1
|
Valles GJ, Korchak EJ, Geddes-Buehre DH, Jaiswal N, Korzhnev DM, Bezsonova I. Activation dynamics of ubiquitin-specific protease 7. Proc Natl Acad Sci U S A 2025; 122:e2426632122. [PMID: 40397674 DOI: 10.1073/pnas.2426632122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that plays a crucial role in cellular processes, including the maintenance of genome stability and regulation of antiviral and immune responses. Its dysfunction is linked to various cancers and neurodevelopmental disorders such as Hao-Fountain syndrome. Unlike other USP-family enzymes, the triad of catalytic residues in USP7 adopts an inactive conformation and undergoes rearrangement into the active state upon substrate binding. Despite its potential importance for regulating the enzyme's activity, the dynamics of USP7 have not been explored. In this study, we combine advanced CPMG NMR relaxation dispersion measurements with the analysis of enzyme kinetics to investigate the conformational dynamics of USP7 in solution and its role in enzyme activation. Our results suggest that apo-USP7 exists in a dynamic equilibrium, transiently switching between inactive and low-populated active conformations, indicating that enzyme activation can occur spontaneously, even in the absence of a substrate. Furthermore, we show that the Hao-Fountain syndrome-associated variant G392D enhances the conformational dynamics of the enzyme, leading to a significant increase in its catalytic activity. This study captures the sparsely populated, "invisible" active conformation of USP7 and demonstrates how changes in enzyme dynamics can contribute to activity, offering broader insights into enzyme function and disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Emilie J Korchak
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Dane H Geddes-Buehre
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Nancy Jaiswal
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
2
|
Cai M, Ying J, Lopez JM, Huang Y, Clore GM. Unraveling structural transitions and kinetics along the fold-switching pathway of the RfaH C-terminal domain using exchange-based NMR. Proc Natl Acad Sci U S A 2025; 122:e2506441122. [PMID: 40366684 DOI: 10.1073/pnas.2506441122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
The bacterial transcriptional regulator RfaH comprises structurally and functionally distinct N- (NTD) and C- (CTD) terminal domains. The latter switches from a helical hairpin packed against the NTD to a five-stranded β-roll upon displacement by RNA polymerase binding. Here, we use exchange-based NMR to probe fold-switching intermediates sampled by the isolated CTD. In addition to the predominant (~76 to 77%), semistable β-roll conformation (state A), we identify four structurally and kinetically distinct states: A', B, B', and B″. State B is NMR observable with an occupancy of ~23%, exchanges slowly (τex ~ 300 ms) with the major A species, and comprises a largely unfolded ensemble with transient occupancy of helical (α5*) and β-hairpin (β1*/β2*) elements. Backbone chemical shift-based structure predictions using the program CS-ROSETTA suggest that the two transient structural elements within the B state may interact with one another to form a semicompact structure. A' (~0.35%) is an off-pathway state that exchanges rapidly (τex ~ 1 ms) with state A and likely entails a minor localized conformational change in the β1/β2 loop. State B' (~0.3%) exchanges rapidly (τex ~ 1.2 ms) with state B and exhibits downfield 15N backbone shifts (relative to B) in the α5* region indicative of reduced helicity. Finally state B″ (~0.05%) exchanges rapidly (τex ~ 0.8 to 1 ms) with either B' (linear model) or B (branched model), displays significant differences in absolute 15N chemical shift from states B and B', and likely represents a further intermediate with increased helicity along the fold-switching pathway.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
| | - Juan M Lopez
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
- Departmento de Ciencia-Quimica, Centro de Espectroscopia de Resonancia Magnética Nuclear, Pontificia Universidad Católica del Perú, Lima 32, Perú
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520
| |
Collapse
|
3
|
Kasai T, Kigawa T. Autonomous adaptive optimization of NMR experimental conditions for precise inference of minor conformational states of proteins based on chemical exchange saturation transfer. PLoS One 2025; 20:e0321692. [PMID: 40378160 DOI: 10.1371/journal.pone.0321692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 05/18/2025] Open
Abstract
In scientific experiments where measurement sensitivity is a major limiting factor, the optimization of experimental conditions, such as measurement parameters, is essential to maximize the information obtained per unit time and the number of experiments performed. When optimization in advance is not possible because of limited prior knowledge of the system, autonomous, adaptive optimization must be implemented during the experiment. One approach to this involves sequential Bayesian optimal experimental design, which adopts mutual information as the utility function to be maximized. In this study, we applied this optimization method to the chemical exchange saturation transfer (CEST) experiment in nuclear magnetic resonance (NMR) spectroscopy, which is used to study minor but functionally important invisible states of certain molecules, such as proteins. Adaptive optimization was utilized because prior knowledge of minor states is limited. To this end, we developed an adaptive optimization system of 15N-CEST experimental conditions for proteins using Markov chain Monte Carlo (MCMC) to calculate the posterior distribution and utility function. To ensure the completion of MCMC computations within a reasonable period with sufficient precision, we developed a second-order approximation of the CEST forward model. Both simulations and actual measurements using the FF domain of the HYPA/FBP11 protein with the A39G mutation demonstrated that the adaptive method outperformed the conventional one in terms of estimation precision of minor-state parameters based on equal numbers of measurements. Because the algorithm used for the evaluation of the utility function is independent of the type of experiment, the proposed method can be applied to various spectroscopic measurements in addition to NMR, if the forward model or its approximation can be calculated sufficiently quickly.
Collapse
Affiliation(s)
- Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Research DX Foundation Team, TRIP Headquarters, RIKEN, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- NMR Operation Team, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Huang Y, Eliezer D. Sharpening the lens of NMR spectroscopy to study large proteins. Nat Chem 2025:10.1038/s41557-025-01817-9. [PMID: 40325145 DOI: 10.1038/s41557-025-01817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Affiliation(s)
- Yun Huang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Hilber S, Attionu SK, Dayie TK, Kreutz C. Advances in Isotope Labeling for Solution Nucleic Acid Nuclear Magnetic Resonance Spectroscopy. Chempluschem 2025:e2400752. [PMID: 40202339 DOI: 10.1002/cplu.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/10/2025]
Abstract
The availability of structural biology methods for nucleic acid still lags behind that of proteins, as evidenced by the smaller number of structures (DNA: 2513, RNA: 1899, nucleic acid-protein complexes: 13 842, protein: 196 887) deposited in the protein database. The skewed ratio of nucleic acid structures, relative to proteins (≈1:50), is inverted with respect to the cellular output of RNA and proteins in higher organisms (≈50:1). While nuclear magnetic resonance (NMR) is an attractive biophysical tool capable of bridging this gap at the molecular level, the conformational flexibility, line broadening, and low chemical shift dispersion of nucleic acids have made the NMR method challenging, especially for structures larger than 35 nucleotides. The incorporation of NMR-active isotopes is a f strategy to combat these problems. Significant strides made to push the size limits of nucleic acid structures solved by NMR using chemoenzymatic 13C- methyl and aromatic 15N- and 19F-13C-labeling are reviewed and challenges and opportunities are evaluated. Combining these isotopic labeling patterns with superior NMR spectroscopic properties, and new DNA/RNA synthesis methods (palindrome-nicking-dependent amplification and segmental labeling and site-specific modifications by template-directed tension), may stimulate advances in NMR studies of large DNA/RNA and their complexes with important biological functions.
