1
|
Komarov DA, Samouilov A, Ahmad R, Zweier JL. Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106812. [PMID: 32966948 PMCID: PMC7554188 DOI: 10.1016/j.jmr.2020.106812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A novel method for reconstructing 3D spatial EPR images from large numbers of noisy projections was developed that minimizes mean square error between the experimental projections and those from the reconstructed image. The method utilizes raw projection data and zero gradient spectrum to account for EPR line shape and hyperfine structure of the paramagnetic probe without the need for deconvolution techniques that are poorly suited for processing of high noise projections. A numerical phantom was reconstructed for method validation. Reconstruction time for the matrix of 1283 voxels and 16,384 noiseless projections was 4.6 min for a single iteration. The algorithm converged quickly, reaching R2 ~ 0.99975 after the very first iteration. An experimental phantom sample with nitroxyl radical was measured. With 16,384 projections and a field gradient of 8 G/cm, resolutions of 0.4 mm were achieved for a cubical area of 25 × 25 × 25 mm3. Reconstruction was sufficiently fast and memory efficient making it suitable for applications with large 3D matrices and fully determined system of equations. The developed algorithm can be used with any gradient distribution and does not require adjustable filter parameters that makes for simple application. A thorough analysis of the strengths and limitations of this method for 3D spatial EPR imaging is provided.
Collapse
Affiliation(s)
- Denis A Komarov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rizwan Ahmad
- Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Spitzbarth M, Drescher M. Simultaneous iterative reconstruction technique software for spectral-spatial EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:79-88. [PMID: 26102454 DOI: 10.1016/j.jmr.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 05/13/2023]
Abstract
Continuous wave electron paramagnetic resonance imaging (EPRI) experiments often suffer from low signal to noise ratio. The increase in spectrometer time required to acquire data of sufficient quality to allow further analysis can be counteracted in part by more processing effort during the image reconstruction step. We suggest a simultaneous iterative reconstruction algorithm (SIRT) for reconstruction of continuous wave EPRI experimental data as an alternative to the widely applied filtered back projection algorithm (FBP). We show experimental and numerical test data of 2d spatial images and spectral-spatial images. We find that for low signal to noise ratio and spectral-spatial images that are limited by the maximum magnetic field gradient strength SIRT is more suitable than FBP.
Collapse
Affiliation(s)
- Martin Spitzbarth
- University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany
| | - Malte Drescher
- University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany.
| |
Collapse
|
3
|
Qiao Z, Redler G, Epel B, Qian Y, Halpern H. Implementation of GPU-accelerated back projection for EPR imaging. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2015; 23:423-33. [PMID: 26410654 PMCID: PMC4825055 DOI: 10.3233/xst-150498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electron paramagnetic resonance (EPR) Imaging (EPRI) is a robust method for measuring in vivo oxygen concentration (pO2). For 3D pulse EPRI, a commonly used reconstruction algorithm is the filtered backprojection (FBP) algorithm, in which the backprojection process is computationally intensive and may be time consuming when implemented on a CPU. A multistage implementation of the backprojection can be used for acceleration, however it is not flexible (requires equal linear angle projection distribution) and may still be time consuming. In this work, single-stage backprojection is implemented on a GPU (Graphics Processing Units) having 1152 cores to accelerate the process. The GPU implementation results in acceleration by over a factor of 200 overall and by over a factor of 3500 if only the computing time is considered. Some important experiences regarding the implementation of GPU-accelerated backprojection for EPRI are summarized. The resulting accelerated image reconstruction is useful for real-time image reconstruction monitoring and other time sensitive applications.
Collapse
Affiliation(s)
- Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gage Redler
- Department of Medical Physics, Rush Hospital, Chicago, IL , USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Yuhua Qian
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Howard Halpern
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Qiao Z, Redler G, Epel B, Halpern HJ. Comparison of parabolic filtration methods for 3D filtered back projection in pulsed EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:42-53. [PMID: 25314081 PMCID: PMC4324566 DOI: 10.1016/j.jmr.2014.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 05/16/2023]
Abstract
Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP.
Collapse
Affiliation(s)
- Zhiwei Qiao
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; School of Computer and Control Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Gage Redler
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Epel B, Redler G, Halpern HJ. How in vivo EPR measures and images oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:113-119. [PMID: 24729222 DOI: 10.1007/978-1-4939-0620-8_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The partial pressure of oxygen (pO₂) in tissues plays an important role in the pathophysiology of many diseases and influences outcome of cancer therapy, ischemic heart and cerebrovascular disease treatments and wound healing. Over the years a suite of EPR techniques for reliable oxygen measurements has been developed. This is a mini-review of pulse EPR in vivo oxygen imaging methods that utilize soluble spin probes. Recent developments in pulse EPR imaging technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity and considerable improvement in the precision and accuracy of oxygen measurements.
