1
|
Taouali W, Azazi A, Hassani R, EL-Araby EH, Alimi K. Exploring the Impact of Structural Modifications of Phenothiazine-Based Novel Compounds for Organic Solar Cells: DFT Investigations. Polymers (Basel) 2025; 17:115. [PMID: 39795518 PMCID: PMC11722700 DOI: 10.3390/polym17010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2). With the donor and π-bridge held constant, we have employed density functional theory and time-dependent DFT simulations to explore the photophysical and optoelectronic properties of tailored compounds (M1-M6). We have demonstrated how structural modifications influence the optoelectronic properties of materials for organic solar cells. Moreover, all proposed compounds exhibit a greater Voc exceeding 1.5 V, a suitable HOMO-LUMO energy gap (2.14-2.30 eV), and higher dipole moments (9.23-10.90 D). Various decisive key factors that are crucial for exploring the properties of tailored compounds-frontier molecular orbitals, transition density matrix, electrostatic potential, open-circuit voltage, maximum absorption, reduced density gradient, and charge transfer length (Dindex)-were also explored. Our analysis delivers profound insights into the design principles of optimizing the performance of organic solar cell applications based on halogenated material compounds.
Collapse
Affiliation(s)
- Walid Taouali
- Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia;
| | - Amel Azazi
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Entesar H. EL-Araby
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Kamel Alimi
- Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia;
| |
Collapse
|
2
|
Kushwaha PK, Srivastava SK. Tuning optoelectronic properties of indandione-based D-A materials by malononitrile group acceptors: A DFT and TD-DFT approach. J Mol Model 2024; 30:356. [PMID: 39347831 DOI: 10.1007/s00894-024-06159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Indandione-based materials are promising candidates for organic electronics, offering high electron mobility and tunable optoelectronic properties. In this study, we explore the optoelectronic and photovoltaic properties of indandione-based donor-acceptor (D-A) materials, specifically (R1) and (R2), by introducing malononitrile group acceptors into their molecular structure. These strong electron-withdrawing acceptors are designed to enhance charge transfer and overall material performance. The designed molecules (DM1-DM4) exhibit a low optical band gap of approximately 1.77 eV, significantly lower than the reference materials (R1 and R2) at around 2.24 eV in a solvent environment. Among the designed molecules, DM4 stands out with superior photovoltaic parameters, including a narrow optical band gap (1.77 eV), higher electron affinity (3.49 eV), an extended excited state lifetime (10.0 ns) owing to its low electron and hole reorganization energies (λe ~ 0.13 eV and λh ~ 0.24 eV), and improved short-circuit current density (Jsc) of ~ 15.73 mA/cm2. Notably, DM4 achieves a power conversion efficiency (PCE) of ~ 18.5%, making it an excellent candidate for device applications. METHOD A comprehensive computational investigation was carried out on indandione-based D-A materials with malononitrile group acceptors (DM1-DM4) using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as implemented in Gaussian 16 software. We examined the electronic and optical properties of the proposed molecules through frontier molecular orbital (FMO) analysis, UV-Vis absorption spectra, density of states (DOS), exciton binding energy (Eb), and transition density matrix (TDM) analysis, utilizing GaussView 6.0 and Multiwfn 3.8 software. The photovoltaic parameters and power conversion efficiency (PCE) were evaluated using the Scharber and Alharbi models.
Collapse
Affiliation(s)
- Pankaj Kumar Kushwaha
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Sunil Kumar Srivastava
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India.
