1
|
Zhan H, Chen Y, Cui Y, Zeng Y, Feng X, Tan C, Huang C, Lin E, Huang Y, Chen Z. Pure-Shift-Based Proton Magnetic Resonance Spectroscopy for High-Resolution Studies of Biological Samples. Int J Mol Sci 2024; 25:4698. [PMID: 38731917 PMCID: PMC11083948 DOI: 10.3390/ijms25094698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yinping Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yunsong Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chunhua Tan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Enping Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Mohajeri S, Bezabeh T, Ijare OB, King SB, Thomas MA, Minuk G, Lipschitz J, Kirkpatrick I, Micflikier AB, Summers R, Smith ICP. In vivo 1 H MRS of human gallbladder bile in understanding the pathophysiology of primary sclerosing cholangitis (PSC): Immune-mediated disease versus bile acid-induced injury. NMR IN BIOMEDICINE 2019; 32:e4065. [PMID: 30735273 DOI: 10.1002/nbm.4065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Primary sclerosing cholangitis (PSC) has been considered to be either an "autoimmune disease" or a "bile acid-induced injury." In vitro MRS studies on PSC patients have limitations due to the contamination of bile with contrast agent (commonly administered during endoscopic retrograde cholangiopancreatography) and/or the use of patient cohorts with other diseases as controls. The objective of this study was to quantify biliary metabolites using in vivo 1 H MRS and gain insight into the pathogenesis of PSC. Biliary metabolites in 10 PSC patients and 14 healthy controls were quantified in vivo using 1 H MRS on a 3 T MR scanner. The concentrations of total bile acids plus cholesterol, glycine-conjugated bile acids, taurine-conjugated bile acids, and choline-containing phospholipids (chol-PLs) were compared between the two groups. There were statistically significant decreases in the levels of the above mentioned biliary metabolites in the PSC patients compared with controls. The reduction in bile acid secretion in bile of PSC patients indicates accumulation of bile acids in hepatocytes. Moreover, reduction in the levels of chol-PLs in bile may increase the toxic effects of bile acids. Our findings suggest that the bile duct injury in PSC patients is most likely due to "bile acid-induced injury."
Collapse
Affiliation(s)
| | - Tedros Bezabeh
- University of Winnipeg, Winnipeg, Manitoba, Canada
- University of Guam, Mangilao, Guam, USA
| | | | - Scott B King
- National Research Council of Canada, Winnipeg, Manitoba, Canada
| | | | - Gerald Minuk
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | - Randy Summers
- National Research Council of Canada, Winnipeg, Manitoba, Canada
| | - Ian C P Smith
- University of Manitoba, Winnipeg, Manitoba, Canada
- University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Akoka S, Giraudeau P. Fast hybrid multi-dimensional NMR methods based on ultrafast 2D NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:986-94. [PMID: 25825866 DOI: 10.1002/mrc.4237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 05/13/2023]
Abstract
Conventional multi-dimensional (nD) NMR experiments are characterized by inherent long acquisition durations, while ultrafast (UF) NMR makes it possible to reduce to a few hundreds of milliseconds the overall acquisition duration of a complete nD NMR dataset. Although extremely promising for a number of specific applications, the UF strategy suffers from significant limitations compared with its conventional counterpart. The main limitations concern the sensitivity, the resolution, and the accessible spectral width. However, when the targeted applications are compatible with an acquisition duration between a few seconds and a few minutes, hybrid UF techniques can be used to improve the performance of UF nD NMR while remaining faster than conventional acquisitions. Much better results in terms of signal-to-noise ratio can be achieved with the multi-scan single-shot approach or with interleaved acquisitions. Even more, for the same experimental duration, and in the case of homonuclear 2D NMR, the multi-scan single-shot approach has a much higher precision than conventional 2D NMR. Interleaved 2D NMR overcomes the drawbacks of single-scan UF NMR in terms of spectral width and provides spectra for which the quality is not significantly different from that obtained with conventional 2D NMR. Finally, high spectral qualities have been demonstrated from hybrid conventional/UF 3D approaches capable of recording a whole 3D spectrum in the time needed to record a conventional 2D spectrum. This mini-review aims at describing the principles, the recent advances and the latest applications of these hybrid techniques. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Serge Akoka
- EBSI Team, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), CNRS, UMR 6230, Université de Nantes, LUNAM Université
| | - Patrick Giraudeau
- EBSI Team, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), CNRS, UMR 6230, Université de Nantes, LUNAM Université
- Institut Universitaire de France, 1 rue Descartes, 75005, Paris Cedex 5, France
| |
Collapse
|
4
|
Martel D, Tse Ve Koon K, Le Fur Y, Ratiney H. Localized 2D COSY sequences: Method and experimental evaluation for a whole metabolite quantification approach. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:98-108. [PMID: 26432399 DOI: 10.1016/j.jmr.2015.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 05/08/2023]
Abstract
Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance--generally known as the Cramér Rao bounds (CRBs), a standard of precision--on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.