Collapse
Affiliation(s)
- Boris Epel
- Center for EPR Imaging In Vivo Physiology, Chicago, IL, USA.,Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Gage Redler
- Center for EPR Imaging In Vivo Physiology, Chicago, IL, USA.,Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Howard J Halpern
- Center for EPR Imaging In Vivo Physiology, Chicago, IL, USA. .,Department of Radiation Oncology, University of Chicago, Chicago, IL, USA. .,MC1105, Department of Radiation and Cellular Oncology, University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Johnson DH, Ahmad R, He G, Samouilov A, Zweier JL. Compressed sensing of spatial electron paramagnetic resonance imaging. Magn Reson Med 2013; 72:893-901. [PMID: 24123102 DOI: 10.1002/mrm.24966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/26/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE To improve image quality and reduce data requirements for spatial electron paramagnetic resonance imaging (EPRI) by developing a novel reconstruction approach using compressed sensing (CS). METHODS EPRI is posed as an optimization problem, which is solved using regularized least-squares with sparsity promoting penalty terms, consisting of the l1 norms of the image itself and the total variation of the image. Pseudo-random sampling was employed to facilitate recovery of the sparse signal. The reconstruction was compared with the traditional filtered back-projection reconstruction for simulations, phantoms, isolated rat hearts, and mouse gastrointestinal (GI) tracts labeled with paramagnetic probes. RESULTS A combination of pseudo-random sampling and CS was able to generate high-fidelity EPR images at high acceleration rates. For three-dimensional (3D) phantom imaging, CS-based EPRI showed little visual degradation at nine-fold acceleration. In rat heart datasets, CS-based EPRI produced high quality images with eight-fold acceleration. A high resolution mouse GI tract reconstruction demonstrated a visual improvement in spatial resolution and a doubling in signal-to-noise ratio (SNR). CONCLUSION A novel 3D EPRI reconstruction using compressed sensing was developed and offers superior SNR and reduced artifacts from highly undersampled data.
Collapse
Affiliation(s)
- David H Johnson
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
7
|
Miyake Y, Wang X, Amasaka M, Itto K, Xu S, Arimoto H, Fujii H, Hirata H. Simultaneous Imaging of an Enantiomer Pair by Electron Paramagnetic Resonance Using Isotopic Nitrogen Labeling. Anal Chem 2012; 85:985-90. [DOI: 10.1021/ac302710m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yusuke Miyake
- Division of Bioengineering and Bioinformatics,
Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo,
060-0814, Japan
| | - Xiaolei Wang
- Department
of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai
980-8577, Japan
| | - Mitsuo Amasaka
- Division of Bioengineering and Bioinformatics,
Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo,
060-0814, Japan
| | - Kaori Itto
- Department
of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai
980-8577, Japan
| | - Shu Xu
- Department
of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai
980-8577, Japan
| | - Hirokazu Arimoto
- Department
of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai
980-8577, Japan
| | - Hirotada Fujii
- Department
of Arts and Sciences, Center for Medical Education, Sapporo Medical University, South 1, West 17, Chuo-ku, Sapporo
060-8556, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics,
Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo,
060-0814, Japan
| |
Collapse
|
8
|
Epel, B, Halpern H. Electron paramagnetic resonance oxygen imaging in vivo. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review covers the last 15 years of the development of EPR in vivo oxygen imaging. During this time, a number of major technological and methodological advances have taken place. Narrow line width, long relaxation time, and non-toxic triaryl methyl radicals were introduced in the late 1990s. These not only improved continuous wave (CW) imaging, but also enabled the application of pulse EPR imaging to animals. Recent developments in pulse technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity, and considerable improvement in the precision and accuracy of oxygen measurements. Consequently, pulse methods take up a significant part of this review.