| |
Collapse
|
3
|
Taouali W, Alimi K. Optimizing non-fullerene acceptor molecules constituting fluorene core for enhanced performance in organic solar cells: a theoretical methodology. J Mol Model 2024; 30:342. [PMID: 39297915 DOI: 10.1007/s00894-024-06120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
CONTEXT Looking for novel outstanding performance materials suitable for organic solar cells, we constructed a range of non-fullerene acceptors (NFAs) evolved from the recently synthesized acceptor molecule identified as DICTIF, structured around fluorene core where 2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene) propanedinitrile presented the terminals end-groups. Employing density functional theory (DFT) and time dependent-DFT (TD-DFT) simulations, we have simulated the impact of altering the end groups of DICTIF molecule by five assorted acceptors molecules, for the purpose of exploring their opto-electronic properties and their performance in organic solar cell (OSC) applications. We proved that the designed non-fullerene acceptors provide enhanced efficiency compared to the synthesized molecule, such as planar geometries and narrower energy gap ranging from 1.51 to 1.95 eV. A red shift in absorption was observed for all tailored molecules (λmax = 583.5-711.4 nm) as compared to the reference molecule (λmax = 578 nm).Various decisive factors such as frontier molecular orbitals (FMOs), exciton binding energy (EB), absorption maximum (λmax), open circuit voltage (VOC), reorganization energies (RE), transition density matrix (TDM), reduced density gradient (RDG), and electron-hole overlap have also been computed for analyzing the performance of NFAs. Low reorganizational energy values facilitate charge mobility which improves the conductivity of all the designed molecules. This study showed that our novel tailored molecules might be suitable candidates for the fabrication of highly efficient photovoltaic materials. METHODS After testing various hybrid functionals, optimized geometries were assigned using DFT HSEH1PBE/6-31G(d) level of theory. Electronic excitations and absorption spectra were investigated using the TD-DFT MPW1PW91/6-31G(d) level of theory. We ascertained that HSEH1PBE/6-31G(d) level of theory yield the closest calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the DICTIF to the corresponding experimental ones and that TD-MPW1PW91//6-31G(d) was the most suitable level of theory for exploring electronic excitations and finding the maximum of absorption (λmax).
Collapse
Affiliation(s)
- Walid Taouali
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaires des matériaux nouveaux pour l'électroniques Organiques (LR18ES19), Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia.
| | - Kamel Alimi
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaires des matériaux nouveaux pour l'électroniques Organiques (LR18ES19), Faculté des Sciences de Monastir, Université de Monastir-Tunisie, Monastir, Tunisia
| |
Collapse
|
4
|
Moeed S, Bousbih R, Ayub AR, Jafar NNA, Aljohani M, Jabir MS, Amin MA, Zubair H, Majdi H, Waqas M, Hadia NMA, Khera RA. A theoretical investigation for improving the performance of non-fullerene organic solar cells through side-chain engineering of BTR non-fused-ring electron acceptors. J Mol Graph Model 2024; 131:108792. [PMID: 38797085 DOI: 10.1016/j.jmgm.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.
Collapse
Affiliation(s)
- Sidra Moeed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, 56001, Iraq
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hasan Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - N M A Hadia
- Department of Physics, College of Science, Jouf University, Sakaka, 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Zulfiqar A, Akhter MS, Waqas M, Bhatti IA, Imran M, Shawky AM, Shaban M, Alotaibi HF, Mahal A, Ashour A, Duan M, S Alshomrany A, Khera RA. Engineering of the Central Core on DBD-Based Materials with Improved Power-Conversion Efficiency by Using the DFT Approach. ACS OMEGA 2024; 9:29205-29225. [PMID: 39005764 PMCID: PMC11238312 DOI: 10.1021/acsomega.3c09215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 07/16/2024]
Abstract
Developing proficient organic solar cells with improved optoelectronic properties is still a matter of concern. In the current study, with an aspiration to boost the optoelectronic properties and proficiency of organic solar cells, seven new small-molecule acceptors (Db1-Db7) are presented by altering the central core of the reference molecule (DBD-4F). The optoelectronic aspects of DBD-4F and Db1-Db7 molecules were explored using the density functional theory (DFT) approach, and solvent-state calculations were assessed utilizing TD-SCF simulations. It was noted that improvement in photovoltaic features was achieved by designing these molecules. The results revealed a bathochromic shift in absorption maxima (λmax) of designed molecules reaching up to 776 nm compared to 736 nm of DBD-4F. Similarly, a narrow band gap, low excitation energy, and reduced binding energy were also observed in newly developed molecules in comparison with the pre-existing DBD-4F molecule. Performance improvement can be indicated by the high light-harvesting efficiency (LHE) of designed molecules (ranging from 0.9992 to 0.9996 eV) compared to the reference having a 0.9991 eV LHE. Db4 and Db5 exhibited surprisingly improved open-circuit voltage (V OC) values up to 1.64 and 1.67 eV and a fill factor of 0.9198 and 0.9210, respectively. Consequently, these newly designed molecules can be considered in the future for practical use in manufacturing OSCs with improved optoelectronic and photovoltaic attributes.
