1
|
Zhang J, Li F, Kuai D, Chen H, Mu X, Song X, Wang Y, Yan Y, Tian Y, Tian W, Bai X. Analysis of mitochondrial DNA quantification in human blastocysts and assisted reproduction outcomes. Reprod Biomed Online 2025; 50:104755. [PMID: 40222885 DOI: 10.1016/j.rbmo.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 04/15/2025]
Abstract
RESEARCH QUESTION Does the content of mitochondrial DNA (mtDNA) in human trophectoderm cells in blastocysts that received trophectoderm biopsy correlate with embryonic variables and the outcomes of assisted reproductive technology (ART)? DESIGN To investigate whether the content of mtDNA in trophectoderm biopsies correlates with IVF outcome, 462 biopsies of blastocysts from 136 preimplantation genetic testing (PGT) cycles conducted between June 2022 and August 2024 were analysed. Euploid human blastocysts (n = 75) used in single frozen embryo transfer were studied. The mtDNA levels in trophectoderm cells were analysed by whole genome amplification and next-generation sequencing. RESULTS Generalized linear regression analysis showed that only embryo euploidy was significantly associated with mitochondrial DNA copy number (MCN) (P < 0.0001). Progesterone and LH concentration on HCG trigger day were not associated with MCN. Meanwhile, aneuploids had more mtDNA quantities than the euploids after correcting for blastocyst morphology. No statistically significant differences were found in the MCN and pregnancy outcomes (P = 0.619), and there were also no statistically significant differences were found when divided into high and low groups based on the median value or four groups at the quartiles. CONCLUSIONS Regardless of blastocyst morphology, euploid embryos had significantly fewer mtDNA copy numbers than aneuploid embryos. Nevertheless, pregnancy outcomes showed no statistically significant variations, suggesting that mtDNA copy number may not be a good predictor of optimal clinical success and high competence potential in IVF.
Collapse
Affiliation(s)
- Jing Zhang
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Li
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Haixia Chen
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohuan Mu
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueru Song
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Yan
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Tian
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wenyan Tian
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xiaohong Bai
- Reproductive Medical Center, Department of Gynecology and Obstetrics, General Hospital of Tianjin Medical University Tianjin 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Lee CI, Su CY, Chen HH, Huang CC, Cheng EH, Lee TH, Lin PY, Yu TN, Chen CI, Chen MJ, Lee MS, Chen CH. Investigating developmental characteristics of biopsied blastocysts stratified by mitochondrial copy numbers using time-lapse monitoring. Reprod Biol Endocrinol 2024; 22:89. [PMID: 39080754 PMCID: PMC11290074 DOI: 10.1186/s12958-024-01262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND For in vitro fertilization (IVF), mitochondrial DNA (mtDNA) levels in the trophectodermal (TE) cells of biopsied blastocysts have been suggested to be associated with the cells' developmental potential. However, scholars have reached differing opinions regarding the use of mtDNA levels as a reliable biomarker for predicting IVF outcomes. Therefore, this study aims to assess the association of mitochondrial copy number measured by mitoscore associated with embryonic developmental characteristics and ploidy. METHODS This retrospective study analyzed the developmental characteristics of embryos and mtDNA levels in biopsied trophectodermal cells. The analysis was carried out using time-lapse monitoring and next-generation sequencing from September 2021 to September 2022. Five hundred and fifteen blastocysts were biopsied from 88 patients undergoing IVF who met the inclusion criteria. Embryonic morphokinetics and morphology were evaluated at 118 h after insemination using all recorded images. Blastocysts with appropriate morphology on day 5 or 6 underwent TE biopsy and preimplantation genetic testing for aneuploidy (PGT-A). Statistical analysis involved generalized estimating equations, Pearson's chi-squared test, Fisher's exact test, and Kruskal-Wallis test, with a significance level set at P < 0.05. RESULTS To examine differences in embryonic characteristics between blastocysts with low versus high mitoscores, the blastocysts were divided into quartiles based on their mitoscore. Regarding morphokinetic characteristics, no significant differences in most developmental kinetics and observed cleavage dysmorphisms were discovered. However, blastocysts in mitoscore group 1 had a longer time for reaching 3-cell stage after tPNf (t3; median: 14.4 h) than did those in mitoscore group 2 (median: 13.8 h) and a longer second cell cycle (CC2; median: 11.7 h) than did blastocysts in mitoscore groups 2 (median: 11.3 h) and 4 (median: 11.4 h; P < 0.05). Moreover, blastocysts in mitoscore group 4 had a lower euploid rate (22.6%) and a higher aneuploid rate (59.1%) than did those in the other mitoscore groups (39.6-49.3% and 30.3-43.2%; P < 0.05). The rate of whole-chromosomal alterations in mitoscore group 4 (63.4%) was higher than that in mitoscore groups 1 (47.3%) and 2 (40.1%; P < 0.05). A multivariate logistic regression model was used to analyze associations between the mitoscore and euploidy of elective blastocysts. After accounting for factors that could potentially affect the outcome, the mitoscore still exhibited a negative association with the likelihood of euploidy (adjusted OR = 0.581, 95% CI: 0.396-0.854; P = 0.006). CONCLUSIONS Blastocysts with varying levels of mitochondrial DNA, identified through biopsies, displayed similar characteristics in their early preimplantation development as observed through time-lapse imaging. However, the mitochondrial DNA level determined by the mitoscore can be used as a standalone predictor of euploidy.
