1
|
Bezmalinovic A, Navarrete Á, Latorre M, Celentano D, Herrera EA, García-Herrera C. Characterization of mechanical damage and viscoelasticity on aortas from guinea pigs subjected to hypoxia. Sci Rep 2025; 15:13447. [PMID: 40251229 PMCID: PMC12008416 DOI: 10.1038/s41598-025-96086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
To reliably assess the rupture risk of the aorta, along with the hazardousness of cardiovascular diseases and other extreme conditions or the effect of possible treatments, it is necessary to understand the influence of damage mechanisms along with the frequency and rate of mechanical loads. In particular, hypobaric hypoxia, an oxygen deficiency in the organism due to its low atmospheric partial pressure, is reported to alter the mechanical properties of blood vessels. In this work, we characterized the passive mechanical response of the aorta, seeking to capture the influence of hypoxia on their elastic, damage, and viscoelastic properties under ex-vivo conditions. The mechanical behavior of the aortic wall is described using an anisotropic hyperelastic model including two fiber families with asymmetric dispersion, along with an anisotropic damage model and an orthotropic viscoelastic model based on a reverse multiplicative decomposition of the deformation gradient. The constitutive model was experimentally calibrated from uniaxial-relaxation and biaxial-tensile test results, previously performed on thoracic aorta samples of guinea pigs. A group of guinea pigs subjected to hypoxia was contrasted with a normoxic (control) group. Cyclic-load stages of uniaxial tests were used to assess dissipation. Once the constitutive model was implemented and calibrated, its performance was evaluated via the numerical simulation of a bulge pressurization test to estimate energy dissipation and pressure associated with the onset of damage. Results indicated that hypoxia does not alter the visco-hyperelastic or damage behavior of the aorta. Besides, the pressure delivered by bulge-test simulations at the onset of damage on collagen fibers was representative of an arterial hypertensive condition.
Collapse
Affiliation(s)
- Alejandro Bezmalinovic
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Navarrete
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Diego Celentano
- Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio A Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio García-Herrera
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Navarrete Á, Inostroza M, Utrera A, Bezmalinovic A, González-Candia A, Rivera E, Godoy-Guzmán C, Herrera EA, García-Herrera C. Biomechanical effects of hemin and sildenafil treatments on the aortic wall of chronic-hypoxic lambs. Front Bioeng Biotechnol 2024; 12:1406214. [PMID: 39021365 PMCID: PMC11252865 DOI: 10.3389/fbioe.2024.1406214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction: Gestation under chronic hypoxia causes pulmonary hypertension, cardiovascular remodeling, and increased aortic stiffness in the offspring. To mitigate the neonatal cardiovascular risk, pharmacological treatments (such as hemin and sildenafil) have been proposed to improve pulmonary vasodilation. However, little is known about the effects of these treatments on the aorta. Therefore, we studied the effect of hemin and sildenafil treatments in the aorta of lambs gestated and raised at highlands, thereby subjected to chronic hypoxia. Methods: Several biomechanical tests were conducted in the descending thoracic aorta (DTA) and the distal abdominal aorta (DAA), assessing 3 groups of study of hypoxic animals: non-treated (Control) and treated either with hemin or sildenafil. Based on them, the stiffness level has been quantified in both zones, along with the physiological strain in the unloaded aortic duct. Furthermore, a morphological study by histology was conducted in the DTA. Results: Biomechanical results indicate that treatments trigger an increment of axial pre-stress and circumferential residual stress levels in DTA and DAA of lambs exposed to high-altitude chronic hypoxia, which reveals a vasodilatation improvement along with an anti-hypertensive response under this characteristic environmental condition. In addition, histological findings do not reveal significant differences in either structure or microstructural content. Discussion: The biomechanics approach emerges as a valuable study perspective, providing insights to explain the physiological mechanisms of vascular function. According to established results, alterations in the function of the aortic wall may not necessarily be explained by morphostructural changes, but rather by the characteristic mechanical state of the microstructural components that are part of the studied tissue. In this sense, the reported biomechanical changes are beneficial in mitigating the adverse effects of hypobaric hypoxia exposure during gestation and early postnatal life.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Matías Inostroza
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Alejandro Bezmalinovic
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | | | - Eugenio Rivera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Carlos Godoy-Guzmán
