1
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
2
|
Aziz MT, Gill WA, Khosa MK, Jamil S, Janjua MRSA. Adsorption of molecular hydrogen (H 2) on a fullerene (C 60) surface: insights from density functional theory and molecular dynamics simulation. RSC Adv 2024; 14:36546-36556. [PMID: 39553268 PMCID: PMC11565422 DOI: 10.1039/d4ra06171c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Understanding the adsorption behavior of molecular hydrogen (H2) on solid surfaces is essential for a variety of technological applications, including hydrogen storage and catalysis. We examined the adsorption of H2 (∼2800 configurations) molecules on the surface of fullerene (C60) using a combined approach of density functional theory (DFT) and molecular dynamics (MD) simulations with an improved Lennard-Jones (ILJ) potential force field. First, we determined the adsorption energies and geometries of H2 on the C60 surface using DFT calculations. Calculations of the electronic structure help elucidate underlying mechanisms administrating the adsorption process by revealing how H2 molecules interact with the C60 surface. In addition, molecular dynamics simulations were performed to examine the dynamic behavior of H2 molecules on the C60 surface. We accurately depicted the intermolecular interactions between H2 and C60, as well as the collective behavior of adsorbed H2 molecules, using an ILJ potential force field. Our findings indicate that H2 molecules exhibit robust physisorption on the C60 surface, forming stable adsorption structures with favorable adsorption energies. Calculated adsorption energies and binding sites are useful for designing efficient hydrogen storage materials and comprehending the nature of hydrogen's interactions with carbon-based nanostructures. This research provides a comprehensive understanding of H2 adsorption on the C60 surface by combining the theoretical framework of DFT calculations with the dynamical perspective of MD simulations. The outcomes of the present research provide new insights into the fields of hydrogen storage and carbon-based nanomaterials, facilitating the development of efficient hydrogen storage systems and advancing the use of molecular hydrogen in a variety of applications.
Collapse
Affiliation(s)
- Muhammad Tariq Aziz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Waqas Amber Gill
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Muhammad Kaleem Khosa
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | | |
Collapse
|
3
|
Mashayekh E, Ghiasi ZNK, Bhia I, Khorrami ZA, Malekahmadi O, Bhia M, Malekmohammadi S, Ertas YN. Metal-Organic Frameworks for Cisplatin Delivery to Cancer Cells: A Molecular Dynamics Simulation. ACS OMEGA 2024; 9:19627-19636. [PMID: 38708264 PMCID: PMC11064028 DOI: 10.1021/acsomega.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are utilized as nanocarriers to enhance the efficiency of chemotherapy drugs, including cisplatin, which exhibit limitations such as side effects and resistance mechanisms. To evaluate the role of MOFs, we employed a molecular dynamics simulation, which, unlike other experiments, is cost-effective, less dangerous, and provides accurate results. Furthermore, we conducted molecular docking simulations to understand the interaction between cisplatin and MOF, as well as their internal interactions and how they bind to each other. Cisplatin and MOF molecules were parametrized using the Avogadro software and x2top command in GROMACS 5.1.2 and optimized by CP2K software; the Charmm-GUI site parametrized the cell cancer membrane. Three molecular dynamics simulations were conducted in four stages at various pHs, followed by simulated umbrella sampling. The simulations analyzed the pH responsiveness, total energy, Gibbs free energy, gyration radius, radial distribution function (RDF), solvent accessible surface area, and nanoparticles' toxicity. Results demonstrated that a neutral pH level (7.4) has greater adsorption and interaction compared to acidic pH values (6.4 and 5.4) because it displays the highest total energy (-17.1 kJ/mol), the highest RDF value (6.66), and the shortest distance (0.51 nm). Furthermore, the combination of cisplatin and MOFs displayed increased penetration compared to that of their individual forms. This study highlights the suitability of MOFs as nanocarriers and identifies the optimal pH values for desirable outcomes. Thus, it provides future studies with appropriate data to conduct their experiments in assessing MOFs.
Collapse
Affiliation(s)
- Elham Mashayekh
- Department
of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115, Iran
| | - Zahra Nouri Khajeh Ghiasi
- Department
of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood 36155163, Iran
| | - Iman Bhia
- Faculty
of Medicine, Shahid Beheshti University
of Medical Sciences, Tehran 1985717443, Iran
| | - Zohreh Arefi Khorrami
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Omid Malekahmadi
- Department
of Mining and Metallurgical Engineering, Yazd University, Yazd 89195, Iran
| | - Mohammed Bhia
- Department
of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Samira Malekmohammadi
- School
of Materials, University of Manchester, Engineering Building A, MECD, Manchester M1 3BB, U.K.
