1
|
Akbey Ü. Site-specific protein backbone deuterium 2H α quadrupolar patterns by proton-detected quadruple-resonance 3D 2H αc αNH MAS NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101861. [PMID: 36989552 DOI: 10.1016/j.ssnmr.2023.101861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 06/11/2023]
Abstract
A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) 2HαcαNH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific 2Hα deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF) channels (quadruple-resonance), we managed to excite the 2Hα, then transfer deuterium polarization to its attached Cα, followed by polarization transfers to the neighboring backbone nitrogen and then to the amide proton for detection. This experiment results in an easy to interpret HSQC-like 2D 1H-15N fingerprint NMR spectrum, which contains site-specific deuterium quadrupolar patterns in the indirect third dimension. Provided that four-channel NMR probe technology is available, the setup of the 2HαcαNH experiment is relatively straightforward, by using low power deuterium excitation and polarization transfer schemes we have been developing. To our knowledge, this is the first demonstration of a quadruple-resonance MAS NMR experiment to link 2Hα quadrupolar couplings to proton-detection, extending our previous triple-resonance demonstrations. Distortion-free excitation and polarization transfer of ∼160-170 kHz 2Hα quadrupolar coupling were presented by using a deuterium RF strength of ∼20 kHz. From these 2Hα patterns, an average backbone order parameter of S = 0.92 was determined on a deuterated SH3 sample, with an average η = 0.22. These indicate that SH3 backbone represents sizable dynamics in the microsecond timescale where the 2Hα lineshape is sensitive. Moreover, site-specific 2Hα T1 relaxation times were obtained for a proof of concept. This 3D 2HαcαNH NMR experiment has the potential to determine structure and dynamics of perdeuterated proteins by utilizing deuterium as a novel reporter.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, United States.
| |
Collapse
|
2
|
Akbey Ü. Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2H- 13C- 1H MAS NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:23-28. [PMID: 34997409 DOI: 10.1007/s10858-021-00388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium's large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional 2H-13C-1H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl 2H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint 1H-15N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.
Collapse
Affiliation(s)
- Ümit Akbey
- Radboud University, Magnetic Resonance Research Center, Institute for Molecules and Materials, Nijmegen, The Netherlands.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Akbey Ü. Dynamics of uniformly labelled solid proteins between 100 and 300 K: A 2D 2H- 13C MAS NMR approach. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106974. [PMID: 33823335 DOI: 10.1016/j.jmr.2021.106974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
We describe a 2H based MAS nuclear magnetic resonance (NMR) method to obtain site-specific molecular dynamics of biomolecules. The method utilizes the use of deuterium nucleus as a spin label that is proven to be very useful in dynamics studies of solid biological and functional materials. The aim is to understand overall characteristics of protein backbone and side-chain motions for CD3, CD2 and CD groups, in terms of timescale, type and activation energy of the underlying processes. Variable temperature two-dimensional (2D) 2H-13C correlation MAS NMR spectra were recorded for the uniformly 2H,13C,15N labelled Alanine and microcrystalline SH3 at a broad temperature range, from 320 K down to 100 K. First, the deuterium quadrupolar-coupling constant from specific D-C sites is obtained with the 2D experiment by utilizing carbon chemical shifts. Second, the static quadrupolar patterns are obtained at 100 K. Third, variable temperature approach enabled the observation of quadrupolar pattern over different motional regimes; slow, intermediate and fast. And finally, the apparent activation energies for C-D sites are determined and compared, by evaluating the temperature induced signal intensities. This information led to the determination of the dynamic processes for different D-C sites at a broad range of temperature and motional timescales. This is a first representation of 2D 2H-13C MAS NMR approach applied to fully isotope labelled deuterated protein covering 220 K temperature range.
