1
|
Mallinos A, Jones K. The Double-Edged Sword: Anterior Cruciate Ligament Reconstructions on Adolescent Patients-Growth Plate Surgical Challenges and Future Considerations. J Clin Med 2024; 13:7522. [PMID: 39768445 PMCID: PMC11728393 DOI: 10.3390/jcm13247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
The management of anterior cruciate ligament (ACL) injuries in pediatric patients presents unique challenges due to the presence of open growth plates in the proximal tibia and distal femur. Delaying ACL reconstruction until skeletal maturity may protect the physes but increases the risk of secondary injuries, such as meniscal tears and chondral damage, due to prolonged joint instability. Conversely, early surgical intervention restores knee stability but raises concerns about potential growth disturbances, including leg-length discrepancies and angular deformities. This narrative review examines current approaches to pediatric ACL management, highlighting the risks and benefits of both conservative and surgical treatments. Additionally, it explores the role of finite element modeling (FEM) as an innovative tool for pre-surgical planning. FEM offers a non-invasive method to optimize surgical techniques, minimize iatrogenic damage to growth plates, and improve patient outcomes. Despite its potential, FEM remains underutilized in clinical practice. This review underscores the need to integrate FEM into pediatric ACL care to enhance surgical precision, reduce complications, and improve long-term quality of life for young patients. By synthesizing available evidence, this review aims to provide clinicians with a comprehensive framework for decision-making and identify future directions for research in pediatric ACL reconstruction.
Collapse
Affiliation(s)
- Alexandria Mallinos
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44307, USA
| | - Kerwyn Jones
- Department of Orthopedics, Akron Children’s Hospital, Akron, OH 44307, USA;
| |
Collapse
|
2
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
3
|
Berni M, Marchiori G, Baleani M, Giavaresi G, Lopomo NF. Biomechanics of the Human Osteochondral Unit: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1698. [PMID: 38612211 PMCID: PMC11012636 DOI: 10.3390/ma17071698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues' recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art-up to 2022-about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints' OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | | |
Collapse
|
4
|
Ead M, Wu K, Jar C, Duke K, Jomha N, Westover L. Mechanical Properties of Fresh, Frozen and Vitrified Articular Cartilage. Ann Biomed Eng 2023; 51:2001-2012. [PMID: 37129781 DOI: 10.1007/s10439-023-03220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Osteochondral allograft transplantations are typically used to treat focal articular cartilage injuries where the damaged cartilage is replaced with fresh cadaveric donor grafts. Despite the notable success rate of this procedure, it is limited by fresh donor tissue availability which can only be stored for approximately 28 days after harvest. Vitrification, a form of cryopreservation, can extend the storage time of cartilage. Although it has shown to preserve chondrocyte viability, its effect on the mechanical properties of the tissue has not been thoroughly investigated. Therefore, in this study, the mechanical properties of fresh, frozen, and vitrified articular cartilage were evaluated through unconfined compression testing. Results showed that the peak modulus, equilibrium modulus, and relaxation time constants of the vitrified and control samples (tested one day after harvest) were similar and higher than the fresh (tested 21 days after harvest) and frozen samples. This demonstrated that vitrification does not adversely affect the mechanical properties of cartilage and can be used as an alternative to fresh allografts which are limited by storage time. The fresh samples also had inferior mechanical properties compared to the control samples suggesting that vitrified allografts could potentially improve clinical outcomes in addition to increasing donor tissue availability.
