufacturing. MATERIALS 2021; 14:ma14154254. [PMID: 34361448 PMCID: PMC8347899 DOI: 10.3390/ma14154254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
The work presented here describes a paradigm for the design of materials for additive manufacturing platforms based on taking advantage of unique physical properties imparted upon the material by the fabrication process. We sought to further investigate past work with binary shape memory polymer blends, which indicated that phase texturization caused by the fused filament fabrication (FFF) process enhanced shape memory properties. In this work, two multi-constituent shape memory polymer systems were developed where the miscibility parameter was the guide in material selection. A comparison with injection molded specimens was also carried out to further investigate the ability of the FFF process to enable enhanced shape memory characteristics as compared to other manufacturing methods. It was found that blend combinations with more closely matching miscibility parameters were more apt at yielding reliable shape memory polymer systems. However, when miscibility parameters differed, a pathway towards the creation of shape memory polymer systems capable of maintaining more than one temporary shape at a time was potentially realized. Additional aspects related to impact modifying of rigid thermoplastics as well as thermomechanical processing on induced crystallinity are also explored. Overall, this work serves as another example in the advancement of additive manufacturing via materials development.
Collapse
Affiliation(s)
- Paulina A. Quiñonez
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Leticia Ugarte-Sanchez
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Diego Bermudez
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paulina Chinolla
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Rhyan Dueck
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Truman J. Cavender-Word
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - David A. Roberson
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.A.Q.); (L.U.-S.); (D.B.); (P.C.); (R.D.); (T.J.C.-W.)
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
- Correspondence: ; Tel.: +1-915-747-5924
| |
Collapse
|
17
|
Kiyani S, Taheri-Behrooz F, Asadi A. Analytical and finite element analysis of shape memory polymer for use in lumbar total disc replacement. J Mech Behav Biomed Mater 2021; 122:104689. [PMID: 34298452 DOI: 10.1016/j.jmbbm.2021.104689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
One-piece bearing is the latest type of total disc replacement (TDR) design that is used for the treatment of lumbar degenerative disc disease (DDD). Due to the unique properties of the shape memory polymers (SMPs), such as self-healing, shape-memory, adhesion control, and self-deployable ability, they may be a good candidate for the core of such a design. The purpose of the present study is to use an analytical method combined with a numerical analysis (finite element analysis (FEA)) to determine the mechanical responses of an SMP intervertebral disc (IVD) model, under pure torsion (axial rotation) and pure compression, two loading conditions to which natural intervertebral discs (IVDs) are subjected in vivo. We considered the SMP IVD model to be positioned at L4-L5 because most cases of lumbar DDD are reported at this segment. For the analytical method, an appropriate constitutive equation for an SMP was determined and, then, an analytical solution for the torsional response of a circular SMP IVD model, in a full cycle of stress-free strain recovery, was derived. The developed equations were implemented in finite element modeling to determine responses of the IVD disc model under pure torsion. Additionally, responses of the SMC IVD model, under a compressive load, and different conditions were determined. The analytical and FEA results were compared to experimental results give in the literature for intact lumbar spine segments as the core in a one-piece lumbar TDR. Based on this study, we suggest that SMPs can be used for TDR, as they are strong enough to bear the torsional and compressive loads that IVD is subjected through its life.
Collapse
Affiliation(s)
- Saeed Kiyani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Amir Asadi
- Manufacturing and Mechanical Engineering Technology, Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, 77843, United States; Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
18
|
Zhukova PA, Senatov FS, Zadorozhnyy MY, Chmelyuk NS, Zaharova VA. Polymer Composite Materials Based on Polylactide with a Shape Memory Effect for "Self-Fitting" Bone Implants. Polymers (Basel) 2021; 13:polym13142367. [PMID: 34301124 PMCID: PMC8309584 DOI: 10.3390/polym13142367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
The development of adaptive medical structures is one of the promising areas of bioengineering. Polymer composite materials based on polylactide (PLA) are interesting not only for their properties, such as biocompatibility, mechanical properties, biodegradation, and convenience of use, but also for demonstrating shape memory effect (SME). In this study, reducing the activation initiation temperature and the SME activation energy was achieved by forming a composite based on PLA containing 10% poly (ε-caprolactone) (PCL). The effect of the plasticizer on the structure, mechanical properties, and especially SME of the composite, was studied by DSC, SEM, FTIR spectroscopy, compression tests, and DMA. By varying the composition, the beginning of the SME activation was reached at 45 °C, and the apparent activation energy of the process decreased by 85 kJ/mol, ensuring safe and effective use of the material as a precursor for temporary self-fitting scaffolds for reconstructive surgery.
Collapse
Affiliation(s)
- P. A. Zhukova
- National University of Science and Technology “MISIS”, Leninskiy pr. 4, 119049 Moscow, Russia; (F.S.S.); (M.Y.Z.); (N.S.C.)