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Türkiye
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| |
Collapse
|
4
|
Taherpoor P, Farzad F, Zaboli A. Engineering of surface-modified CuBTC-MXene nanocarrier for adsorption and co-loading of curcumin/paclitaxel from aqueous solutions for synergistic multi-therapy of cancer. J Biomol Struct Dyn 2024; 42:1145-1156. [PMID: 37066617 DOI: 10.1080/07391102.2023.2201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
Two-dimensional (2D) nanomaterials can improve drug delivery by reducing toxicity, increasing bioavailability and boosting efficacy. In this study, the simultaneous use of transition metal carbides and nitrides (MXenes) along with copper (II) benzene-1, 3, 5-tricarboxylate metal-organic framework (Cu - BTC/MOF) as attractive nanocarriers are investigated for loading and delivering curcumin (CUR) and paclitaxel (PTX) drugs to cancer cells. The efficiency of surface termination (bare and oxygen) in the adsorption of PTX and CUR drugs and the co-loading of these two drugs are evaluated. Our results show that the strongest interaction energy belongs to the adsorption of drug CUR on the MXNNO-Cu-BTC adsorbent, while the interaction of PTX drug with the MXNO- Cu-BTC in the MXNO-Cu-BTC/PTX&CUR system is the lowest due to the particular structure of the drug and the adsorbent. Our results show that at the beginning simulation, the interaction energy between the PTX drug and water in PTX/MXN system is -4645.48 kJ/mol, which reduces to -3848.71 kJ/mol after the system reaches equilibrium. Therefore, the inspected adsorbents have a good performance in adsorbing CUR and PTX drugs. The obtained results from this investigation provide valuable information about experimental studies by medical scientists in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Ameneh Zaboli
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
5
|
Luo Y, Pauer W, Luinstra GA. Tough, Stretchable, and Thermoresponsive Smart Hydrogels. Gels 2023; 9:695. [PMID: 37754376 PMCID: PMC10528277 DOI: 10.3390/gels9090695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Self-healing, thermoresponsive hydrogels with a triple network (TN) were obtained by copolymerizing N-isopropyl acryl amide (NiPAAm) with polyvinyl alkohol (PVA) functionalized with methacrylic acid and N,N'-methylene bis(acryl amide) crosslinker in the presence of low amounts (<1 wt.%) of tannic acid (TA). The final gels were obtained by crystalizing the PVA in a freeze-thaw procedure. XRD, DCS, and SEM imaging indicate that the crystallinity is lower and the size of the PVA crystals is smaller at higher TA concentrations. A gel with 0.5 wt.% TA has an elongation at a break of 880% at a tension of 1.39 MPa. It has the best self-healing efficiency of 81% after cutting and losing the chemical network. Step-sweep strain experiments show that the gel has thixotropic properties, which are related to the TA/PVA part of the triple network. The low amount of TA leaves the gel with good thermal responsiveness (equilibrium swelling ratio of 13.3). Swelling-deswelling loop tests show enhanced dimensional robustness of the hydrogel, with a substantial constancy after two cycles.
Collapse
Affiliation(s)
| | | | - Gerrit A. Luinstra
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany; (Y.L.); (W.P.)
| |
Collapse
|
6
|
Liang P, Zhang Y, Schmidt BF, Ballou B, Qian W, Dong Z, Wu J, Wang L, Bruchez MP, Dong X. Esterase-Activated, pH-Responsive, and Genetically Targetable Nano-Prodrug for Cancer Cell Photo-Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207535. [PMID: 36807550 DOI: 10.1002/smll.202207535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Indexed: 05/11/2023]
Abstract
Activatable prodrugs have drawn considerable attention for cancer cell ablation owing to their high specificity in drug delivery systems. However, phototheranostic prodrugs with dual organelle-targeting and synergistic effects are still rare due to low intelligence of their structures. Besides, the cell membrane, exocytosis, and diffusional hindrance by the extracellular matrix reduce drug uptake. Moreover, the up-regulation of heat shock protein and short singlet-oxygen lifetime in cancer cells hamper photo-ablation efficacy, especially in the mono-therapeutic model. To overcome those obstacles, we prepare an esterase-activated DM nano-prodrug, which is conjugated by diiodine-substituted fluorogenic malachite green derivative (MG-2I) and phototherapeutic agent DPP-OH via hydrolyzable ester linkage, having pH-responsiveness and genetically targetable activity for dual organelles-targeting to optimize photo-ablation efficacy. The DM nanoparticles (NPs) present improved pH-responsive photothermal/photodynamic property by the protonation of diethylaminophenyl units in acidic environment. More importantly, the MG-2I and DPP-OH moieties can be released from DM nano-prodrug through overexpressed esterase; then specifically target lysosomes and mitochondria in CT-26 Mito-FAP cells. Hence, near-infrared DM NPs can trigger parallel damage in dual-organelles with strong fluorescence and effective phototoxicity, thus inducing serious mitochondrial dysfunction and apoptotic death, showing excellent photo-ablation effect based on esterase-activated, pH-responsive, and genetically targetable activities.