Collapse
Affiliation(s)
- Ümit Akbey
- Weizmann Institute of Science, Department of Chemical and Biological Physics, Perlman Chemical Sciences Building, P.O. Box 26, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 2019; 10:347. [PMID: 30664653 PMCID: PMC6341099 DOI: 10.1038/s41467-018-08252-0] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 01/16/2023] Open
Abstract
Lignin is a complex aromatic biopolymer that strengthens and waterproofs plant secondary cell walls, enabling mechanical stability in trees and long-distance water transport in xylem. Lignin removal is a key step in paper production and biomass conversion to biofuels, motivating efforts to re-engineer lignin biosynthesis. However, the physical nature of lignin's interactions with wall polysaccharides is not well understood. Here we show that lignin self-aggregates to form highly hydrophobic and dynamically unique nanodomains, with extensive surface contacts to xylan. Solid-state NMR spectroscopy of intact maize stems, supported by dynamic nuclear polarization, reveals that lignin has abundant electrostatic interactions with the polar motifs of xylan. Lignin preferentially binds xylans with 3-fold or distorted 2-fold helical screw conformations, indicative of xylans not closely associated with cellulose. These findings advance our knowledge of the molecular-level organization of lignocellulosic biomass, providing the structural foundation for optimization of post-harvest processing for biofuels and biomaterials.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | | | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
5
|
Lends A, Ravotti F, Zandomeneghi G, Böckmann A, Ernst M, Meier BH. Direct amide 15N to 13C transfers for solid-state assignment experiments in deuterated proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 72:69-78. [PMID: 30206780 DOI: 10.1007/s10858-018-0207-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The assignment of protein backbone and side-chain NMR chemical shifts is the first step towards the characterization of protein structure. The recent introduction of proton detection in combination with fast MAS has opened up novel opportunities for assignment experiments. However, typical 3D sequential-assignment experiments using proton detection under fast MAS lead to signal intensities much smaller than the theoretically expected ones due to the low transfer efficiency of some of the steps. Here, we present a selective 3D experiment for deuterated and (amide) proton back-exchanged proteins where polarization is directly transferred from backbone nitrogen to selected backbone or sidechain carbons. The proposed pulse sequence uses only 1H-15N cross-polarization (CP) transfers, which are, for deuterated proteins, about 30% more efficient than 1H-13C CP transfers, and employs a dipolar version of the INEPT experiment for N-C transfer. By avoiding HN-C (HN stands for amide protons) and C-C CP transfers, we could achieve higher selectivity and increased signal intensities compared to other pulse sequences containing long-range CP transfers. The REDOR transfer is designed with an additional selective π pulse, which enables the selective transfer of the polarization to the desired 13C spins.
Collapse
Affiliation(s)
- Alons Lends
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Francesco Ravotti
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Giorgia Zandomeneghi
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367, Lyon, France
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol 2018; 206:73-89. [PMID: 30205196 DOI: 10.1016/j.jsb.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| |
Collapse
|
7
|
Collier KA, Sengupta S, Espinosa CA, Kelly JE, Kelz JI, Martin RW. Design and construction of a quadruple-resonance MAS NMR probe for investigation of extensively deuterated biomolecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:8-17. [PMID: 29059553 PMCID: PMC6317732 DOI: 10.1016/j.jmr.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
Extensive deuteration is frequently used in solid-state NMR studies of biomolecules because it dramatically reduces both homonuclear (1H-1H) and heteronuclear (1H-13C and 1H-15N) dipolar interactions. This approach greatly improves resolution, enables low-power rf decoupling, and facilitates 1H-detected experiments even in rigid solids at moderate MAS rates. However, the resolution enhancement is obtained at some cost due the reduced abundance of protons available for polarization transfer. Although deuterium is a useful spin-1 NMR nucleus, in typical experiments the deuterons are not directly utilized because the available probes are usually triple-tuned to 1H,13C and 15N. Here we describe a 1H/13C/2H/15N MAS ssNMR probe designed for solid-state NMR of extensively deuterated biomolecules. The probe utilizes coaxial coils, with a modified Alderman-Grant resonator for the 1H channel, and a multiply resonant solenoid for 13C/2H/15N. A coaxial tuning-tube design is used for all four channels in order to efficiently utilize the constrained physical space available inside the magnet bore. Isolation among the channels is likewise achieved using short, adjustable transmission line elements. We present benchmarks illustrating the tuning of each channel and isolation among them and the magnetic field profiles at each frequency of interest. Finally, representative NMR data are shown demonstrating the performance of both the detection and decoupling circuits.
Collapse
Affiliation(s)
- Kelsey A Collier
- Department of Physics & Astronomy, UC Irvine, Irvine, CA 92697-4575, United States
| | - Suvrajit Sengupta
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | | | - John E Kelly
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | - Rachel W Martin
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States; Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA 92697-3900, United States.
| |
Collapse
|
8
|
Yao Y, Dutta SK, Park SH, Rai R, Fujimoto LM, Bobkov AA, Opella SJ, Marassi FM. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes. JOURNAL OF BIOMOLECULAR NMR 2017; 67:179-190. [PMID: 28239773 PMCID: PMC5490241 DOI: 10.1007/s10858-017-0094-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail's biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13C or 1H detection, have very narrow line widths (0.40-0.60 ppm for 13C, 0.11-0.15 ppm for 1H, and 0.46-0.64 ppm for 15N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1H-detected solid-state NMR 1H/15N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1H/15N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.