Collapse
Affiliation(s)
- Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, 6020, Innsbruck, Austria
| | - Solomon Kojo Attionu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
6
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and Systematic NMR Measurements of Sequence-Dependent A-T Hoogsteen Dynamics in the DNA Double Helix. Biochemistry 2025; 64:1042-1054. [PMID: 39982856 DOI: 10.1021/acs.biochem.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
The dynamic properties of DNA depend on the sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging, especially when they involve lowly populated and short-lived conformational states. Using 1H CEST supplemented by targeted 13C R1ρ NMR experiments, we quantitatively measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in 13 trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. Our results uncover a unique conformational basis for sequence-specificity in the DNA double helix and establish the utility of NMR to quantitatively and comprehensively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
7
|
Gharat SA, Tamhane VA, Giri AP, Aharoni A. Navigating the challenges of engineering composite specialized metabolite pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70100. [PMID: 40089911 PMCID: PMC11910955 DOI: 10.1111/tpj.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Plants are a valuable source of diverse specialized metabolites with numerous applications. However, these compounds are often produced in limited quantities, particularly under unfavorable ecological conditions. To achieve sufficient levels of target metabolites, alternative strategies such as pathway engineering in heterologous systems like microbes (e.g., bacteria and fungi) or cell-free systems can be employed. Another approach is plant engineering, which aims to either enhance the native production in the original plant or reconstruct the target pathway in a model plant system. Although increasing metabolite production in the native plant is a promising strategy, these source plants are often exotic and pose significant challenges for genetic manipulation. Effective pathway engineering requires comprehensive prior knowledge of the genes and enzymes involved, as well as the precursor, intermediate, branching, and final metabolites. Thus, a thorough elucidation of the biosynthetic pathway is closely linked to successful metabolic engineering in host or model systems. In this review, we highlight recent advances in strategies for biosynthetic pathway elucidation and metabolic engineering. We focus on efforts to engineer complex, multi-step pathways that require the expression of at least eight genes for transient and three genes for stable transformation. Reports on the engineering of complex pathways in stably transformed plants remain relatively scarce. We discuss the major hurdles in pathway elucidation and strategies for overcoming them, followed by an overview of achievements, challenges, and solutions in pathway reconstitution through metabolic engineering. Recent advances including computer-based predictions offer valuable platforms for the sustainable production of specialized metabolites in plants.
Collapse
Affiliation(s)
- Sachin A. Gharat
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Vaijayanti A. Tamhane
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
- Department of Biotechnology (Merged With Institute of Bioinformatics and Biotechnology)Savitribai Phule Pune UniversityPuneMaharashtra411007India
| | - Ashok P. Giri
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
- Biochemical Sciences DivisionCSIR‐National Chemical LaboratoryPune411008India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Asaph Aharoni
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
8
|
Vugmeyster L, Fu R, Ostrovsky D. 17O NMR relaxation measurements for investigation of molecular dynamics in static solids using sodium nitrate as a model compound. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101976. [PMID: 39581174 PMCID: PMC11625602 DOI: 10.1016/j.ssnmr.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
17O NMR methods are emerging as a powerful tool for determination of structure and dynamics in materials and biological solids. We present experimental and theoretical frameworks for measurements of 17O NMR relaxation times in static solids focusing on the excitation of the central transition of the 17O spin 5/2 system. We employ 17O-enriched NaNO3 as a model compound, in which the nitrate oxygen atoms undergo 3-fold jumps. Rotating frame (T1ρ), transverse (T2) and longitudinal (T1) relaxation times as well as line shapes were measured for the central transition in the 280 to 195 K temperature range at 14.1 and 18.8 T field strengths. We conduct experimental and theoretical comparison between different relaxation methods and demonstrate the advantage of combining data from multiple relaxation time and line shape measurements to obtain a more accurate determination of the dynamics as compared to either of the techniques alone. The computational framework for relaxation of spin 5/2 nuclei is developed using the numerical integration of the Liouville - von Neumann equation.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA.
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, 80204, USA
| |
Collapse
|
9
|
Ghosh S, Clore GM. Decoding chaperone complexes: Insights from NMR spectroscopy. BIOPHYSICS REVIEWS 2024; 5:041308. [PMID: 39679202 PMCID: PMC11637561 DOI: 10.1063/5.0233299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Molecular chaperones play a key role in protein homeostasis by preventing misfolding and aggregation, assisting in proper protein folding, and sometimes even disaggregating formed aggregates. Chaperones achieve this through a range of transient weak protein-protein interactions, which are difficult to study using traditional structural and biophysical techniques. Nuclear magnetic resonance (NMR) spectroscopy, however, is well-suited for studying such dynamic states and interactions. A wide range of NMR experiments have been particularly valuable in understanding the mechanisms of chaperone function, as they can characterize disordered protein structures, detect weak and nonspecific interactions involving sparsely populated states, and probe the conformational dynamics of proteins and their complexes. Recent advances in NMR have significantly enhanced our knowledge of chaperone mechanisms, especially chaperone-client interactions, despite the inherent challenges posed by the flexibility and complexity of these systems. In this review, we highlight contributions of NMR to the chaperone field, focusing on the work carried out in our laboratory, which have provided insights into how chaperones maintain function within the cellular environment and interact with various protein substrates.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
10
|
Geng A, Roy R, Al-Hashimi HM. Conformational penalties: New insights into nucleic acid recognition. Curr Opin Struct Biol 2024; 89:102949. [PMID: 39522437 DOI: 10.1016/j.sbi.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA.
| |
Collapse
|
11
|
Kim Y, Gräsing D, Alia A, Wiebeler C, Matysik J. Solid-State NMR Analysis of the Dynamics of Cofactors: Comparison of Heliobacterial and Purple Bacterial Reaction Centers. J Phys Chem B 2024; 128:11525-11545. [PMID: 39514084 DOI: 10.1021/acs.jpcb.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of Heliobacillus (Hb.) mobilis (HbRCs) and the purple bacterium Rhodobacter (R.) sphaeroides (PbRCs). It is assumed that heliobacteria were among the first phototrophic organisms; therefore, their RC can be regarded as ancient. They are constructed homodimerically with perfect C2 symmetry, enabling ET over both branches of cofactors. Modern RCs of R. sphaeroides wild-type (WT) have higher redox power and are functionally highly asymmetric. The dynamics of the cofactors in both RCs has been explored using nuclear hyperpolarization, induced by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Based on the individual incorporation of 13C positions of the cofactors (through supplementation by 13C-δ-aminolevulinic acid), photo-CIDNP magic-angle spinning (MAS) NMR experiments provide access to the local dynamics of the cofactors along the ET path over a broad range of time scales. Theoretical analysis of the dynamic deformation of these macrocycles is also discussed in terms of function. The dynamics observed in HbRCs appears to be correlated to ET. The cofactors in PbRC are significantly less dynamic than those in the HbRC. Relevance for efficiency and redox properties are discussed.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
12
|
Koduru T, Hantman N, Peters EV, Jaworek MW, Wang J, Zhang S, McCallum SA, Gillilan RE, Fossat MJ, Roumestand C, Sagar A, Winter R, Bernadó P, Cherfils J, Royer CA. A molten globule ensemble primes Arf1-GDP for the nucleotide switch. Proc Natl Acad Sci U S A 2024; 121:e2413100121. [PMID: 39292747 PMCID: PMC11441498 DOI: 10.1073/pnas.2413100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/20/2024] Open
Abstract
The adenosine di-phosphate (ADP) ribosylation factor (Arf) small guanosine tri-phosphate (GTP)ases function as molecular switches to activate signaling cascades that control membrane organization in eukaryotic cells. In Arf1, the GDP/GTP switch does not occur spontaneously but requires guanine nucleotide exchange factors (GEFs) and membranes. Exchange involves massive conformational changes, including disruption of the core β-sheet. The mechanisms by which this energetically costly switch occurs remain to be elucidated. To probe the switch mechanism, we coupled pressure perturbation with nuclear magnetic resonance (NMR), Fourier Transform infra-red spectroscopy (FTIR), small-angle X-ray scattering (SAXS), fluorescence, and computation. Pressure induced the formation of a classical molten globule (MG) ensemble. Pressure also favored the GDP to GTP transition, providing strong support for the notion that the MG ensemble plays a functional role in the nucleotide switch. We propose that the MG ensemble allows for switching without the requirement for complete unfolding and may be recognized by GEFs. An MG-based switching mechanism could constitute a pervasive feature in Arfs and Arf-like GTPases, and more generally, the evolutionarily related (Ras-like small GTPases) Rags and Gα GTPases.