Collapse
Affiliation(s)
- Pingping Liang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuanying Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Wei Qian
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ziyi Dong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jiahui Wu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lingling Wang
- Department of general surgery of the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230002, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
7
|
Suner SS, Kurt SB, Demirci S, Sahiner N. The advances in functionalized carbon nanomaterials for drug delivery. FUNCTIONALIZED CARBON NANOMATERIALS FOR THERANOSTIC APPLICATIONS 2023:197-241. [DOI: 10.1016/b978-0-12-824366-4.00011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
9
|
Gong P, Zhou Y, Li H, Zhang J, Wu Y, Zheng P, Jiang Y. Theoretical Study on the Aggregation and Adsorption Behaviors of Anticancer Drug Molecules on Graphene/Graphene Oxide Surface. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196742. [PMID: 36235277 PMCID: PMC9570551 DOI: 10.3390/molecules27196742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 01/18/2023]
Abstract
Graphene and its derivatives are frequently used in cancer therapy, and there has been widespread interest in improving the therapeutic efficiency of targeted drugs. In this paper, the geometrical structure and electronic effects of anastrozole(Anas), camptothecin(CPT), gefitinib (Gefi), and resveratrol (Res) on graphene and graphene oxide(GO) were investigated by density functional theory (DFT) calculations and molecular dynamics (MD) simulation. Meanwhile, we explored and compared the adsorption process between graphene/GO and four drug molecules, as well as the adsorption sites between carriers and payloads. In addition, we calculated the interaction forces between four drug molecules and graphene. We believe that this work will contribute to deepening the understanding of the loading behaviors of anticancer drugs onto nanomaterials and their interaction.
Collapse
Affiliation(s)
| | | | | | | | - Yuying Wu
- Correspondence: (Y.W.); (P.Z.); (Y.J.)
| | | | | |
Collapse
|
10
|
Al- and Ga-embedded boron nitride nanotubes as effective nanocarriers for delivery of rizatriptan. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kamath A, Laha A, Pandiyan S, Aswath S, Vatti AK, Dey P. Atomistic investigations of polymer-doxorubicin-CNT compatibility for targeted cancer treatment: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Esrafili MD, Khan AA. Alkali metal decorated C 60 fullerenes as promising materials for delivery of the 5-fluorouracil anticancer drug: a DFT approach. RSC Adv 2022; 12:3948-3956. [PMID: 35425459 PMCID: PMC8981040 DOI: 10.1039/d1ra09153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of effective drug delivery vehicles is essential for the targeted administration and/or controlled release of drugs. Using first-principles calculations, the potential of alkali metal (AM = Li, Na, and K) decorated C60 fullerenes for delivery of 5-fluorouracil (5FU) is explored. The adsorption energies of the 5FU on a single AM atom decorated C60 are -19.33, -16.58, and -14.07 kcal mol-1 for AM = Li, Na, and K, respectively. The results, on the other hand, show that up to 12 Li and 6 Na or K atoms can be anchored on the exterior surface of the C60 fullerene simultaneously, each of which can interact with a 5FU molecule. Because of the moderate adsorption energies and charge-transfer values, the 5FU can be simply separated from the fullerene at ambient temperature. Furthermore, the results show that the 5FU may be easily protonated in the target cancerous tissues, which facilitates the release of the drug from the fullerene. The inclusion of solvent effects tends to decrease the 5FU adsorption energies in all 5FU-fullerene complexes. This is the first report on the high capability of AM decorated fullerenes for delivery of multiple 5FU molecules utilizing a C60 host molecule.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh P. O. Box 55136-553 Maragheh Iran
| | - Adnan Ali Khan
- Centre for Computational Materials Science, University of Malakand Chakdara Pakistan
- Department of Chemistry, University of Malakand Chakdara Pakistan
| |
Collapse
|
13
|