Collapse
Affiliation(s)
- Dimitri Martel
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, France
| | - K Tse Ve Koon
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, France
| | - Yann Le Fur
- Aix-Marseille Université, CRMBM, CNRS UMR, 7339 Marseille, France
| | - Hélène Ratiney
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, France.
| |
Collapse
|
5
|
Wei Z, Lin L, Wang C, Yang J, Liu G, Zhong J, Lin Y, Chen Z. High-resolution localized spatiotemporal encoding correlated spectra under inhomogeneous magnetic fields via asymmetrical gradient encoding/decoding. NMR IN BIOMEDICINE 2015; 28:210-216. [PMID: 25504877 DOI: 10.1002/nbm.3241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Applications of conventional localized nuclear magnetic resonance correlated spectroscopy are restrained by long acquisition times and poor performance under inhomogeneous magnetic fields. Here, a method that combines the spatiotemporal encoding technique with the localization technique and implements the encoding and decoding in unison with suitable asymmetrical gradients is proposed to obtain high-resolution localized correlated spectra under inhomogeneous fields in greatly reduced times. Experiments on phantom solutions prove its insensitivity to linear field inhomogeneities along three orthogonal axes. Moreover, this method is applied to adipose study of marrow tissue with resolution improvements. The proposed method may offer promising perspectives for fast analyses of biological tissues.
Collapse
Affiliation(s)
- Zhiliang Wei
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for the Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Giraudeau P, Frydman L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:129-61. [PMID: 25014342 PMCID: PMC5040491 DOI: 10.1146/annurev-anchem-071213-020208] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
Collapse
Affiliation(s)
- Patrick Giraudeau
- Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation, UMR 6230, Université de Nantes, 44322 Nantes Cedex 03, France;
| | | |
Collapse
|
7
|
Keshari KR, Wilson DM. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev 2013; 43:1627-59. [PMID: 24363044 DOI: 10.1039/c3cs60124b] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of transient chemical phenomena by conventional NMR has proved elusive, particularly for non-(1)H nuclei. For (13)C, hyperpolarization using the dynamic nuclear polarization (DNP) technique has emerged as a powerful means to improve SNR. The recent development of rapid dissolution DNP methods has facilitated previously impossible in vitro and in vivo study of small molecules. This review presents the basics of the DNP technique, identification of appropriate DNP substrates, and approaches to increase hyperpolarized signal lifetimes. Also addressed are the biochemical events to which DNP-NMR has been applied, with descriptions of several probes that have met with in vivo success.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | | |
Collapse
|
8
|
Wei Z, Lin L, Lin Y, Cai S, Chen Z. Ultrafast acquisition of localized two-dimensional magnetic resonance correlated spectra of inhomogeneous biological tissues with resolution improvements. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Ultrafast localized two-dimensional magnetic resonance correlated spectroscopy via spatially encoded technique. Magn Reson Med 2013; 71:903-10. [DOI: 10.1002/mrm.24731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Pathan M, Charrier B, Tea I, Akoka S, Giraudeau P. New practical tools for the implementation and use of ultrafast 2D NMR experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:168-175. [PMID: 23348689 DOI: 10.1002/mrc.3927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 06/01/2023]
Abstract
Ultrafast (UF) 2D NMR is a very promising methodology enabling the acquisition of 2D spectra in a single scan. In the last few years, the analytical performance of UF 2D NMR has been highly increased, consequently maximizing its range of applications. However, its implementation and use by non-specialists are far from being straightforward, because of the specific acquisition and processing procedures and parameters characterizing UF NMR. To make this methodology implementable and applicable by non-specialists, we developed a simple routine capable of translating conventional parameters (spectral widths and transmitter frequencies) into specific UF parameters (gradient and chirp pulse parameters). This macro was subsequently implemented in a Web page, which is available for external users. Although the algorithm was designed for two widely used 2D experiments, COSY and HSQC, it can easily be extended to any other pulse sequence. The robustness of this routine was verified successfully on a variety of small molecules. We believe that this tool will eliminate much of the technical difficulties related to UF 2D NMR and will make the technique accessible to a wider audience of organic and analytical chemists.