Collapse
Affiliation(s)
- Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Noam Hantman
- Graduate Program in Biochemistry and Biophysics, School of Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Michel W. Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, Technical University of Dortmund University, DortmundD-44227, Germany
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, School of Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Scott A. McCallum
- Shirley Ann Jackson, PhD. Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetic, FreiburgD-79108, Germany
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Amin Sagar
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, Technical University of Dortmund University, DortmundD-44227, Germany
| | - Pau Bernadó
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier34090, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette91190, France
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
13
|
Lee Y, Gu S, Al-Hashimi HM. Insights into the A-C Mismatch Conformational Ensemble in Duplex DNA and its Role in Genetic Processes through a Structure-based Review. J Mol Biol 2024; 436:168710. [PMID: 39009073 PMCID: PMC12034297 DOI: 10.1016/j.jmb.2024.168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
Collapse
Affiliation(s)
- Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
14
|
Greenberg HC, Majumdar A, Cheema EK, Kozyryev A, Rokita SE. 19F NMR Reveals the Dynamics of Substrate Binding and Lid Closure for Iodotyrosine Deiodinase as a Complement to Steady-State Kinetics and Crystallography. Biochemistry 2024; 63:2225-2232. [PMID: 39137127 PMCID: PMC11371475 DOI: 10.1021/acs.biochem.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Active site lids are common features of enzymes and typically undergo conformational changes upon substrate binding to promote catalysis. Iodotyrosine deiodinase is no exception and contains a lid segment in all of its homologues from human to bacteria. The solution-state dynamics of the lid have now been characterized using 19F NMR spectroscopy with a CF3-labeled enzyme and CF3O-labeled ligands. From two-dimensional 19F-19F NMR exchange spectroscopy, interconversion rates between the free and bound states of a CF3O-substituted tyrosine (45 ± 10 s-1) and the protein label (40 ± 3 s-1) are very similar and suggest a correlation between ligand binding and conformational reorganization of the lid. Both occur at rates that are ∼100-fold faster than turnover, and therefore these steps do not limit catalysis. A simple CF3O-labeled phenol also binds to the active site and induces a conformational change in the lid segment that was not previously detectable by crystallography. Exchange rates of the ligand (130 ± 20 s-1) and protein (98 ± 8 s-1) in this example are faster than those above but remain self-consistent to affirm a correlation between ordering of the lid and binding of the ligand. Both ligands also protect the protein from limited proteolysis, as expected from their ability to stabilize a compact lid structure. However, the minimal turnover of simple phenol substrates indicates that such stabilization may be necessary but is not sufficient for efficient catalysis.
Collapse
Affiliation(s)
- Harrison C Greenberg
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ekroop Kaur Cheema
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Cai M, Agarwal N, Garrett DS, Baber J, Clore GM. A Transient, Excited Species of the Autoinhibited α-State of the Bacterial Transcription Factor RfaH May Represent an Early Intermediate on the Fold-Switching Pathway. Biochemistry 2024; 63:2030-2039. [PMID: 39088556 PMCID: PMC11345854 DOI: 10.1021/acs.biochem.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
RfaH is a two-domain transcription factor in which the C-terminal domain switches fold from an α-helical hairpin to a β-roll upon binding the ops-paused RNA polymerase. To ascertain the presence of a sparsely populated excited state that may prime the autoinhibited resting state of RfaH for binding ops-paused RNA polymerase, we carried out a series of NMR-based exchange experiments to probe for conformational exchange on the millisecond time scale. Quantitative analysis of these data reveals exchange between major ground (∼95%) and sparsely populated excited (∼5%) states with an exchange lifetime of ∼3 ms involving residues at the interface between the N-terminal and C-terminal domains formed by the β3/β4 hairpin and helix α3 of the N-terminal domain and helices α4 and α5 of the C-terminal domain. The largest 15N backbone chemical shift differences are associated with the β3/β4 hairpin, leading us to suggest that the excited state may involve a rigid body lateral displacement/rotation away from the C-terminal domain to adopt a position similar to that seen in the active RNA polymerase-bound state. Such a rigid body reorientation would result in a reduction in the interface between the N- and C-terminal domains with the possible introduction of a cavity or cavities. This hypothesis is supported by the observation that the population of the excited species and the exchange rate of interconversion between ground and excited states are reduced at a high (2.5 kbar) pressure. Mechanistic implications for fold switching of the C-terminal domain in the context of RNA polymerase binding are discussed.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Nipanshu Agarwal
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Daniel S. Garrett
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - James Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
16
|
Kalaj BN, La Clair JJ, Shen Y, Schwieters CD, Deshmukh L, Burkart MD. Quantitative Characterization of Chain-Flipping of Acyl Carrier Protein of Escherichia coli Using Chemical Exchange NMR. J Am Chem Soc 2024; 146:18650-18660. [PMID: 38875499 PMCID: PMC11299499 DOI: 10.1021/jacs.4c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The acyl carrier protein of Escherichia coli, termed AcpP, is a prototypical example of type II fatty acid synthase systems found in many bacteria. It serves as a central hub by accepting diverse acyl moieties (4-18 carbons) and shuttling them between its multiple enzymatic partners to generate fatty acids. Prior structures of acyl-AcpPs established that thioester-linked acyl cargos are sequestered within AcpP's hydrophobic lumen. In contrast, structures of enzyme-bound acyl-AcpPs showed translocation of AcpP-tethered acyl chains into the active sites of enzymes. The mechanistic underpinnings of this conformational interplay, termed chain-flipping, are unclear. Here, using heteronuclear NMR spectroscopy, we reveal that AcpP-tethered acyl chains (6-10 carbons) spontaneously adopt lowly populated solvent-exposed conformations. To this end, we devised a new strategy to replace AcpP's thioester linkages with 15N-labeled amide bonds, which facilitated direct "visualization" of these excited states using NMR chemical exchange saturation transfer and relaxation dispersion measurements. Global fitting of the corresponding data yielded kinetic rate constants of the underlying equilibrium and populations and lifetimes of solvent-exposed states. The latter were influenced by acyl chain composition and ranged from milliseconds to submilliseconds for chains containing six, eight, and ten carbons, owing to their variable interactions with AcpP's hydrophobic core. Although transient, the exposure of AcpP-tethered acyl chains to the solvent may allow relevant enzymes to gain access to its active thioester, and the enzyme-induced selection of this conformation will culminate in the production of fatty acids.