Bagheri AR, Aramesh N, Bilal M, Xiao J, Kim HW, Yan B. Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review. Bioorg Med Chem 2021; 51:116493. [PMID: 34781082 DOI: 10.1016/j.bmc.2021.116493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Cancer has become one of the main reasons for human death in recent years. Around 18 million new cancer cases and approximately 9.6 million deaths from cancer reported in 2018, and the annual number of cancer cases will have increased to 22 million in the next two decades. These alarming facts have rekindled researchers' attention to develop and apply different approaches for cancer therapy. Unfortunately, most of the applied methods for cancer therapy not only have adverse side effects like toxicity and damage of healthy cells but also have a short lifetime. To this end, introducing innovative and effective methods for cancer therapy is vital and necessary. Among different potential materials, carbon nanomaterials can cope with the rising threats of cancer. Due to unique physicochemical properties of different carbon nanomaterials including carbon, fullerene, carbon dots, graphite, single-walled carbon nanotube and multi-walled carbon nanotubes, they exhibit possibilities to address the drawbacks for cancer therapy. Carbon nanomaterials are prodigious materials due to their ability in drug delivery or remedial of small molecules. Functionalization of carbon nanomaterials can improve the cancer therapy process and decrement the side effects. These exceptional traits make carbon nanomaterials as versatile and prevalent materials for application in cancer therapy. This article spotlights the recent findings in cancer therapy using carbon nanomaterials (2015-till now). Different types of carbon nanomaterials and their utilization in cancer therapy were highlighted. The plausible mechanisms for the action of carbon nanomaterials in cancer therapy were elucidated and the advantages and disadvantages of each material were also illustrated. Finally, the current problems and future challenges for cancer therapy based on carbon nanomaterials were discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Kore; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, South Korea
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Khorsandi Z, Borjian-Boroujeni M, Yekani R, Varma RS. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Bibi S, Urrehman S, Khalid L, Yaseen M, Khan AQ, Jia R. Metal doped fullerene complexes as promising drug delivery materials against COVID-19. ACTA ACUST UNITED AC 2021; 75:6487-6497. [PMID: 34393329 PMCID: PMC8351569 DOI: 10.1007/s11696-021-01815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022]
Abstract
An outbreak of respiratory disorder caused by coronavirus has been named as coronavirus infection 2019 (COVID-19). To find a specific treatment against this disease researchers are at the frontline. To cure COVID-19, favipiravir (FPV) has been reported as an effective drug based on its high recovery rate. Among nanomaterials, fullerene C60 has achieved enormous attention as a drug delivery vehicle due to its good bioavailability and low toxicity. Hence, in this work, we have investigated the potential of metal-doped fullerene as a drug carrier, based on DFT calculations by using M06-2X functional and 6-31G(d) basis set in water media. In this research electronic parameters and adsorption energy of FPV on interaction with metal-doped (Cr, Fe, and Ni) fullerene is studied. The charge transfer between drug and doped fullerene has been studied through electrophilicity indexes. The structural and electronic properties are explored in terms of adsorption energy through frontier molecular orbital (FMO) and density of state (DOS). It is observed that doping of fullerene C60 with Cr, Fe, and Ni metals significantly enhances the drug delivery rate and provides numerous advantages including controlled drug release at specific target sites which minimize the generic collection in vivo and reduce the side effects. Thusly, it is suggested that our designed metal-doped complexes might be efficient candidates as drug delivery materials for COVID-19 infection.
Collapse
Affiliation(s)
- Shamsa Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Shafiq Urrehman
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Laryeb Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Yaseen
- Spin-Optoelectronics and Ferro-Thermoelectric (SOFT) Materials and Devices Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Abdul Quyyam Khan
- Pakistan Council of Scientific and Industrial Research Laboratories Complex, , Ferozepur Road, Lahore, 54600 Pakistan
| | - Ran Jia
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, 130000 China
| |
Collapse
|
16
|
Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021; 9:669169. [PMID: 34109155 PMCID: PMC8181141 DOI: 10.3389/fchem.2021.669169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.