- Correspondence: ; Tel.: +7-901-753-21-40
| | - F. S. Senatov
- National University of Science and Technology “MISIS”, Leninskiy pr. 4, 119049 Moscow, Russia; (F.S.S.); (M.Y.Z.); (N.S.C.)
| | - M. Yu. Zadorozhnyy
- National University of Science and Technology “MISIS”, Leninskiy pr. 4, 119049 Moscow, Russia; (F.S.S.); (M.Y.Z.); (N.S.C.)
| | - N. S. Chmelyuk
- National University of Science and Technology “MISIS”, Leninskiy pr. 4, 119049 Moscow, Russia; (F.S.S.); (M.Y.Z.); (N.S.C.)
| | - V. A. Zaharova
- A.N. Kosygin Russian State University, St. Sadovnycheskaya 33/1, 115035 Moscow, Russia;
| |
Collapse
|
19
|
Jiang W, Mei H, Zhao S. Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine. J Biomed Nanotechnol 2021; 17:989-1006. [PMID: 34167615 DOI: 10.1166/jbn.2021.3078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, 3D bio-printing technology has developed rapidly and become an advanced bio-manufacturing technology. At present, 3D bio-printing technology has been explored in the fields of tissue engineering, drug testing and screening, regenerative medicine and clinical disease research and has achieved many research results. Among them, the application of 3D bio-printing technology in tissue engineering has been widely concerned by researchers, and it contributing many breakthroughs in the preparation of tissue engineering scaffolds. In the future, it is possible to print fully functional tissues or organs by using 3D bio-printing technology which exhibiting great potential development prospects in th applications of organ transplantation and human body implants. It is expected to solve thebiomedical problems of organ shortage and repair of damaged tissues and organs. Besides,3Dbio-printing technology will benefit human beings in more fields. Therefore, this paper reviews the current applications, research progresses and limitations of 3D bio-printing technology in biomedical and life sciences, and discusses the main printing strategies of 3D bio-printing technology. And, the research emphases, possible development trends and suggestions of the application of 3D bio-printing are summarized to provide references for the application research of 3D bio-printing.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| | - Haiying Mei
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| | - Shuyan Zhao
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| |
Collapse
|
20
|
Abstract
Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Affiliation(s)
- Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM) Bielefeld Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics Bielefeld University of Applied Sciences Bielefeld Germany
| |
Collapse
|
22
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
23
|
Daley SK, Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The profound interconnectedness of the sciences and technologies embodied in the Fourth Industrial Revolution is discussed in terms of the global role of natural products, and how that interplays with the development of sustainable and climate-conscious practices of cyberecoethnopharmacolomics within the Quintuple Helix for the promotion of a healthier planet and society.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Fused Filament Fabrication-4D-Printed Shape Memory Polymers: A Review. Polymers (Basel) 2021; 13:polym13050701. [PMID: 33652566 PMCID: PMC7956474 DOI: 10.3390/polym13050701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
Additive manufacturing (AM) is the process through which components/structures are produced layer-by-layer. In this context, 4D printing combines 3D printing with time so that this combination results in additively manufactured components that respond to external stimuli and, consequently, change their shape/volume or modify their mechanical properties. Therefore, 4D printing uses shape-memory materials that react to external stimuli such as pH, humidity, and temperature. Among the possible materials with shape memory effect (SME), the most suitable for additive manufacturing are shape memory polymers (SMPs). However, due to their weaknesses, shape memory polymer compounds (SMPCs) prove to be an effective alternative. On the other hand, out of all the additive manufacturing techniques, the most widely used is fused filament fabrication (FFF). In this context, the present paper aims to critically review all studies related to the mechanical properties of 4D-FFF materials. The paper provides an update state of the art showing the potential of 4D-FFF printing for different engineering applications, maintaining the focus on the structural integrity of the final structure/component.
Collapse
|
25
|
Antony GJM, Poulose P, Aruna ST, Shanuja SK, Gnanamani A, Suneetha YK, Raja S. Synthesis and Properties of a New Chitosan‐Based Shape Memory Polymer and its Composites. ChemistrySelect 2021. [DOI: 10.1002/slct.202004712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Priya Poulose
- Structural Technological Division CSIR-National Aerospace Laboratories Bangalore 560017 India
| | | | | | - Arumugam Gnanamani
- Microbiology Division CSIR- Central Leather Research Institute Chennai 600020
| | | | - Samikkannu Raja
- Structural Technological Division CSIR-National Aerospace Laboratories Bangalore 560017 India
| |
Collapse
|
26
|
Tao F, Ma S, Tao H, Jin L, Luo Y, Zheng J, Xiang W, Deng H. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment - A review. Carbohydr Polym 2020; 251:117063. [PMID: 33142615 DOI: 10.1016/j.carbpol.2020.117063] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Osteomyelitis is a complex disease in orthopedics mainly caused by bacterial pathogens invading bone or bone marrow. The treatment of osteomyelitis is highly difficult and it is a major challenge in orthopedic surgery. The long-term systemic use of antibiotics may lead to antibiotic resistance and has limited effects on eradicating local biofilms. Localized antibiotic delivery after surgical debridement can overcome the problem of antibiotic resistance and reduce systemic toxicity. Chitosan, a special cationic polysaccharide, is a product extracted from the deacetylation of chitin. It has numerous advantages, such as nontoxicity, biocompatibility, and biodegradability. Recently, chitosan has attracted significant attention in bacterial inhibition and drug delivery. Because chitosan contains many functional bioactive groups conducive to chemical reaction and modification, some chitosan-based biomaterials have been applied as the local antibiotic delivery systems in the treatment of osteomyelitis. This review aims to introduce recent advances in the biomedical applications of chitosan-based drug delivery systems in osteomyelitis treatment and to highlight the perspectives for further studies.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Sijia Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jian Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|