Collapse
Affiliation(s)
- Brianna N. Kalaj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and systematic NMR measurements of sequence-dependent A-T Hoogsteen dynamics uncovers unique conformational specificity in the DNA double helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594415. [PMID: 38798635 PMCID: PMC11118333 DOI: 10.1101/2024.05.15.594415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The propensities to form lowly-populated short-lived conformations of DNA could vary with sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging. Using 1H CEST and 13C R 1 ρ NMR, we measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in thirteen trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. The Hoogsteen dynamics had a distinct sequence-dependence compared to duplex stability and minor groove width. Thus, our results uncover a unique source of sequence-specificity hidden within the DNA double helix in the form of A-T Hoogsteen dynamics and establish the utility of 1H CEST to quantitively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
18
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG Syn-Anti Flips in Mutagenic 8OG·A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. J Phys Chem B 2024; 128:4087-4096. [PMID: 38644782 PMCID: PMC11993911 DOI: 10.1021/acs.jpcb.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter their propensities to form low-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn·Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly populated (pop. ∼ 5%) and short-lived (lifetime ∼50 ms) nonmutagenic 8OGanti·Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on the labeled partner adenine. The Watson-Crick-like 8OGsyn·Aanti mismatch also rescued the kinetics of Hoogsteen motions at distant A-T base pairs, which the G·A mismatch had slowed down. The results lend further support for 8OGanti·Aanti as a minor conformational state of 8OG·A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Stenström O, Diehl C, Modig K, Akke M. Ligand-induced protein transition state stabilization switches the binding pathway from conformational selection to induced fit. Proc Natl Acad Sci U S A 2024; 121:e2317747121. [PMID: 38527204 PMCID: PMC10998626 DOI: 10.1073/pnas.2317747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Protein-ligand complex formation is fundamental to biological function. A central question is whether proteins spontaneously adopt binding-competent conformations to which ligands bind conformational selection (CS) or whether ligands induce the binding-competent conformation induced fit (IF). Here, we resolve the CS and IF binding pathways by characterizing protein conformational dynamics over a wide range of ligand concentrations using NMR relaxation dispersion. We determined the relative flux through the two pathways using a four-state binding model that includes both CS and IF. Experiments conducted without ligand show that galectin-3 exchanges between the ground-state conformation and a high-energy conformation similar to the ligand-bound conformation, demonstrating that CS is a plausible pathway. Near-identical crystal structures of the apo and ligand-bound states suggest that the high-energy conformation in solution corresponds to the apo crystal structure. Stepwise additions of the ligand lactose induce progressive changes in the relaxation dispersions that we fit collectively to the four-state model, yielding all microscopic rate constants and binding affinities. The ligand affinity is higher for the bound-like conformation than for the ground state, as expected for CS. Nonetheless, the IF pathway contributes greater than 70% of the total flux even at low ligand concentrations. The higher flux through the IF pathway is explained by considerably higher rates of exchange between the two protein conformations in the ligand-associated state. Thus, the ligand acts to decrease the activation barrier between protein conformations in a manner reciprocal to enzymatic transition-state stabilization of reactions involving ligand transformation.
Collapse
Affiliation(s)
- Olof Stenström
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Carl Diehl
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Kristofer Modig
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
20
|
Cui Y, Jin Y, Hou Y, Han X, Cao H, Kay LE, Yuwen T. Optimization of TROSY- and anti-TROSY-based 15N CPMG relaxation dispersion experiments through phase cycling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107629. [PMID: 38503148 DOI: 10.1016/j.jmr.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/21/2024]
Abstract
CPMG relaxation dispersion studies of biomolecular dynamics on the μs-ms timescale can provide detailed kinetic, thermodynamic, and structural insights into function. Frequently, the 15N spin serves as the probe of choice, as uniform incorporation of the 15N isotope is facile and cost-effective, and the interpretation of the resulting data is often relatively straightforward. In conventional CPMG relaxation dispersion experiments the application of CPMG pulses with constant radiofrequency (RF) phase can lead to artifactual dispersion profiles that result from off-resonance effects, RF field inhomogeneity, and pulse miscalibration. The development of CPMG experiments with the [0013]-phase cycle has significantly reduced the impact of pulse imperfections over a greater bandwidth of frequency offsets in comparison to constant phase experiments. Application of 15N-TROSY-based CPMG schemes to studies of the dynamics of large molecules is necessary for high sensitivity, yet the correct incorporation of the [0013]-phase cycle is non-trivial. Here we present TROSY- and anti-TROSY-based 15N CPMG experiments with the [0013]-phase cycling scheme and demonstrate, through comprehensive numerical simulations and experimental validation, enhanced resistance to pulse imperfections relative to traditional schemes utilizing constant phase CPMG pulses. Notably, exchange parameters derived from the new experiments are in good agreement with those obtained using other, more established, 15N-based CPMG approaches.
Collapse
Affiliation(s)
- Yingxian Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yangzhuoyue Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yu Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoxu Han
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haiyan Cao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8, Canada.
| | - Tairan Yuwen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
21
|
Vugmeyster L, Ostrovsky D, Fu R. Carbon-detected deuterium solid-state NMR rotating frame relaxation measurements for protein methyl groups under magic angle spinning. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 130:101922. [PMID: 38417233 PMCID: PMC11015826 DOI: 10.1016/j.ssnmr.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Deuterium rotating frame solid-state NMR relaxation measurements (2H R1ρ) are important tools in quantitative studies of molecular dynamics. We demonstrate how 2H to 13C cross-polarization (CP) approaches under 10-40 kHz magic angle spinning rates can be combined with the 2H R1ρ blocks to allow for extension of deuterium rotating frame relaxation studies to methyl groups in biomolecules. This extension permits detection on the 13C nuclei and, hence, for the achievement of site-specific resolution. The measurements are demonstrated using a nine-residue low complexity peptide with the sequence GGKGMGFGL, in which a single selective -13CD3 label is placed at the methionine residue. Carbon-detected measurements are compared with the deuterium direct-detection results, which allows for fine-tuning of experimental approaches. In particular, we show how the adiabatic respiration CP scheme and the double adiabatic sweep on the 2H and 13C channels can be combined with the 2H R1ρ relaxation rates measurement. Off-resonance 2H R1ρ measurements are investigated in addition to the on-resonance condition, as they extent the range of effective spin-locking field.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, 80204, USA
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310, USA
| |
Collapse
|
22
|
Vugmeyster L, Ostrovsky D, Rodgers A, Gwin K, Smirnov SL, McKnight CJ, Fu R. Persistence of Methionine Side Chain Mobility at Low Temperatures in a Nine-Residue Low Complexity Peptide, as Probed by 2 H Solid-State NMR. Chemphyschem 2024; 25:e202300565. [PMID: 38175858 PMCID: PMC10922872 DOI: 10.1002/cphc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-β1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Kirsten Gwin
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, WA 98225
| | - C. James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL USA 32310
| |
Collapse
|
23
|
Varghese CN, Jaladeep A, Sekhar A. Measuring Hydroxyl Exchange Rates in Glycans Using a Synergistic Combination of Saturation Transfer and Relaxation Dispersion NMR. J Am Chem Soc 2024; 146:3825-3835. [PMID: 38293947 PMCID: PMC7615893 DOI: 10.1021/jacs.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular recognition events mediated by glycans play pivotal roles in controlling the fate of diverse biological processes such as cellular communication and the immune response. The affinity of glycans for their target receptors is governed primarily by the hydrogen bonds formed by hydroxyl groups decorating the glycan surface. Hydroxyl exchange rate constants are therefore vital parameters that report on glycan structure and dynamics. Here we present a strategy for characterizing hydroxyl hydrogen/deuterium (H/D) exchange in glycans that employs a synergistic combination of 13C chemical exchange saturation transfer (CEST) and Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG) NMR methods. We show that the combination of CEST and CPMG experiments facilitates the sensitive detection of the small (∼0.1 ppm) two-bond deuterium isotope shift on a 13C nucleus when the attached hydroxyl group fluctuates between protonated and deuterated states. This shift is leveraged for measuring site-specific kinetic H/D exchange rate constants as well as thermodynamic free energies of isotope fractionation. The CEST and CPMG modules are integrated with a selective J-cross-polarization scheme that provides the flexibility for rapid characterization of H/D exchange at a specific hydroxyl site. Moreover, our approach enables the precise isothermal measurement of hydroxyl exchange rate constants without the need for cumbersome isotope labeling. The H/D exchange rate constants of three different glycans assessed using this method highlight its potential for detecting transient intra- and intermolecular hydrogen bonds. In addition, the trends in H/D exchange rate constants establish site-specific steric accessibility as a key determinant of solvent exchange dynamics in glycans.