Collapse
Affiliation(s)
- Meerakhan Pathan
- CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, Faculté des Sciences, Université de Nantes, BP 92208, 2 rue de la Houssinière, F-44322 Nantes Cedex 03, France
| | | | | | | | | |
Collapse
|
11
|
Zhang Z, Chen H, Wu C, Wu R, Cai S, Chen Z. Spatially encoded ultrafast high-resolution 2D homonuclear correlation spectroscopy in inhomogeneous fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:39-45. [PMID: 23262331 DOI: 10.1016/j.jmr.2012.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
Two-dimensional (2D) NMR spectroscopy shows strong vitality and unsubstitutable significance among NMR techniques. In many cases, however, it is virtually impossible to obtain high-resolution 2D spectra in inhomogeneous fields. Furthermore, conventional 2D NMR spectroscopy suffers from long acquisition time. In this paper, two new pulse sequences tracking the differences of the precession frequencies of two coupled spins are proposed to ultrafast achieve high-resolution 2D correlation spectroscopy (COSY and TOCSY) in inhomogeneous fields in a single scan. The spectral width of the indirect dimension can be reduced to improve the spectral resolution without loss of the correlative information for reconstructing the COSY and TOCSY spectra with mathematical manipulations. The theoretical analysis was given and experiments were performed to verify theoretical predictions. The results show that the proposed sequences can give correct 2D COSY and TOCSY spectra if the field inhomogeneity is linear along the orientation of encoding and decoding gradients.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Fujian, China
| | | | | | | | | | | |
Collapse
|
12
|
Giraudeau P, Montag T, Charrier B, Thiele CM. Fast access to residual dipolar couplings by single-scan 2D NMR in oriented media. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50 Suppl 1:S53-S57. [PMID: 22865710 DOI: 10.1002/mrc.3856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
Residual dipolar couplings (RDCs) have revolutionized the structure determination of biomolecular and organic compounds. So far, their measurement has been rather time-consuming, but one might imagine that RDCs can one day also be useful in the investigation of compounds with limited stability or short lifetimes. For such applications, it is indispensable to shorten the experiment time. In this communication, we show the first measurement of RDCs from single-scan two-dimensional NMR. An ultrafast HSQC NMR pulse sequence is presented, which includes several of the recent improvements brought to ultrafast NMR in terms of sensitivity, resolution, and spectral width. Ultrafast spectra are obtained in as little time as 60 s on an organic compound at natural abundance, namely (+)-isopinocampheol. When extracting the RDCs from these ultrafast data, a good agreement with those extracted from conventional spectra (obtained in a much longer time) is observed. These results point out the efficiency of the ultrafast approach, particularly when considering the total experiment duration.
Collapse
Affiliation(s)
- Patrick Giraudeau
- CNRS, CEISAM UMR 6230, BP 92208, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France.
| | | | | | | |
Collapse
|
13
|
Rouger L, Loquet D, Massou S, Akoka S, Giraudeau P. Limitation of Diffusion Effects in Ultrafast 2D Nuclear Magnetic Resonance by Encapsulation of Analytes in Phospholipidic Vesicles. Chemphyschem 2012; 13:4124-7. [DOI: 10.1002/cphc.201200622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Indexed: 11/10/2022]
|
14
|
Pola A, Sadananthan SA, Yaligar J, Nagarajan V, Han W, Kuchel PW, Velan SS. Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 65:66-76. [PMID: 22781315 DOI: 10.1016/j.pnmrs.2012.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/08/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Arunima Pola
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | | | | | | | | | | |
Collapse
|