Collapse
Affiliation(s)
- Aamna Zulfiqar
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32028, Bahrain
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, College of Science, King Khalid University (KKU), P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil 44001, Kurdistan Region, Iraq
| | - Adel Ashour
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, P. R. China
- Research Center for Sustained and Controlled Release Agents, Xiamen Medical College, Xiamen 361023, P. R. China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, P. R. China
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| |
Collapse
|
6
|
Abbas F, Bousbih R, Ayub AR, Zahid S, Aljohani M, Amin MA, Waqas M, Soliman MS, Khera RA, Jahan N. A Theoretical Investigation for Exploring the Potential Performance of Non-Fullerene Organic Solar Cells Through Side-Chain Engineering Having Diphenylamino Groups to Enhance Photovoltaic Properties. J Fluoresc 2024:10.1007/s10895-024-03805-7. [PMID: 38951306 DOI: 10.1007/s10895-024-03805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
The development of ecofriendly fabrication phenomenon is essential requirement for commercialization of non-fullerene acceptors. Recently, end-capped modeling is employed for computational design of five non-fullerene acceptors to elevate various photovoltaic properties. All new molecules are formulated by altering the peripheral acceptors of CH3-2F and DFT methodology is employed to explore the opto-electronic, morphological and charge transfer analysis. From the computational investigation, all reported molecules manifested red shifted absorption with remarkable reduced band gap. Among investigated molecules, FA1-FA3 evinced effectively decreased value of band gaps and designed molecules have low excitation energy justifying proficient charge transference. The lower values of binding energy of FA1 and FA2 suggest their facile exciton dissociation leading to improved charge mobility. By blending with J61 donor, FA4 have sufficiently enhanced value of VOC (1.72 eV) and fill factor (0.9228). Energy loss of the model (R) is 0.57 eV and statistical calculation demonstrate that all our modified molecules except FA3 has profoundly reduced energy loss compelling in its pivotal utilization. From accessible supportive outcomes of recent investigation, it is recommended that our modified chromophore exhibit remarkable noteworthy applications in solar cells for forthcoming innovations.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, 21944, Taif, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Nazish Jahan
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Ishtiaq M, Shaban M, Waqas M, Akram SJ, Mahal A, Alkhouri A, Alshomrany AS, Alatawi NS, Alotaibi HF, Shehzad RA, Assem EE, Zghab I, Khera RA. Structural modification of A-C-A configured X-PCIC acceptor molecule for efficient photovoltaic properties with low energy loss in organic solar cells. J Mol Graph Model 2024; 129:108722. [PMID: 38377792 DOI: 10.1016/j.jmgm.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Modification of terminal acceptors of non-fullerene organic solar cell molecule with different terminal acceptors can help in screening of molecules to develop organic photovoltaic cells with improved performance. Thus, in this work, seven new molecules with an unfused core have been designed and thoroughly investigated. DFT/TD-DFT simulations were performed on studied molecules to explore the ground and excited state characteristics. UV-Visible analysis revealed the red shift in the absorption spectrum (reaching 781 nm) owing to their smaller energy gap up to 1.94 eV. Furthermore, transition density matrix analysis demonstrated that peripheral acceptors extract the electron density from the core effectively. The effectiveness of our investigated molecules as materials for high-performing organic photovoltaic cells has been shown by an examination of their electron and hole mobilities for fast charge transfer. When combined with PTB7-Th, all molecules displayed high open circuit voltage. XP5 molecule exhibited highest open circuit voltage (1.70 eV) and lowest energy loss of 0.30 eV. All designed molecules exhibit the improved aforementioned parameters, which shows that these molecules can be used to develop competent solar devices in future.