Collapse
Affiliation(s)
- Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
24
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG syn-anti Flips in Mutagenic 8OG•A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575532. [PMID: 38293035 PMCID: PMC10827055 DOI: 10.1101/2024.01.15.575532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter the propensities to form lowly-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn•Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly-populated (pop. ~ 5%) and short-lived (lifetime ~ 50 ms) non-mutagenic 8OGanti•Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on a labeled partner adenine. The Watson-Crick-like 8OGsyn•Aanti mismatch also rescued the kinetics of Hoogsteen motions at distance A-T base pairs, which the G•A mismatch had slowed down. The results lend further support for 8OGanti•Aanti as a minor conformational state of 8OG•A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Nichols PJ, Krall JB, Henen MA, Welty R, MacFadden A, Vicens Q, Vögeli B. Z-Form Adoption of Nucleic Acid is a Multi-Step Process Which Proceeds through a Melted Intermediate. J Am Chem Soc 2024; 146:677-694. [PMID: 38131335 PMCID: PMC11155437 DOI: 10.1021/jacs.3c10406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood. Through a combination of nuclear magnetic resonance (NMR) and other biophysical measurements, we have determined that in the absence of Zα, under low salt conditions at room temperature, d(CpG) and r(CpG) constructs show no observable evidence of transient Z-conformations greater than 0.5% on either the intermediate or slow NMR time scales. At higher temperatures, we observed a transient unfolded intermediate. The ease of melting a nucleic acid duplex correlates with Z-form adoption rates in the presence of Zα. The largest contributing factor to the activation energies of Z-form adoption as calculated by Arrhenius plots is the ease of flipping the sugar pucker, as required for Z-DNA and Z-RNA. Together, these data validate the previously proposed "zipper model" for Z-form adoption in the presence of Zα. Overall, Z-conformations are more likely to be adopted by double-stranded DNA and RNA regions flanked by less stable regions and by RNAs experiencing torsional/mechanical stress.
Collapse
Affiliation(s)
- Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- Present address: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cellular Signaling, University of Houston, Houston, Texas 77204, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
26
|
Geng A, Ganser L, Roy R, Shi H, Pratihar S, Case DA, Al-Hashimi HM. An RNA excited conformational state at atomic resolution. Nat Commun 2023; 14:8432. [PMID: 38114465 PMCID: PMC10730710 DOI: 10.1038/s41467-023-43673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Sparse and short-lived excited RNA conformational states are essential players in cell physiology, disease, and therapeutic development, yet determining their 3D structures remains challenging. Combining mutagenesis, NMR spectroscopy, and computational modeling, we determined the 3D structural ensemble formed by a short-lived (lifetime ~2.1 ms) lowly-populated (~0.4%) conformational state in HIV-1 TAR RNA. Through a strand register shift, the excited conformational state completely remodels the 3D structure of the ground state (RMSD from the ground state = 7.2 ± 0.9 Å), forming a surprisingly more ordered conformational ensemble rich in non-canonical mismatches. The structure impedes the formation of the motifs recognized by Tat and the super elongation complex, explaining why this alternative TAR conformation cannot activate HIV-1 transcription. The ability to determine the 3D structures of fleeting RNA states using the presented methodology holds great promise for our understanding of RNA biology, disease mechanisms, and the development of RNA-targeting therapeutics.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laura Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Supriya Pratihar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Ramelot TA, Tejero R, Montelione GT. Representing structures of the multiple conformational states of proteins. Curr Opin Struct Biol 2023; 83:102703. [PMID: 37776602 PMCID: PMC10841472 DOI: 10.1016/j.sbi.2023.102703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. We review some recent advances for investigating multiple conformations of biomolecules, including experimental methods, molecular dynamics simulations, and machine learning. We also address the challenges associated with representing single- and multiple-state models in data archives, with a particular focus on NMR structures. Establishing standardized representations and annotations will facilitate effective communication and understanding of these complex models to the broader scientific community.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Roberto Tejero
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
28
|
Shukla VK, Heller GT, Hansen DF. Biomolecular NMR spectroscopy in the era of artificial intelligence. Structure 2023; 31:1360-1374. [PMID: 37848030 DOI: 10.1016/j.str.2023.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Biomolecular nuclear magnetic resonance (NMR) spectroscopy and artificial intelligence (AI) have a burgeoning synergy. Deep learning-based structural predictors have forever changed structural biology, yet these tools currently face limitations in accurately characterizing protein dynamics, allostery, and conformational heterogeneity. We begin by highlighting the unique abilities of biomolecular NMR spectroscopy to complement AI-based structural predictions toward addressing these knowledge gaps. We then highlight the direct integration of deep learning approaches into biomolecular NMR methods. AI-based tools can dramatically improve the acquisition and analysis of NMR spectra, enhancing the accuracy and reliability of NMR measurements, thus streamlining experimental processes. Additionally, deep learning enables the development of novel types of NMR experiments that were previously unattainable, expanding the scope and potential of biomolecular NMR spectroscopy. Ultimately, a combination of AI and NMR promises to further revolutionize structural biology on several levels, advance our understanding of complex biomolecular systems, and accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Valsecchi R, Baumann C, Lila A, Zerbe O. Evolution of Cd2+ and Cu+ binding in Helix pomatia metallothioneins. Metallomics 2023; 15:mfad057. [PMID: 37738453 PMCID: PMC10548783 DOI: 10.1093/mtomcs/mfad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Metallothioneins (MTs) are small proteins present in all kingdoms of life. Their high cysteine content enables them to bind metal ions, such as Zn2+, Cd2+, and Cu+, providing means for detoxification and metal homeostasis. Three MT isoforms with distinct metal binding preferences are present in the Roman Snail Helix pomatia. Here, we use nuclear magnetic resonance (NMR) to follow the evolution of Cd2+ and Cu+ binding from the reconstructed ancestral Stylommatophora MT to the three H. pomatia MT (HpMT) isoforms. Information obtained from [15N,1H]-HSQC spectra and T2 relaxation times are combined to describe the conformational stability of the MT-metal complexes. A well-behaved MT-metal complex adopts a unique structure and does not undergo additional conformational exchange. The ancestor to all three HpMTs forms conformationally stable Cd2+ complexes and closely resembles the Cd2+-specific HpCdMT isoform, suggesting a role in Cd2+ detoxification for the ancestral protein. All Cu+-MT complexes, including the Cu+-specific HpCuMT isoform, undergo a considerable amount of conformational exchange. The unspecific HpCd/CuMT and the Cu+-specific HpCuMT isoforms form Cu+ complexes with comparable characteristics. It is possible to follow how Cd2+ and Cu+ binding changed throughout evolution. Interestingly, Cu+ binding improved independently in the lineages leading to the unspecific and the Cu+-specific HpMT isoforms. C-terminal domains are generally less capable of coordinating the non-cognate metal ion than N-terminal domains, indicating a higher level of specialization of the C-domain. Our findings provide new insights into snail MT evolution, helping to understand the interplay between biological function and structural features toward a comprehensive understanding of metal preference.