Collapse
Affiliation(s)
- Chun-I Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Ya Su
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Hsiu-Hui Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - En-Hui Cheng
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pin-Yao Lin
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Ning Yu
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Chung-I Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Ming-Jer Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Chien-Hong Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
3
|
Pi Y, Huang Z, Xu X, Zhang H, Jin M, Zhang S, Lin G, Hu L. Increases in computationally predicted deleterious variants of unknown significance and sperm mtDNA copy numbers may be associated with semen quality. Andrology 2024; 12:585-598. [PMID: 37622679 DOI: 10.1111/andr.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/24/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Mitochondria are essential for sperm motility because they provide the energy required for the movement. Changes in sperm mtDNA, such as point mutations, large-scale deletions, or copy number variations, may interfere with ATP production and reduce sperm motility. However, it is not clear if changes in mtDNA are linked to semen quality. OBJECTIVES To explore the association between sperm mitochondrial DNA (mtDNA) changes and semen quality. MATERIALS AND METHODS Sixty-five oligo and/or astheno and/or terato patients (O/A/T) patients and 41 controls were recruited from couples undergoing assisted reproduction. Semen and blood samples were collected from the same individual on the day of oocyte retrieval to extract, isolate and purify mtDNA for next-generation sequencing. mtDNA copy numbers were assessed in 64 patient and 39 control sperm DNA samples using quantitative real-time PCR. The 4977 bp deletion was assessed in 20 patient and 20 control sperm DNA samples using polymerase chain reaction. RESULTS The mtDNA of patients was more likely to carry pathogenic variants or variants of unknown significance (VUSs) (P = 0.091) with higher heteroplasmy levels (P < 0.05) than that of controls. Interestingly, 33.85% of O/A/T patients (22 out of 65) lacked unique variants in their spermatozoa. but presented an exceptionally high mtDNA copy number (P < 0.0001). Moreover, we observed a decrease in the heteroplasmy level of common mtDNA variants shared by somatic and gamete cells (P < 0.0001) and the emergence of a very large number of de novo mtDNA variants with low-level heteroplasmy in spermatozoa. DISCUSSION AND CONCLUSION The increases in the number of computationally predicted deleterious VUS and mtDNA copies in spermatozoa may be associated with semen quality. Exposure to environmental mutation pressure that causes novel mtDNA variants with low-level heteroplasmy may occur during spermatogenesis. Furthermore, when a certain harmful threshold is reached, male germ cells may degrade mtDNA with mutations and replicate the correct mtDNA sequence to maintain the mitochondrial function in spermatozoa.