Collapse
Affiliation(s)
- Mariam Ishtiaq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Anas Alkhouri
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca, 24381, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh, 11671, Saudi Arabia
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - E E Assem
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
8
|
Raza A, Ans M, Khera RA, Bousbih R, Waqas M, Aljohani M, Amin MA, Alshomrany AS, Zahid S, Shaban M. Designing efficient materials for high-performance of non-fullerene organic solar cells through side-chain engineering on DBT-4F derivatives by non-fused-ring electron acceptors. J Mol Model 2024; 30:190. [PMID: 38809306 DOI: 10.1007/s00894-024-05977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
CONTEXT For the advancement in fields of organic and perovskite solar cells, various techniques of structural alterations are being employed on previously reported chromophores. In this study, the end-capped engineering is carried out on DBT-4F (R) by modifying terminal acceptors to improve optoelectronic and photovoltaic attributes. Seven molecules (AD1-AD7) are modeled using different push-pull acceptors. DFT/B3LYP/6-31G along with its time-dependent approach (TD-DFT) are on a payroll to investigate ground state geometries, absorption maxima (λmax), energy gap (Eg), excitation energy (Ex), internal reorganization energy, light harvesting efficiency (LHE), dielectric constant, open circuit voltage (VOC), fill factor (FF), etc. of OSCs. AD1 displayed the lowest band gap (1.76 eV), highest λmax (876 nm), lowest Ex (1.41 eV), and lowest binding energy (0.21 eV). Among various calculated parameters, all of the sketched molecules demonstrated greater dielectric constant when compared to R. The highest dielectric constant was exhibited by AD3 (56.26). AD5 exhibited maximum LHE (0.9980). Lower reorganization energies demonstrated improved charge mobility. AD5 and AD7 (1.63 and 1.68 eV) have higher values of VOC than R (1.51 eV). All novel molecules having outperforming attributes will be better candidates to enhance the efficacy of OSCs for future use. METHODS Precisely, a DFT and TD-DFT analysis on all of the proposed organic molecules were conducted, using the functional MPW1PW91 at 6-31G (d,p) basis set to examine their optoelectronic aspects, additionally the solvent-state computations were studied with a TD-SCF simulation. For all these simulations, Guassian 09 and GuassView 5.0 were employed. Moreover, the Origin 6.0, Multiwfn 3.8, and PyMOlyze 1.1 software were utilized for the visual depiction of the graphs of absorption, TDM, and DOS, respectively of the studied molecules. A number of crucial aspects such as FMOs, bandgaps, light-harvesting efficiency, electrostatic potential, dipole moment, ionization potential, open-circuit voltage, fill factor, binding energy, interaction coefficient, chemical hardness-softness, and electrophilicity index were also investigated for the studied molecules.
Collapse
Affiliation(s)
- Ahmad Raza
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, 24381, Mecca, Saudi Arabia
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
9
|
Noor T, Waqas M, Shaban M, Hameed S, Ateeq-ur-Rehman, Ahmed SB, Alrafai HA, Al-Saeedi SI, Ibrahim MAA, Hadia NMA, Khera RA, Hassan AA. Designing Thieno[3,4- c]pyrrole-4,6-dione Core-Based, A 2-D-A 1-D-A 2-Type Acceptor Molecules for Promising Photovoltaic Parameters in Organic Photovoltaic Cells. ACS OMEGA 2024; 9:6403-6422. [PMID: 38375499 PMCID: PMC10876087 DOI: 10.1021/acsomega.3c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Nonfullerene-based organic solar cells can be utilized as favorable photovoltaic and optoelectronic devices due to their enhanced life span and efficiency. In this research, seven new molecules were designed to improve the working efficiency of organic solar cells by utilizing a terminal acceptor modification approach. The perceived A2-D-A1-D-A2 configuration-based molecules possess a lower band gap ranging from 1.95 to 2.21 eV compared to the pre-existing reference molecule (RW), which has a band gap of 2.23 eV. The modified molecules also exhibit higher λmax values ranging from 672 to 768 nm in the gaseous and 715-839 nm in solvent phases, respectively, as compared to the (RW) molecule, which has λmax values at 673 and 719 nm in gas and chloroform medium, respectively. The ground state geometries, molecular planarity parameter, and span of deviation from the plane were analyzed to study the planarity of all of the molecules. The natural transition orbitals, the density of state, molecular electrostatic potential, noncovalent interactions, frontier molecular orbitals, and transition density matrix analysis of all studied molecules were executed to validate the optoelectronic properties of these molecules. Improved charge mobilities and dipole moments were observed, as newly designed molecules possessed lower internal reorganization energies. The open circuit voltage (Voc) of W4, W5, W6, and W7 among newly designed molecules was improved as compared to the reference molecule. These results elaborate on the superiority of these novel-designed molecules over the pre-existing (RW) molecule as potential blocks for better organic solar cell applications.
Collapse
Affiliation(s)
- Tanzeela Noor
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Shanza Hameed
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ateeq-ur-Rehman
- Department
of Physics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samia Ben Ahmed
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - H. A. Alrafai
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abeer A. Hassan
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
- Department
of chemistry, Faculty of science for Girls, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|