Collapse
Affiliation(s)
- Renato Valsecchi
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| | - Christian Baumann
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| | - Ardit Lila
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, 8057 Zurich, Winterthurerstrasse 190, Switzerland
| |
Collapse
|
30
|
Prosser RS, Alonzi NA. Discerning conformational dynamics and binding kinetics of GPCRs by 19F NMR. Curr Opin Pharmacol 2023; 72:102377. [PMID: 37612172 DOI: 10.1016/j.coph.2023.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 08/25/2023]
Abstract
19F NMR provides a way of monitoring conformational dynamics of G-protein coupled receptors (GPCRs) from the perspective of an ensemble. While X-ray crystallography provides exquisitely resolved high-resolution structures of specific states, it generally does not recapitulate the true ensemble of functional states. Fluorine (19F) NMR provides a highly sensitive spectroscopic window into the conformational ensemble, generally permitting the direct quantification of resolvable states. Moreover, straightforward T1- and T2-based relaxation experiments allow for the study of fluctuations within a given state and exchange between states, on timescales spanning nanoseconds to seconds. Conveniently, most biological systems are free of fluorine. Thus, via fluorinated amino acid analogues or thiol-reactive fluorinated tags, F or CF3 reporters can be site specifically incorporated into proteins of interest. In this review, fluorine labeling protocols and 19F NMR experiments will be presented, from the perspective of small molecule NMR (i.e. drug or small molecule interactions with receptors) or macromolecular NMR (i.e. conformational dynamics of receptors and receptor-G-protein complexes).
Collapse
Affiliation(s)
- R S Prosser
- Chemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada; Biochemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada.
| | - Nicholas A Alonzi
- Chemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
31
|
Kumar A, Madhurima K, Naganathan AN, Vallurupalli P, Sekhar A. Probing excited state 1Hα chemical shifts in intrinsically disordered proteins with a triple resonance-based CEST experiment: Application to a disorder-to-order switch. Methods 2023; 218:198-209. [PMID: 37607621 PMCID: PMC7615522 DOI: 10.1016/j.ymeth.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
32
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
33
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
34
|
Vugmeyster L, Rodgers A, Ostrovsky D, James McKnight C, Fu R. Deuteron off-resonance rotating frame relaxation for the characterization of slow motions in rotating and static solid-state proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107493. [PMID: 37271094 PMCID: PMC10330767 DOI: 10.1016/j.jmr.2023.107493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
We demonstrate the feasibility of deuterium solid-state NMR off-resonance rotating frame relaxation measurements for studies of slow motions in biomolecular solids. The pulse sequence, which includes adiabatic pulses for magnetization alignment, is illustrated for static and magic-angle spinning conditions away from rotary resonances. We apply the measurements for three systems with selective deuterium labels at methyl groups: a) a model compound, Fluorenylmethyloxycarbonyl methionine-D3 amino acid, for which the principles of the measurements and corresponding motional modeling based on rotameric interconversions are demonstrated; b) amyloid-β1-40 fibrils labeled at a single alanine methyl group located in the disordered N-terminal domain. This system has been extensively studied in prior work and here serves as a test of the method for complex biological systems. The essential features of the dynamics consist of large-scale rearrangements of the disordered N-terminal domain and the conformational exchange between the free and bound forms of the domain, the latter one due to transient interactions with the structured core of the fibrils. and c) a 15-residue helical peptide which belongs to the predicted α-helical domain near the N-terminus of apolipoprotein B. The peptide is solvated with triolein and incorporates a selectively labeled leucine methyl groups. The method permits model refinement, indicating rotameric interconversions with a distribution of rate constants.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| | - C James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, United States
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
35
|
Shen Y, Bax A. Synergism between x-ray crystallography and NMR residual dipolar couplings in characterizing protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:040901. [PMID: 37448874 PMCID: PMC10338066 DOI: 10.1063/4.0000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The important role of structural dynamics in protein function is widely recognized. Thermal or B-factors and their anisotropy, seen in x-ray analysis of protein structures, report on the presence of atomic coordinate heterogeneity that can be attributed to motion. However, their quantitative evaluation in terms of protein dynamics by x-ray ensemble refinement remains challenging. NMR spectroscopy provides quantitative information on the amplitudes and time scales of motional processes. Unfortunately, with a few exceptions, the NMR data do not provide direct insights into the atomic details of dynamic trajectories. Residual dipolar couplings, measured by solution NMR, are very precise parameters reporting on the time-averaged bond-vector orientations and may offer the opportunity to derive correctly weighted dynamic ensembles of structures for cases where multiple high-resolution x-ray structures are available. Applications to the SARS-CoV-2 main protease, Mpro, and ubiquitin highlight this complementarity of NMR and crystallography for quantitative assessment of internal motions.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Tolkkinen K, Mailhiot SE, Selent A, Mankinen O, Henschel H, Nieminen MT, Hanni M, Kantola AM, Liimatainen T, Telkki VV. SPICY: a method for single scan rotating frame relaxometry. Phys Chem Chem Phys 2023; 25:13164-13169. [PMID: 37129427 PMCID: PMC10171246 DOI: 10.1039/d2cp05988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
T 1ρ is an NMR relaxation mode that is sensitive to low frequency molecular motions, making it an especially valuable tool in biomolecular research. Here, we introduce a new method, SPICY, for measuring T1ρ relaxation times. In contrast to conventional T1ρ experiments, in which the sequence is repeated many times to determine the T1ρ time, the SPICY sequence allows determination of T1ρ within a single scan, shortening the experiment time remarkably. We demonstrate the method using 1H T1ρ relaxation dispersion experiments. Additionally, we combine the sequence with spatial encoding to produce 1D images in a single scan. We show that T1ρ relaxation times obtained using the single scan approach are in good agreement with those obtained using the traditional experiments.