Collapse
Affiliation(s)
- Boris Epel,
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| | - Howard Halpern
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| |
Collapse
|
9
|
Bézière N, Decroos C, Mkhitaryan K, Kish E, Richard F, Bigot-Marchand S, Durand S, Cloppet F, Chauvet C, Corvol MT, Rannou F, Xu-Li Y, Mansuy D, Peyrot F, Frapart YM. First Combined in Vivo X-Ray Tomography and High-Resolution Molecular Electron Paramagnetic Resonance (EPR) Imaging of the Mouse Knee Joint Taking into Account the Disappearance Kinetics of the EPR Probe. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nicolas Bézière
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Christophe Decroos
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Karen Mkhitaryan
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Elizabeth Kish
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Frédéric Richard
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Stéphanie Bigot-Marchand
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Sylvain Durand
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Florence Cloppet
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Caroline Chauvet
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Marie-Thérèse Corvol
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - François Rannou
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Yun Xu-Li
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Daniel Mansuy
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Fabienne Peyrot
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| | - Yves-Michel Frapart
- From CNRS UMR 8601, Université Paris Descartes, LCPBT; CNRS UMR 8145, Université Paris Descartes, MAP5, Université Paris Descartes, LIPADE, EA2517, Université Paris Descartes, INSERM UMR-S747, Department of Physical Medicine and Rehabilitation, Cochin Hospital (AP-HP), Université Paris Descartes; and Université Paris Sorbonne-IUFM de Paris, Paris, France
| |
Collapse
|
10
|
Chen Z, Reyes LA, Johnson DH, Velayutham M, Yang C, Samouilov A, Zweier JL. Fast gated EPR imaging of the beating heart: spatiotemporally resolved 3D imaging of free-radical distribution during the cardiac cycle. Magn Reson Med 2012; 69:594-601. [PMID: 22473660 DOI: 10.1002/mrm.24250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 11/06/2022]
Abstract
In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10-20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2-3 min. Reconstructed images display temporal and spatial variations of the free-radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle.
Collapse
Affiliation(s)
- Zhiyu Chen
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ahmad R, Kuppusamy P. Theory, instrumentation, and applications of electron paramagnetic resonance oximetry. Chem Rev 2010; 110:3212-36. [PMID: 20218670 PMCID: PMC2868962 DOI: 10.1021/cr900396q] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rizwan Ahmad
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
12
|
Ikebata Y, Sato-Akaba H, Aoyama T, Fujii H, Itoh K, Hirata H. Resolution-recovery for EPR imaging of free radical molecules in mice. Magn Reson Med 2009; 62:788-95. [DOI: 10.1002/mrm.22029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Levêque P, Godechal Q, Bol A, Trompier F, Gallez B. X-band EPR imaging as a tool for gradient dose reconstruction in irradiated bones. Med Phys 2009; 36:4223-9. [DOI: 10.1118/1.3194775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Sato-Akaba H, Kuwahara Y, Fujii H, Hirata H. Half-Life Mapping of Nitroxyl Radicals with Three-Dimensional Electron Paramagnetic Resonance Imaging at an Interval of 3.6 Seconds. Anal Chem 2009; 81:7501-6. [DOI: 10.1021/ac901169g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hideo Sato-Akaba
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan, and School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yoko Kuwahara
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan, and School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hirotada Fujii
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan, and School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan, and School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| |
Collapse
|
15
|
Sato-Akaba H, Fujii H, Hirata H. Development and testing of a CW-EPR apparatus for imaging of short-lifetime nitroxyl radicals in mouse head. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:191-198. [PMID: 18502159 DOI: 10.1016/j.jmr.2008.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/20/2008] [Accepted: 04/24/2008] [Indexed: 05/26/2023]
Abstract
This article describes a method for reducing the acquisition time in three-dimensional (3D) continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To visualize nitroxyl spin probes, which have a short lifetime in living organisms, the acquisition time for a data set of spectral projections should be shorter than the lifetime of the spin probes. To decrease the total time required for data acquisition, the duration of magnetic field scanning was reduced to 0.5s. Moreover, the number of projections was decreased by using the concept of a uniform distribution. To demonstrate this faster data acquisition, two kinds of nitroxyl radicals with different decay rates were measured in mice. 3D EPR imaging of 4-hydroxy-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl in mouse head was successfully carried out. 3D EPR imaging of nitroxyl spin probes with a half-life of a few minutes was achieved for the first time in live animals.
Collapse
Affiliation(s)
- Hideo Sato-Akaba
- Department of Electrical Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | | | | |
Collapse
|
16
|
Enabling Sensor Technologies for the Quantitative Evaluation of Engineered Tissue. Ann Biomed Eng 2007; 36:30-40. [DOI: 10.1007/s10439-007-9399-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
17
|
Abstract
The purpose of this review is to provide an overview of the methods available for imaging tissue oxygenation. The following imaging methods are reviewed: phosphorescence, near-infrared (NIR), positron emission tomography (PET), magnetic resonance imaging ((19)F MRI and BOLD MRI), and electron paramagnetic resonance (EPR). The methods are based on different principles and differ in their ability to accurately quantify tissue oxygenation, either the absolute value of a particular measure of oxygenation (partial pressure of oxygen, concentration), or a parameter related to it (oxygen saturation). Methods that can provide images of relative changes in oxygenation or visualization of hypoxia in a specific tissue of interest are also considered valuable tools for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Deepti S Vikram
- Center for Biomedical EPR Spectroscopy and Imaging, Comprehensive Cancer Center, Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|