Collapse
Affiliation(s)
- Maha Ead
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| | - Kezhou Wu
- Department of Surgery, University of Alberta, Edmonton, Canada
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chester Jar
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Kajsa Duke
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Nadr Jomha
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
6
|
Chokhandre S, Schwartz A, Klonowski E, Landis B, Erdemir A. Open Knee(s): A Free and Open Source Library of Specimen-Specific Models and Related Digital Assets for Finite Element Analysis of the Knee Joint. Ann Biomed Eng 2023; 51:10-23. [PMID: 36104640 PMCID: PMC9832097 DOI: 10.1007/s10439-022-03074-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
There is a growing interest in the use of virtual representations of the knee for musculoskeletal research and clinical decision making, and to generate digital evidence for design and regulation of implants. Accessibility to previously developed models and related digital assets can dramatically reduce barriers to entry to conduct simulation-based studies of the knee joint and therefore help accelerate scientific discovery and clinical innovations. Development of models for finite element analysis is a demanding process that is both time consuming and resource intensive. It necessitates expertise to transform raw data to reliable virtual representations. Modeling and simulation workflow has many processes such as image segmentation, surface geometry generation, mesh generation and finally, creation of a finite element representation with relevant loading and boundary conditions. The outcome of the workflow is not only the end-point knee model but also many other digital by-products. When all of these data, derivate assets, and tools are freely and openly accessible, researchers can bypass some or all the steps required to build models and focus on using them to address their research goals. With provenance to specimen-specific anatomical and mechanical data and traceability of digital assets throughout the whole lifecycle of the model, reproducibility and credibility of the modeling practice can be established. The objective of this study is to disseminate Open Knee(s), a cohort of eight knee models (and relevant digital assets) for finite element analysis, that are based on comprehensive specimen-specific imaging data. In addition, the models and by-products of modeling workflows are described along with model development strategies and tools. Passive flexion served as a test simulation case, demonstrating an end-user application. Potential roadmaps for reuse of Open Knee(s) are also discussed.
Collapse
Affiliation(s)
- Snehal Chokhandre
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ariel Schwartz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ellen Klonowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Benjamin Landis
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
8
|
Chawla D, Han G, Eriten M, Henak CR. Microindentation Technique to Create Localized Cartilage Microfractures. Curr Protoc 2021; 1:e280. [PMID: 34670019 DOI: 10.1002/cpz1.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Articular cartilage is a multiphasic, anisotropic, and heterogeneous material. Although cartilage possesses excellent mechanical and biological properties, it can undergo mechanical damage, resulting in osteoarthritis. Thus, it is important to understand the microscale failure behavior of cartilage in both basic science and clinical contexts. Determining cartilage failure behavior and mechanisms provides insight for improving treatment strategies to delay osteoarthritis initiation or progression and can also enhance the value of cartilage as bioinspiration for material fabrication. To investigate microscale failure behavior, we developed a protocol to initiate fractures by applying a microindentation technique using a well-defined tip geometry that creates localized cracks across a range of loading rates. The protocol includes extracting the tissue from the joint, preparing samples, and microfracture. Various aspects of the experiment, such as loading profile and solvent, can be adjusted to mimic physiological or pathological conditions and thereby further clarify phenomena underlying articular cartilage failure. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Harvesting and dissection of the joint surfaces Basic Protocol 2: Preparation of samples for microindentation and fatigue testing Basic Protocol 3: Microfracture using microindentation Basic Protocol 4: Crack propagation under cyclic loading.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Cao Y, Cheng P, Sang S, Xiang C, An Y, Wei X, Shen Z, Zhang Y, Li P. Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regen Biomater 2021; 8:rbab019. [PMID: 34211731 PMCID: PMC8240606 DOI: 10.1093/rb/rbab019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
Cartilage has limited self-repair ability due to its avascular, alymphatic and aneural features. The combination of three-dimensional (3D) printing and tissue engineering provides an up-and-coming approach to address this issue. Here, we designed and fabricated a tri-layered (superficial layer (SL), middle layer (ML) and deep layer (DL)) stratified scaffold, inspired by the architecture of collagen fibers in native cartilage tissue. The scaffold was composed of 3D printed depth-dependent gradient poly(ε-caprolactone) (PCL) impregnated with methacrylated alginate (ALMA), and its morphological analysis and mechanical properties were tested. To prove the feasibility of the composite scaffolds for cartilage regeneration, the viability, proliferation, collagen deposition and chondrogenic differentiation of embedded rat bone marrow mesenchymal stem cells (BMSCs) in the scaffolds were assessed by Live/dead assay, CCK-8, DNA content, cell morphology, immunofluorescence and real-time reverse transcription polymerase chain reaction. BMSCs-loaded gradient PCL/ALMA scaffolds showed excellent cell survival, cell proliferation, cell morphology, collagen II deposition and hopeful chondrogenic differentiation compared with three individual-layer scaffolds. Hence, our study demonstrates the potential use of the gradient PCL/ALMA construct for enhanced cartilage tissue engineering.
Collapse
Affiliation(s)
- Yanyan Cao
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, MicroNano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.,College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Peng Cheng
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shengbo Sang
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, MicroNano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chuan Xiang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhizhong Shen
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, MicroNano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yixia Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|