- Laboratorio de Ingeniería de Tejidos, Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio García-Herrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
3
|
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023; 11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
4
|
Inostroza M, Utrera A, García-Herrera CM, Rivera E, Celentano DJ, Herrera EA. Analysis of the geometrical influence of ring-opening samples on arterial circumferential residual stress reconstruction. Front Bioeng Biotechnol 2023; 11:1233939. [PMID: 37675404 PMCID: PMC10477989 DOI: 10.3389/fbioe.2023.1233939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
This work consists of analyzing the impact of geometrical features (thickness and curvature) on the estimation of circumferential residual stresses in arteries. For this purpose, a specific sample of lamb abdominal artery is chosen for analysis and, through computational tools based on Python libraries, the stress-free geometry is captured after the ring opening test. Numerical simulations are then used to reconstruct the sample in order to estimate the circumferential residual stresses. Then, four stress-free geometry models are analyzed: an ideal geometry, i.e., constant curvature and thickness; a constant curvature and variable thickness geometry; a variable curvature and constant thickness geometry; and a variable curvature and thickness geometry. The numerical results show that models perform well from a geometric point of view, where the most different feature was the closed outer perimeter that differs about 14% from the closed real sample. As far as residual stress is concerned, differences up to 198% were found in more realistic models taking a constant curvature and thickness model as reference. Thus, the analysis of a realistic geometry with highly variable curvature and thickness can introduce, compared to an idealized geometry, significant differences in the estimation of residual stresses. This could indicate that the characterization of arterial residual stresses is not sufficient when considering only the opening angle and, therefore, it is also necessary to incorporate more geometrical variables.
Collapse
Affiliation(s)
- Matías Inostroza
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Utrera A, Navarrete Á, González-Candia A, García-Herrera C, Herrera EA. Biomechanical and structural responses of the aorta to intermittent hypobaric hypoxia in a rat model. Sci Rep 2022; 12:3790. [PMID: 35260626 PMCID: PMC8904842 DOI: 10.1038/s41598-022-07616-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
High altitude hypoxia is a condition experienced by diverse populations worldwide. In addition, several jobs require working shifts where workers are exposed to repetitive cycles of hypobaric hypoxia and normobaric normoxia. Currently, few is known about the biomechanical cardiovascular responses of this condition. In the present study, we investigate the cycle-dependent biomechanical effects of intermittent hypobaric hypoxia (IHH) on the thoracic aorta artery, in terms of both structure and function. To determine the vascular effects of IHH, functional, mechanical and histological approaches were carried out in the thoracic aorta artery, using uniaxial, pre-stretch, ring opening, myography, and histological tests. Three groups of rats were established: control (normobaric normoxia, NN), 4-cycles of intermittent hypoxia (short-term intermittent hypobaric hypoxia, STH), and 10-cycles of intermittent hypoxia (long-term intermittent hypobaric hypoxia, LTH). The pre-stretch and ring opening tests, aimed at quantifying residual strains of the tissues in longitudinal and circumferential directions, showed that the hypoxia condition leads to an increase in the longitudinal stretch and a marked decrease of the circumferential residual strain. The uniaxial mechanical tests were used to determine the elastic properties of the tissues, showing that a general stiffening process occurs during the early stages of the IH (STH group), specially leading to a significative increase in the high strain elastic modulus ([Formula: see text]) and an increasing trend of low strain elastic modulus ([Formula: see text]). In contrast, the LTH group showed a more control-like mechanical behavior. Myography test, used to assess the vasoactive function, revealed that IH induces a high sensitivity to vasoconstrictor agents as a function of hypoxic cycles. In addition, the aorta showed an increased muscle-dependent vasorelaxation on the LTH group. Histological tests, used to quantify the elastic fiber, nuclei, and geometrical properties, showed that the STH group presents a state of vascular fibrosis, with a significant increase in elastin content, and a tendency towards an increase in collagen fibers. In addition, advanced stages of IH (LTH), showed a vascular remodeling effect with a significant increase of internal and external diameters. Considering all the multidimensional vascular effects, we propose the existence of a long-term passive adaptation mechanism and vascular dysfunction as cycle-dependent effects of intermittent exposures to hypobaric hypoxia.