Collapse
Affiliation(s)
- Yuze Pi
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhuo Huang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Xilin Xu
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Hunan, China
| | - Miao Jin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Hunan, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Hunan, China
- National Engineering and Research Center of Human Stem Cells, Changsha, Hunan, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Hunan, China
- National Engineering and Research Center of Human Stem Cells, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation base of Development and Carcinogenesis, Changsha, Hunan, China
| |
Collapse
|
4
|
Lukaszuk K, Podolak A. Does Trophectoderm Mitochondrial DNA Content Affect Embryo Developmental and Implantation Potential? Int J Mol Sci 2022; 23:5976. [PMID: 35682656 PMCID: PMC9180963 DOI: 10.3390/ijms23115976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
A retrospective case control study was undertaken at the molecular biology department of a private center for reproductive medicine in order to determine whether any correlation exists between the mitochondrial DNA (mtDNA) content of trophectoderm and embryo developmental potential. A total of 275 couples underwent IVF treatment, producing a total of 716 embryos. The trophectoderm was biopsied from each embryo at the blastocyst stage (day 5 or day 6 post-fertilization) subjected to low-pass next-generation sequencing (NGS), for the purpose of detecting aneuploidy. For each sample, the number of mtDNA reads obtained after analysis using NGS was divided by the number of reads attributable to the nuclear genome. The mtDNA copy number was found to be higher in aneuploid embryos than in those that were euploid (mean mtDNA ratio ± SD: 1.13 ± 1.37 versus 1.45 ± 1.78, p = 0.02) and in day 5 biopsies compared to day 6 biopsies (1.41 ± 1.66 vs. 1.19 ± 1.27, p = 0.001), whereas no statistically significant differences in mtDNA content were seen in relation to embryo morphology (1.58 ± 2.44 vs. 2.19 ± 2.89, p = 0.12), genetic sex (1.27 ± 1.29 vs. 1.27 ± 1.18, p = 0.99), maternal age (1.31 ± 1.41 vs. 1.33 ± 1.29, p = 0.43), or its ability to implant (1.14 ± 0.88 vs. 1.21 ± 1.16, p = 0.39). mtDNA has small potential to serve as an additional, independent biomarker for embryo selection.
Collapse
Affiliation(s)
- Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Amira Podolak
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
5
|
Podolak A, Woclawek-Potocka I, Lukaszuk K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022; 11:797. [PMID: 35269419 PMCID: PMC8909547 DOI: 10.3390/cells11050797] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are well known as 'the powerhouses of the cell'. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte's mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
6
|
Podolak A, Liss J, Kiewisz J, Pukszta S, Cybulska C, Rychlowski M, Lukaszuk A, Jakiel G, Lukaszuk K. Mitochondrial DNA Copy Number in Cleavage Stage Human Embryos-Impact on Infertility Outcome. Curr Issues Mol Biol 2022; 44:273-287. [PMID: 35723399 PMCID: PMC8928962 DOI: 10.3390/cimb44010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
A retrospective case control study was undertaken at the molecular biology department of a private center for reproductive medicine in order to determine whether any correlation exists between mitochondrial DNA (mtDNA) content of cleavage-stage preimplantation embryos and their developmental potential. A total of 69 couples underwent IVF treatment (averaged women age: 36.5, SD 4.9) and produced a total of 314 embryos. A single blastomere was biopsied from each embryo at the cleavage stage (day-3 post-fertilization) subjected to low-pass next generation sequencing (NGS), for the purpose of detecting aneuploidy. For each sample, the number of mtDNA reads obtained after analysis using NGS was divided by the number of reads attributable to the nuclear genome. The mtDNA copy number amount was found to be higher in aneuploid embryos than in those that were euploid (mean mtDNA ratio ± SD: 6.3 ± 7.5 versus 7.1 ± 5.8, p < 0.004; U Mann−Whitney test), whereas no statistically significant differences in mtDNA content were seen in relation to embryo morphology (6.6 ± 4.8 vs. 8.5 ± 13.6, p 0.09), sex (6.6 ± 4.1 vs. 6.2 ± 6.8, p 0.16), maternal age (6.9 ± 7.8 vs. 6.7 ± 4.5, p 0.14) or its ability to implant (7.4 ± 6.6 vs. 5.1 ± 4.6, p 0.18). The mtDNA content cannot serve as a useful biomarker at this point in development. However, further studies investigating both quantitative and qualitative aspects of mtDNA are still required to fully evaluate the relationship between mitochondrial DNA and human reproduction.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Joanna Liss
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Medical Biology and Genetics, University of Gdansk, 80-308 Gdansk, Poland
| | - Jolanta Kiewisz
- Department of Human Histology and Embryology, Medical Faculty, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | | | - Celina Cybulska
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Aron Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Grzegorz Jakiel
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
- iYoni App by LifeBite, 10-763 Olsztyn, Poland
| |
Collapse
|