1
|
In silico assessment of missense point mutations on human cathelicidin LL-37. J Mol Graph Model 2023; 118:108368. [PMID: 36335830 DOI: 10.1016/j.jmgm.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cathelicidin antimicrobial peptides are a diverse family of cationic amphipathic peptides with multiple activities. In humans, cathelicidin LL-37 is one of the main host defense peptides with a remarkable medical and biotechnological potential. Deregulation of LL-37 expression has been associated with inflammatory diseases. However the effects of point mutations driven by single nucleotide polymorphisms (SNPs) on LL-37 are unknown. Here we applied an array of computational tools to investigate the effects of such mutations on LL-37 structure and activity. Due to the fact that, on cathelicidins, the prodomain is more conserved than the mature peptide, the SNP effect predictions were biased and, overall, resulted in neutral effects; and due to the slight changes in physicochemical properties, the antimicrobial predictions indicated the maintenance of such activity. Nonetheless, R07P, R07W, R29Q, R29W mutations reduced the peptide net charge, which in turn could result in less active LL-37 variants. Molecular dynamics data indicated that R07Q and N30Y mutations altered the LL-37 structure, leading to potential deleterious effects. In addition, the helix dipole is altered in G03A, R07P, R07W and L31P mutations, which could also alter the antimicrobial activity. Our results indicated that despite the mutations did not alter the residues from LL-37 active core, they could influence the antimicrobial activity and consequently, could be involved in inflammatory diseases.
Collapse
|
2
|
Functional and Structural Impact of Deleterious Missense Single Nucleotide Polymorphisms in the NR3C1, CYP3A5, and TNF-α Genes: An In Silico Analysis. Biomolecules 2022; 12:biom12091307. [PMID: 36139147 PMCID: PMC9496109 DOI: 10.3390/biom12091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Human diseases are generally influenced by SNPs (single nucleotide polymorphisms). The mutations in amino acid residues generated by deleterious SNPs contribute to the structural and functional diversity of the encoded protein. Tumor necrosis factor-α (TNF-α), Glucocorticoid receptor gene (NR3C1), and Cytochrome P450 3A5 (CYP3A5) play a key role in glucocorticoid resistance susceptibility in humans. Possible causative mutations could be used as therapeutic targets and diagnostic markers for glucocorticoid resistance. This study evaluated the missense SNPs of TNF-α, NR3C1, and CYP3A5 to predict their impact on amino acid changes, protein interaction, and functional stability. The protein sequence of dbSNP was obtained and used online in silico method to screen deleterious mutants for the in silico analysis. In the coding regions of TNF-α, NR3C1, and CYP3A5, 14 deleterious mutations were discovered. The protein functional and stability changes in the amino acid between native and mutant energy were identified by analyzing the changes in the hydrogen bonding of these mutants from native, which were all measured using Swiss PDB and PyMOL. F446S and R439K had the highest root-mean-square deviation (RMSD) values among the 14 deleterious mutants. Additionally, the conserved region of amino acid protein interaction was analyzed. This study could aid in the discovery of new detrimental mutations in TNF-α, NR3C1, and CYP3A5, as well as the development of long-term therapy for corticosteroid resistance in several inflammatory diseases. However, more research into the deleterious mutations of the TNF-α, NR3C1, and CYP3A5 genes is needed to determine their role in corticosteroid resistance.
Collapse
|
3
|
Locantore P, Paragliola RM, Cera G, Novizio R, Maggio E, Ramunno V, Corsello A, Corsello SM. Genetic Basis of ACTH-Secreting Adenomas. Int J Mol Sci 2022; 23:ijms23126824. [PMID: 35743266 PMCID: PMC9224284 DOI: 10.3390/ijms23126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cushing's disease represents 60-70% of all cases of Cushing's syndrome, presenting with a constellation of clinical features associated with sustained hypercortisolism. Molecular alterations in corticotrope cells lead to the formation of ACTH-secreting adenomas, with subsequent excessive production of endogenous glucocorticoids. In the last few years, many authors have contributed to analyzing the etiopathogenesis and pathophysiology of corticotrope adenomas, which still need to be fully clarified. New molecular modifications such as somatic mutations of USP8 and other genes have been identified, and several case series and case reports have been published, highlighting new molecular alterations that need to be explored. To investigate the current knowledge of the genetics of ACTH-secreting adenomas, we performed a bibliographic search of the recent scientific literature to identify all pertinent articles. This review presents the most recent updates on somatic and germline mutations underlying Cushing's disease. The prognostic implications of these mutations, in terms of clinical outcomes and therapeutic scenarios, are still debated. Further research is needed to define the clinical features associated with the different genotypes and potential pharmacological targets.
Collapse
Affiliation(s)
- Pietro Locantore
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Rosa Maria Paragliola
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
- Correspondence:
| | - Gianluca Cera
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Roberto Novizio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Ettore Maggio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Vittoria Ramunno
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Andrea Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
| | - Salvatore Maria Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy; (P.L.); (G.C.); (R.N.); (E.M.); (V.R.); (A.C.); (S.M.C.)
- Unicamillus, Saint Camillus International University of Medical Sciences, via di S. Alessandro 10, I-00131 Rome, Italy
| |
Collapse
|
4
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Ferreira KCDV, Fialho LF, Franco OL, de Alencar SA, Porto WF. Benchmarking analysis of deleterious SNP prediction tools on CYP2D6 enzyme. Chem Biol Drug Des 2020; 96:984-994. [DOI: 10.1111/cbdd.13676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Karla Cristina do Vale Ferreira
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| | - Leonardo Ferreira Fialho
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| | - Octávio Luiz Franco
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
- S‐Inova Biotech Pós Graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande Brazil
| | - Sérgio Amorim de Alencar
- Programa de Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| | - William Farias Porto
- S‐Inova Biotech Pós Graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande Brazil
- Porto Reports Brasília Brazil
| |
Collapse
|
6
|
Sbiera S, Kunz M, Weigand I, Deutschbein T, Dandekar T, Fassnacht M. The New Genetic Landscape of Cushing's Disease: Deubiquitinases in the Spotlight. Cancers (Basel) 2019; 11:cancers11111761. [PMID: 31717455 PMCID: PMC6895825 DOI: 10.3390/cancers11111761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cushing’s disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD’s genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5%) and USP48 (13.3%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5% and 7%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.
Collapse
Affiliation(s)
- Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, D-97080 Würzburg, Germany; (I.W.); (T.D.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, D-97080 Würzburg, Germany
- Correspondence:
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, D-91058 Erlangen, Germany;
| | - Isabel Weigand
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, D-97080 Würzburg, Germany; (I.W.); (T.D.); (M.F.)
| | - Timo Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, D-97080 Würzburg, Germany; (I.W.); (T.D.); (M.F.)
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, D-97074 Würzburg, Germany;
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, D-97080 Würzburg, Germany; (I.W.); (T.D.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|