Collapse
Affiliation(s)
- Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Rivera E, Canales C, Pacheco M, García-Herrera C, Macías D, Celentano DJ, Herrera EA. Biomechanical characterization of the passive response of the thoracic aorta in chronic hypoxic newborn lambs using an evolutionary strategy. Sci Rep 2021; 11:13875. [PMID: 34230509 PMCID: PMC8260639 DOI: 10.1038/s41598-021-93267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The present study involves experiments and modelling aimed at characterizing the passive structural mechanical behavior of the chronic hypoxic lamb thoracic aorta, whose gestation, birth and postnatal period were carried at high altitude (3600 masl). To this end, the mechanical response was studied via tensile and pressurization tests. The tensile and pressurization tests measurements were used simultaneously to calibrate the material parameters of the Gasser-Holzapfel-Ogden (GHO) hyperelasctic anisotropic constitutive model through an analytical-numerical optimization procedure solved with an evolutionary strategy that guarantees a stable response of the model. The model and procedure of calibration adequately adjust to the material behavior in a wide deformation range with an appropriate physical description. The results of this study predict the mechanical response of the lamb thoracic aorta under generalized loading states like those that can occur in physiological conditions and/or in systemic arterial hypertension. Finally, the novel use of the evolutionary strategy, together with the set of experiments and tools used in this study, provide a robust alternative to validate biomechanical characterizations.
Collapse
Affiliation(s)
- Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile.
| | - Claudio Canales
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Matías Pacheco
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Demetrio Macías
- ICD, P2MN, L2n, Université de Technologie de Troyes, ERL 7004, CNRS, Troyes, France
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, ICBM, Universidad de Chile, Av. Salvador 486, Santiago de Chile, Chile
| |
Collapse
|
7
|
Implanting melatonin at lambing enhances lamb growth and maintains high fat content in milk. Vet Res Commun 2021; 45:181-188. [PMID: 34075527 DOI: 10.1007/s11259-021-09799-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Three experiments were designed to study the effects of melatonin implantation of ewes and lambs after lambing on the growth of lambs and milk quality throughout lactation. In experiment 1, 53 lambs either did (n = 28) or did not (n = 25) receive a subcutaneous 18-mg melatonin implant at the base of the left ear. In experiment 2, 55 lambs and their mothers either did (lambs: n = 28; ewes: n = 15) or did not (lambs: n = 27; ewes: n = 16) receive a melatonin implant. Milk samples were collected at 15, 30, and 45 d after lambing. In experiment 3, 16 lambs were separated from their mothers 24 h after birth, moved to an artificial rearing unit, and either did (n = 9) or did not (n = 7) receive a melatonin implant. In the three experiments, implants were inserted 24 h after lambing, and lambs were weighed (LW) weekly until weaning (for each experiment, 7, 6, and 5 wk., respectively). Average daily gains (ADG) from birth to weaning were calculated. Melatonin treatment of lambs did not have a significant effect on LW at weaning or ADG, but lambs reared by implanted ewes in experiment 2 presented higher (P < 0.05) LW (±S.E.M.) at weaning (implanted: 13.61 ± 0.51; non-implanted: 12.09 ± 0.57 kg) and ADG (implanted: 221.00 ± 10.45; non-implanted: 189.92 ± 12.44 g/d) than did lambs reared by control ewes. At day 45 of lactation, milk fat and total solid content were higher (P < 0.05) in implanted ewes than they were in control ewes. Groups did not differ significantly in the protein and lactose content of their milk. In conclusion, melatonin treatment of ewes at lambing induced a high growth rate of their lambs and increased the fat content of the milk; however, the direct treatment with melatonin of the lambs at birth did not have an effect in their growth rate.