Collapse
Affiliation(s)
| | | | - Anne Selent
- NMR Research Unit, University of Oulu, Oulu, Finland.
| | - Otto Mankinen
- NMR Research Unit, University of Oulu, Oulu, Finland.
| | - Henning Henschel
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Matti Hanni
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Anu M Kantola
- NMR Research Unit, University of Oulu, Oulu, Finland.
| | - Timo Liimatainen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|
37
|
Bishop AC, Torres-Montalvo G, Kotaru S, Mimun K, Wand AJ. Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing. Nat Commun 2023; 14:1556. [PMID: 36944645 PMCID: PMC10030768 DOI: 10.1038/s41467-023-37219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Assignment of resonances of nuclear magnetic resonance (NMR) spectra to specific atoms within a protein remains a labor-intensive and challenging task. Automation of the assignment process often remains a bottleneck in the exploitation of solution NMR spectroscopy for the study of protein structure-dynamics-function relationships. We present an approach to the assignment of backbone triple resonance spectra of proteins. A Bayesian statistical analysis of predicted and observed chemical shifts is used in conjunction with inter-spin connectivities provided by triple resonance spectroscopy to calculate a pseudo-energy potential that drives a simulated annealing search for the most optimal set of resonance assignments. Termed Bayesian Assisted Assignments by Simulated Annealing (BARASA), a C++ program implementation is tested against systems ranging in size to over 450 amino acids including examples of intrinsically disordered proteins. BARASA is fast, robust, accommodates incomplete and incorrect information, and outperforms current algorithms - especially in cases of sparse data and is sufficiently fast to allow for real-time evaluation during data acquisition.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Glorisé Torres-Montalvo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Sravya Kotaru
- Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Kyle Mimun
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
38
|
Gavrilov Y, Prestel A, Lindorff-Larsen K, Teilum K. Slow conformational changes in the rigid and highly stable chymotrypsin inhibitor 2. Protein Sci 2023; 32:e4604. [PMID: 36807681 PMCID: PMC10031225 DOI: 10.1002/pro.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Slow conformational changes are often directly linked to protein function. It is however less clear how such processes may perturb the overall folding stability of a protein. We previously found that the stabilizing double mutant L49I/I57V in the small protein chymotrypsin inhibitor 2 from barley led to distributed increased nanosecond and faster dynamics. Here we asked what effects the L49I and I57V substitutions, either individually or together, have on the slow conformational dynamics of CI2. We used 15 N CPMG spin relaxation dispersion experiments to measure the kinetics, thermodynamics and structural changes associated with slow conformational change in CI2. These changes result in an excited state that is populated to 4.3% at 1 °C. As the temperature is increased the population of the excited state decreases. Structural changes in the excited state are associated with residues that interact with water molecules that have well defined positions and are found at these positions in all crystal structures of CI2. The substitutions in CI2 have only little effect on the structure of the excited state whereas the stability of the excited state to some extent follows the stability of the main state. The minor state is thus most populated for the most stable CI2 variant and least populated for the least stable variant. We hypothesize that the interactions between the substituted residues and the well-ordered water molecules links subtle structural changes around the substituted residues to the region in the protein that experience slow conformational changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yulian Gavrilov
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Present address: Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
39
|
Vugmeyster L, Rodgers A, Gwin K, Ostrovsky D, Smirnov SL. Nine-residue low-complexity disordered peptide as a model system, an NMR/CD study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528870. [PMID: 36824859 PMCID: PMC9949077 DOI: 10.1101/2023.02.16.528870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Disordered proteins and protein segments can be crucial for biological function. In this work we present a detailed biophysical characterization of the low-complexity nine-residue peptide with the sequence GGKGMGFGL. Based on proton solution NMR chemical shifts, circular dichroism measurements, as well as the analysis of concentration dependence of NMR linewidth, proton longitudinal relaxation times, hydrogen-deuterium exchange measurements, and 15 N rotating frame NMR relaxation measurements, we conclude that the peptide is fully disordered and monomeric in solution. The peptide will serve as a model system for future structural and dynamics studies of biologically relevant disordered peptides in solution and solid states.
Collapse
|
40
|
Ermakova EA, Ivanova AV, Kurbanov RK, Shurpik DN, Stoikov II, Zuev YF, Khairutdinov BI. Stereochemical inversion of pillar[5]arene. NMR and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Phosphates form spectroscopically dark state assemblies in common aqueous solutions. Proc Natl Acad Sci U S A 2023; 120:e2206765120. [PMID: 36580589 PMCID: PMC9910612 DOI: 10.1073/pnas.2206765120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphates and polyphosphates play ubiquitous roles in biology as integral structural components of cell membranes and bone, or as vehicles of energy storage via adenosine triphosphate and phosphocreatine. The solution phase space of phosphate species appears more complex than previously known. We present nuclear magnetic resonance (NMR) and cryogenic transmission electron microscopy (cryo-TEM) experiments that suggest phosphate species including orthophosphates, pyrophosphates, and adenosine phosphates associate into dynamic assemblies in dilute solutions that are spectroscopically "dark." Cryo-TEM provides visual evidence of the formation of spherical assemblies tens of nanometers in size, while NMR indicates that a majority population of phosphates remain as unassociated ions in exchange with spectroscopically invisible assemblies. The formation of these assemblies is reversibly and entropically driven by the partial dehydration of phosphate groups, as verified by diffusion-ordered spectroscopy (DOSY), indicating a thermodynamic state of assembly held together by multivalent interactions between the phosphates. Molecular dynamics simulations further corroborate that orthophosphates readily cluster in aqueous solutions. This study presents the surprising discovery that phosphate-containing molecules, ubiquitously present in the biological milieu, can readily form dynamic assemblies under a wide range of commonly used solution conditions, highlighting a hitherto unreported property of phosphate's native state in biological solutions.
Collapse
|
42
|
Luo G, Xiao L, Luo S, Liao G, Shao R. A study on multi-exponential inversion of nuclear magnetic resonance relaxation data using deep learning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107358. [PMID: 36525932 DOI: 10.1016/j.jmr.2022.107358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) is a powerful tool for formation evaluation in the oil industry to determine parameters, such as pore structure, fluid saturation, and permeability of porous materials, which are critical to reservoir engineering. The inversion of the measured relaxation data is an ill-posed problem and may lead to deviations of inversion results, which may degrade the accuracy of further data analysis and evaluation. This paper proposes a deep learning method for multi-exponential inversion of NMR relaxation data to improve accuracy. Simulated NMR data are first constructed using a priori knowledge based on the signal parameters and Gaussian distribution. These data are then used to train the neural network designed to consider noise characteristics, signal decay characteristics, signal energy variations, and non-negative features of the T2 spectra. With the validation from simulated data, the models introduced by multi-scale convolutional neural network (CNN) and attention mechanism outperform other approaches in terms of denoising and T2 inversion. Finally, NMR measurements of rock cores are used to compare the effectiveness of the attention multi-scale convolutional neural network (ATT-CNN) model in practical applications. The results demonstrate that the proposed method based on deep learning has better performance than the regularization method.