Collapse
Affiliation(s)
- Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Samit Kumar Dutta
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0307, USA
| | - Ratan Rai
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0307, USA
| | - L Miya Fujimoto
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0307, USA
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Song C, Lang C, Kopycki J, Hughes J, Matysik J. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1. Front Mol Biosci 2015; 2:42. [PMID: 26284254 PMCID: PMC4516977 DOI: 10.3389/fmolb.2015.00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022] Open
Abstract
Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in previous MAS NMR and crystallographic studies. AmS precipitation might nevertheless provide useful protein structure/functional information for full-length Cph1 in cases where neither X-ray crystallography nor conventional NMR methods are available.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität Gießen Gießen, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden Leiden, Netherlands ; Institut für Analytische Chemie, Fakultät für Chemie and Mineralogie, Universität Leipzig Leipzig, Germany
| |
Collapse
|
10
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-resonance magic-angle spinning NMR spectroscopy of deuterated solid proteins. Angew Chem Int Ed Engl 2014; 53:2438-42. [PMID: 24474388 DOI: 10.1002/anie.201308927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Indexed: 11/12/2022]
Abstract
(1)H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using (2)H excitation instead of (1)H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, "quadruple-resonance NMR spectroscopy", is presented which relies on an efficient (2)H-excitation and (2)H-(13)C cross-polarization (CP) step, combined with (1)H detection. We show that by using (2)H-excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.
Collapse
Affiliation(s)
- Ümit Akbey
- Leibniz Institute for Molecular Pharmacology, Robert Roessle Str. 10, 13125 Berlin (Germany).
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jain SK, Nielsen AB, Hiller M, Handel L, Ernst M, Oschkinat H, Akbey Ü, Nielsen NC. Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic RESPIRATIONCP in solid-state NMR. Phys Chem Chem Phys 2014; 16:2827-30. [DOI: 10.1039/c3cp54419b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ferella L, Luchinat C, Ravera E, Rosato A. SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:319-26. [PMID: 24243317 DOI: 10.1007/s10858-013-9795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 05/09/2023]
Abstract
We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity--obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device--into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.
Collapse
Affiliation(s)
- Lucio Ferella
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | | | | | | |
Collapse
|
14
|
Jayanthi S, Akbey Ü, Uluca B, Oschkinat H, Vega S. A Floquet description of phase alternated sequences for efficient homonuclear recoupling in solid perdeuterated systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:10-20. [PMID: 23831836 DOI: 10.1016/j.jmr.2013.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/08/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
A Floquet description of a phase alternated homonuclear recoupling scheme for perdeuterated systems is presented. As a result, we demonstrate improvements in the recoupling efficiency of the DOuble Nucleus Enhanced Recoupling [DONER; J. Am. Chem. Soc. 131 (2009) 17054] technique by utilizing Phase Alternated Recoupling Irradiation Schemes [PARIS; Chem. Phys. Lett. 469 (2009) 342]. The effect of proton and deuterium radio frequency irradiation during recoupling has been systematically studied and theoretical observations have been verified experimentally using a deuterated model compound, L-Alanine, at 10 and 20 kHz magic angle spinning frequency. Experimental results are well in agreement with theoretical observations, thereby significantly increasing the recoupling efficiency of conventional DONER in perdeuterated systems.
Collapse
Affiliation(s)
- Sundaresan Jayanthi
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
15
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein extracts. However, biological NMR spectroscopy is limited to concentrated samples, typically in the millimolar range, due to its intrinsic low sensitivity compared to other techniques such as fluorescence or electron paramagnetic resonance (EPR) spectroscopy.Dynamic nuclear polarization (DNP) is a method that increases the sensitivity of NMR by several orders of magnitude. It exploits a polarization transfer from unpaired electrons to neighboring nuclei which leads to an absolute increase of the signal-to-noise ratio (S/N). Consequently, biological samples with much lower concentrations can now be studied in hours or days compared to several weeks.This chapter will explain the different types of DNP enhanced NMR experiments, focusing primarily on solid-state magic angle spinning (MAS) DNP, its applications, and possible means of improvement.
Collapse
|
16
|
Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E. On the use of ultracentrifugal devices for sedimented solute NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 54:123-7. [PMID: 22872367 DOI: 10.1007/s10858-012-9657-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/26/2012] [Indexed: 05/09/2023]
Abstract
We have recently proposed sedimented solute NMR (SedNMR) as a solid-state method to access biomolecules without the need of crystallization or other sample manipulation. The drawback of SedNMR is that samples are intrinsically diluted and this is detrimental for the signal intensity. Ultracentrifugal devices can be used to increase the amount of sample inside the rotor, overcoming the intrinsic sensitivity limitation of the method. We designed two different devices and we here report the directions for using such devices and the relevant equations for determining the parameters for sedimentation.
Collapse
Affiliation(s)
- Ivano Bertini
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy.
| | | | | | | | | | | | | |
Collapse
|