Collapse
|
8
|
García-Herrera CM, Cuevas ÁA, Celentano DJ, Navarrete Á, Aranda P, Herrera E, Uribe S. Analysis of the passive biomechanical behavior of a sheep-specific aortic artery in pulsatile flow conditions. Comput Methods Biomech Biomed Engin 2021; 24:1228-1241. [PMID: 33475015 DOI: 10.1080/10255842.2021.1872549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, a novel numerical-experimental procedure is proposed, through the use of the Cardiac Simulation Test (CST), device that allows the exposure of the arterial tissue to in-vitro conditions, mimicking cardiac cycles generated by the heart. The main goal is to describe mechanical response of the arterial wall under physiological conditions, when it is subjected to a variable pressure wave over time, which causes a stress state affecting the biomechanical behavior of the artery wall. In order to get information related to stress and strain states, numerical simulation via finite element method, is performed under a condition of systolic and diastolic pressure. The description of this methodological procedure is performed with a sample corresponding to a sheep aorta without cardiovascular pathologies. There are two major findings: the evaluation of the mechanical properties of the sheep aorta through the above-mentioned tests and, the numerical simulation of the mechanical response under the conditions present in the CST. The results state that differences between numerical and experimental circumferential stretch in diastole and systole to distinct zones studied do not exceed 1%. However, greater discrepancies can be seen in the distensibility and incremental modulus, two main indicators, which are in the order of 30%. In addition, numerical results determine an increase of the principal maximum stress and strain between the case of systolic and diastolic pressure, corresponding to 31.1% and 14.9% for the stress and strain measurement respectively; where maximum values of these variables are located in the zone of the ascending aorta and the aortic arch.
Collapse
Affiliation(s)
- Claudio M García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Álvaro A Cuevas
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica, Santiago, Chile.,Radiology department and biomedical imaging center, school of medicine, Pontificia Universidad Católica de Chile
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Aranda
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Emilio Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sergio Uribe
- Radiology department and biomedical imaging center, school of medicine, Pontificia Universidad Católica de Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
| |
Collapse
|
9
|
Navarrete A, Chen Z, Aranda P, Poblete D, Utrera A, García-Herrera CM, Gonzalez-Candia A, Beñaldo FA, Ebensperger G, Reyes RV, Herrera EA, Llanos AJ. Study of the Effect of Treatment With Atrial Natriuretic Peptide (ANP) and Cinaciguat in Chronic Hypoxic Neonatal Lambs on Residual Strain and Microstructure of the Arteries. Front Bioeng Biotechnol 2020; 8:590488. [PMID: 33244466 PMCID: PMC7683788 DOI: 10.3389/fbioe.2020.590488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, we assessed the effects of Atrial Natriuretic Peptide (ANP) and Cinaciguat, as experimental medicines to treat neonatal lambs exposed to chronic hypoxic conditions. To compare the different treatments, the mechanical responses of aorta, carotid, and femoral arterial walls were analyzed by means of axial pre-stretch and ring-opening tests, through a study with n = 6 animals for each group analyzed. The axial pre-stretch test measures the level of shortening in different zones of the arteries when extracted from lambs, while the ring-opening test is used to quantify the degree of residual circumferential deformation in a given zone of an artery. In addition, histological studies were carried out to measure elastin, collagen, and smooth muscle cell (SMC) nuclei densities, both in control and treated groups. The results show that mechanical response is related with histological results, specifically in the proximal abdominal aorta (PAA) and distal carotid zones (DCA), where the cell nuclei content is related to a decrease of residual deformations. The opening angle and the elastic fibers of the aorta artery were statistically correlated (p < 0.05). Specifically, in PAA zone, there are significant differences of opening angle and cell nuclei density values between control and treated groups (p-values to opening angle: Control-ANP = 2 ⋅ 10-2, Control-Cinaciguat = 1 ⋅ 10-2; p-values to cell nuclei density: Control-ANP = 5 ⋅ 10-4, Control-Cinaciguat = 2 ⋅ 10-2). Respect to distal carotid zone (DCA), significant differences between Control and Cinaciguat groups were observed to opening angle (p-value = 4 ⋅ 10-2), and cell nuclei density (p-value = 1 ⋅ 10-2). Our findings add evidence that medical treatments may have effects on the mechanical responses of arterial walls and should be taken into account when evaluating the complete medical outcome.
Collapse
Affiliation(s)
- Alvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Zhuoming Chen
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Aranda
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniel Poblete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Alejandro Gonzalez-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Felipe A. Beñaldo
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - German Ebensperger
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Roberto V. Reyes
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Anibal J. Llanos
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|