Collapse
Affiliation(s)
- Gang Luo
- College of Artificial Intelligence, China University of Petroleum, 102249 Beijing, China
| | - Lizhi Xiao
- College of Artificial Intelligence, China University of Petroleum, 102249 Beijing, China.
| | - Sihui Luo
- College of Petroleum Engineering, China University of Petroleum, 102249 Beijing, China
| | - Guangzhi Liao
- College of Artificial Intelligence, China University of Petroleum, 102249 Beijing, China
| | - Rongbo Shao
- College of Artificial Intelligence, China University of Petroleum, 102249 Beijing, China
| |
Collapse
|
43
|
Arya N, Marincin KA, Frueh DP. Probing Substrate-Loaded Carrier Proteins by Nuclear Magnetic Resonance. Methods Mol Biol 2023; 2670:235-253. [PMID: 37184708 DOI: 10.1007/978-1-0716-3214-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carrier proteins (CPs) are central actors in nonribosomal peptide synthetases (NRPSs) as they interact with all catalytic domains, and because they covalently hold the substrates and intermediates leading to the final product. Thus, how CPs and their partner domains recognize and engage with each other as a function of CP cargos is paramount to understanding and engineering NRPSs. However, rapid hydrolysis of the labile thioester bonds holding substrates challenges molecular and biophysical studies to determine the molecular mechanisms of domain recognition. In this chapter, we describe a protocol to counteract hydrolysis and study loaded carrier proteins at the atomic level with nuclear magnetic resonance (NMR) spectroscopy. The method relies on loading CPs in situ, with adenylation domains in the NMR tube, to reach substrate-loaded CPs at steady state. We describe controls and experimental readouts necessary to assess the integrity of the sample and maintain loading on CPs. Our approach provides a basis to conduct subsequent NMR experiments and obtain kinetic, thermodynamic, dynamic, and structural parameters of substrate-loaded CPs alone or in the presence of other domains.
Collapse
Affiliation(s)
- Neeru Arya
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Zhang S, McCallum SA, Gillilan R, Wang J, Royer CA. High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein. J Phys Chem B 2022; 126:10597-10607. [PMID: 36455152 PMCID: PMC10314987 DOI: 10.1021/acs.jpcb.2c05498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by 15N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by 15N-CEST analysis. Excited state 15N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Richard Gillilan
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY USA 14853
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY USA 12180
| |
Collapse
|
45
|
Spreacker PJ, Brousseau M, Hisao GS, Soltani M, Davis JH, Henzler-Wildman KA. Charge neutralization of the active site glutamates does not limit substrate binding and transport by small multidrug resistance transporter EmrE. J Biol Chem 2022; 299:102805. [PMID: 36529287 PMCID: PMC9860125 DOI: 10.1016/j.jbc.2022.102805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.
Collapse
Affiliation(s)
- Peyton J. Spreacker
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Grant S. Hisao
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Mohammad Soltani
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - James H. Davis
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - Katherine A. Henzler-Wildman
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA,For correspondence: Katherine A. Henzler-Wildman
| |
Collapse
|
46
|
Tugarinov V, Okuno Y, Torricella F, Karamanos TK, Clore GM. A "Steady-State" Relaxation Dispersion Nuclear Magnetic Resonance Experiment for Studies of Chemical Exchange in Degenerate 1H Transitions of Methyl Groups. J Phys Chem Lett 2022; 13:11271-11279. [PMID: 36449372 DOI: 10.1021/acs.jpclett.2c02937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Degenerate spin-systems consisting of magnetically equivalent nuclear spins, such as a 1H3 spin-system in selectively 13CH3-labeled proteins, present considerable challenges for the design of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments to characterize chemical exchange on the micro-to-millisecond time-scale. Several approaches have been previously proposed for the elimination of deleterious artifacts observed in methyl 1H CPMG relaxation dispersion profiles obtained for (13C)1H3 groups. We describe an alternative, experimentally simple solution and design a "steady-state" methyl 1H CPMG scheme, where 90° or acute-angle (<90°) 1H radiofrequency pulses are applied after each CPMG echo in-phase with methyl 1H magnetization, resulting in the establishment of a "steady-state" for effective rates of magnetization decay. A simple computational procedure for quantitative analysis of the "steady-state" CPMG relaxation dispersion profiles is developed. The "steady-state" CPMG methodology is applied to two protein systems where exchange between major and minor species occurs in different regimes on the chemical shift time-scale.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Francesco Torricella
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Theodoros K Karamanos
- The Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
47
|
Bolik-Coulon N, Hansen DF, Kay LE. Optimizing frequency sampling in CEST experiments. JOURNAL OF BIOMOLECULAR NMR 2022; 76:167-183. [PMID: 36192571 DOI: 10.1007/s10858-022-00403-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
For the past decade chemical exchange saturation transfer (CEST) experiments have been successfully applied to study exchange processes in biomolecules involving sparsely populated, transiently formed conformers. Initial implementations focused on extensive sampling of the CEST frequency domain, requiring significant measurement times. Here we show that the lengthy sampling schemes often used are not optimal and that reduced frequency sampling schedules can be developed without a priori knowledge of the exchange parameters, that only depend on the chosen B1 field, and, to a lesser extent, on the intrinsic transverse relaxation rates of ground state spins. The reduced sampling approach described here can be used synergistically with other methods for reducing measurement times such as those that excite multiple frequencies in the CEST dimension simultaneously, or make use of non-uniform sampling of indirectly detected time domains, to further decrease measurement times. The proposed approach is validated by analysis of simulated and experimental datasets.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
48
|
Gao T, Korb JP, Lukšič M, Mériguet G, Malikova N, Rollet AL. Ion influence on surface water dynamics and proton exchange at protein surfaces - A unified model for transverse and longitudinal NMR relaxation dispersion. J Mol Liq 2022; 367:120451. [PMID: 37790165 PMCID: PMC10544814 DOI: 10.1016/j.molliq.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions. We present a unified model of surface water dynamics and proton exchange, accounting simultaneously for the observed longitudinal and transverse relaxation rates. The most notable effect of salt (0.1 M) concerns the slow surface water dynamics, related to rare water molecules embedded in energy wells on the protein surface. This response is protein-specific. On the other hand, the proton exchange time between labile protein-protons and water-protons at the protein surface seems to be very similar for the two proteins and is insensitive to the addition of salts at the concentration studied.
Collapse
Affiliation(s)
- Tadeja Gao
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jean-Pierre Korb
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Guillaume Mériguet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Natalie Malikova
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| | - Anne-Laure Rollet
- Sorbonne Université/CNRS, Laboratoire Physico-Chimie des Électrolytes et Nano-Systèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, France
| |
Collapse
|
49
|
Delhommel F, Martínez-Lumbreras S, Sattler M. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods Enzymol 2022; 678:263-297. [PMID: 36641211 DOI: 10.1016/bs.mie.2022.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany.
| |
Collapse
|
50
|
Fujinami D, Hayashi S, Kohda D. Retrospective study for the universal applicability of the residue-based linear free energy relationship in the two-state exchange of protein molecules. Sci Rep 2022; 12:16843. [PMID: 36207470 PMCID: PMC9546931 DOI: 10.1038/s41598-022-21226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Multiprobe measurements, such as NMR and hydrogen exchange studies, can provide the equilibrium constant, K, and rate constants for forward and backward processes, k and k′, of the two-state structural changes of a polypeptide on a per-residue basis. We previously found a linear relationship between log K and log k and between log K and log k′ for the topological exchange of a 27-residue bioactive peptide. To test the general applicability of the residue-based linear free energy relationship (rbLEFR), we performed a literature search to collect residue-specific K, k, and k′ values in various exchange processes, including folding-unfolding equilibrium, coupled folding and binding of intrinsically disordered peptides, and structural fluctuations of folded proteins. The good linearity in a substantial number of the log–log plots proved that the rbLFER holds for the structural changes in a wide variety of protein-related phenomena. Among the successful cases, the hydrogen exchange study of apomyoglobin folding intermediates is particularly interesting. We found that the residues that deviated from the linear relationship corresponded to the α-helix, for which transient translocation had been identified by other experiments. Thus, the rbLFER is useful for studying the structures and energetics of the dynamic states of protein molecules.
Collapse
Affiliation(s)
- Daisuke Fujinami
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|