Collapse
Affiliation(s)
- Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
17
|
Miri Jahromi A, Zandi P, Khedri M, Ghasemy E, Maleki R, Tayebi L. Molecular insight into optimizing the N- and P-doped fullerenes for urea removal in wearable artificial kidneys. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:49. [PMID: 33891249 PMCID: PMC8065003 DOI: 10.1007/s10856-021-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life. ESRD patients require dialysis, a costly and difficult method of urea removal from the blood. Wearable artificial kidneys (WAKs) are consequently designed to remove the waste from blood. Regarding the great amount of daily urea production in the body, WAKs should contain strong and selective urea adsorbents. Fullerenes-which possess fascinating chemical properties-have been considered herein to develop novel urea removal adsorbents. Molecular dynamics (MD) has enabled researchers to study the interaction of different materials and can pave the way toward facilitating the development of wearable devices. In this study, urea adsorption by N-doped fullerenes and P-doped fullerenes were assessed through MD simulations. The urea adsorption was simulated by five samples of fullerenes, with phosphorous and different nitrogen dopant contents. For comparing the urea adsorption capacity in the performed simulations, detailed characteristics-including the energy analysis, radius of gyration, radial distribution function (RDF), root-mean-square fluctuation (RMSD), and H-bond analyses were investigated. It had been determined that the fullerene containing 8% nitrogen-with the highest reduction in the radius of gyration, the maximum RDF, a high adsorption energy, and a high number of hydrogen bonds-adsorbs urea more efficiently.
Collapse
Affiliation(s)
- Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pegah Zandi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
18
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Xu B, Yuan L, Hu Y, Xu Z, Qin JJ, Cheng XD. Synthesis, Characterization, Cellular Uptake, and In Vitro Anticancer Activity of Fullerenol-Doxorubicin Conjugates. Front Pharmacol 2021; 11:598155. [PMID: 33568999 PMCID: PMC7868567 DOI: 10.3389/fphar.2020.598155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic agents for treating human cancer. However, its clinical use has been limited by DOX-induced cardiotoxicity as well as other side effects. In the present study, we designed and synthesized the fullerenol (FU)-DOX conjugates and folic acid (FA)-grafted FU-DOX conjugates for improving the selectivity and activity of DOX in cancer cells. We further characterized the physicochemical properties and examined the release kinetics, cellular uptake, and in vitro anticancer activities of FU-DOX and FA-FU-DOX. The results showed that FU-DOX and FA-FU-DOX had a mean diameter of <200 nm and a low polydispersity. Both FU-DOX and FA-FU-DOX exhibited pH sensitivity and their DOX release rates were higher at pH 5.9 vs. pH 7.4. The cellular uptake studies indicated that FU conjugation enhanced the intracellular accumulation of DOX in human hepatocellular carcinoma (HCC) cell lines (BEL-7402 and HepG2) and the immortalized normal human hepatocytes (L02). The conjugation of FA to FU-DOX further promoted the drug internalization in an FR-dependent manner and enhanced the cytotoxicity against HCC cells. In conclusion, the newly prepared FA-FU-DOX conjugates can optimize the safety and efficacy profile of DOX.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hu
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
20
|
Yu M, Zhao W, Zhang K, Guo X. Single-Molecule Mechanism of pH Sensitive Smart Polymer. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20110529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Wang S, Yang P, Sun X, Xing H, Shi J. Facile synthesis of novel fluorescent phenol formaldehyde resin nanospheres for drug release. J Appl Polym Sci 2020. [DOI: 10.1002/app.50416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaohua Wang
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
| | - Ping Yang
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
- Institute of Environment‐friendly Materials and Occupational Health Anhui University of Science and Technology Wuhu P. R. China
| | - Xiangfei Sun
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
| | - Honglong Xing
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
| | - Jianjun Shi
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
- Institute of Environment‐friendly Materials and Occupational Health Anhui University of Science and Technology Wuhu P. R. China
| |
Collapse
|
22
|
Khedri M, Rezvantalab S, Maleki R, Rezaei N. Effect of ligand conjugation site on the micellization of Bio-Targeted PLGA-Based nanohybrids: A computational biology approach. J Biomol Struct Dyn 2020; 40:4409-4418. [PMID: 33336619 DOI: 10.1080/07391102.2020.1857840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, the effect of ligand binding position on the polymeric nanoparticles (NPs) is based on poly(lactic-co-glycolic acid) (PLGA) with two different polymer chain length at the atomistic level was presented. We explored the conjugation of riboflavin (RF) ligand from the end of the ribityl chain (N-10) to the polymer strands as well as from the amine group on the isoalloxazine head (N-3). The energy interactions for all samples revealed that the NPs containing ligands from N-10 positions have higher total attraction energies and lower stability in comparison with their peers conjugated from N-3. As NPs containing RF conjugated from N-3 exhibit the lower energy level with 20% and 10% of RF-containing composition for lower and higher. The introduction of RF from the N-10 position in any composition has increased the energy level of nanocarriers. The results of Gibb's free energy confirm the interatomic interaction energies trend where the lowest Gibbs free energy level for N-3 NPs occurs at 20 and 10% of RF-containing polymer content for PLGA10- and PLGA11- based NPs. Furthermore, with N-10 samples based on both polymers, non-targeted models form the stablest particles in each category. These findings are further confirmed with molecular docking analysis which revealed affinity energy of RF toward polymer chain from N-3 and N-10 are -981.57 kJ/mole and -298.23 kJ/mole, respectively. This in-silico study paves the new way for molecular engineering of the bio-responsive PLGA-PEG-RF micelles and can be used to nanoscale tunning of smart carriers used in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khedri
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Reza Maleki
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sohrabi S, Khedri M, Maleki R, Keshavarz Moraveji M. Molecular engineering of the last-generation CNTs in smart cancer therapy by grafting PEG-PLGA-riboflavin. RSC Adv 2020; 10:40637-40648. [PMID: 35519185 PMCID: PMC9057702 DOI: 10.1039/d0ra07500k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
In this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied. A microfluidic system with better control over molecular interactions and high surface to volume ratio has superior performance in comparison to the bulk system. Moreover, carbon nanotube (CNT) and CNT-doped structures have a high surface area to incorporate the DOX molecules into a polymer and the presence of functional groups can influence the polymer-drug interactions. In this work, the interactions of DOX with both the polymeric complex and the nanotube structure have been investigated. For quantification of the interactions, H-bonding, gyration radius, root-mean-square deviation (RMSD), Gibbs free energy, radial distribution function (RDF), energy, and Solvent Accessible Surface Area (SASA) analyses have been performed. The most stable micelle-DOX interaction is attributed to the presence of BCN in the microfluidic system according to the gyration radius and RMSD. Meanwhile, for DOX-doped CNT interaction the phosphorus-doped CNT in the microfluidic system is more stable. The highest electrostatic interaction can be seen between polymeric micelles and DOX in the presence of BCN. For nanotube-drug interaction, phosphorus-doped carbon nanotubes in the microfluidic system have the largest electrostatic interaction with the DOX. RDF results show that in the microfluidic system, nanotube-DOX affinity is larger than that of nanotube-micelle.
Collapse
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| |
Collapse
|
24
|
Alimohammadi E, Khedri M, Miri Jahromi A, Maleki R, Rezaian M. Graphene-Based Nanoparticles as Potential Treatment Options for Parkinson's Disease: A Molecular Dynamics Study. Int J Nanomedicine 2020; 15:6887-6903. [PMID: 32982240 PMCID: PMC7509323 DOI: 10.2147/ijn.s265140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The study of abnormal aggregation of proteins in different tissues of the body has recently earned great attention from researchers in various fields of science. Concerning neurological diseases, for instance, the accumulation of amyloid fibrils can contribute to Parkinson's disease, a progressively severe neurodegenerative disorder. The most prominent features of this disease are the degeneration of neurons in the substantia nigra and accumulation of α-synuclein aggregates, especially in the brainstem, spinal cord, and cortical areas. Dopamine replacement therapies and other medications have reduced motor impairment and had positive consequences on patients' quality of life. However, if these medications are stopped, symptoms of the disease will recur even more severely. Therefore, the improvement of therapies targeting more basic mechanisms like prevention of amyloid formation seems to be critical. It has been shown that the interactions between monolayers like graphene and amyloids could prevent their fibrillation. METHODS For the first time, the impact of four types of last-generation graphene-based nanostructures on the prevention of α-synuclein amyloid fibrillation was investigated in this study by using molecular dynamics simulation tools. RESULTS Although all monolayers were shown to prevent amyloid fibrillation, nitrogen-doped graphene (N-Graphene) caused the most instability in the secondary structure of α-synuclein amyloids. Moreover, among the four monolayers, N-Graphene was shown to present the highest absolute value of interaction energy, the lowest contact level of amyloid particles, the highest number of hydrogen bonds between water and amyloid molecules, the highest instability caused in α-synuclein particles, and the most significant decrease in the compactness of α-synuclein protein. DISCUSSION Ultimately, it was concluded that N-Graphene could be the most effective monolayer to disrupt amyloid fibrillation, and consequently, prevent the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran1591634311, Iran
| | - Ahmad Miri Jahromi
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran1591634311, Iran
| | - Reza Maleki
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Milad Rezaian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran19839-63113, Iran
| |
Collapse
|