1
|
Nicastro G, Lucci M, Oregioni A, Kelly G, Frenkiel TA, Taylor IA. CP-MAS and solution NMR studies of allosteric communication in CA-assemblies of HIV-1. J Mol Biol 2022; 434:167691. [PMID: 35738429 DOI: 10.1016/j.jmb.2022.167691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
Solution and solid-state NMR spectroscopy are highly complementary techniques for studying structure and dynamics in very high molecular weight systems. Here we have analysed the dynamics of HIV-1 capsid (CA) assemblies in presence of the cofactors IP6 and ATPγS and the host-factor CPSF6 using a combination of solution state and cross polarisation magic angle spinning (CP-MAS) solid-state NMR. In particular, dynamical effects on ns to µs and µs to ms timescales are observed revealing diverse motions in assembled CA. Using CP-MAS NMR, we exploited the sensitivity of the amide/Cα-Cβ backbone chemical shifts in DARR and NCA spectra to observe the plasticity of the HIV-1 CA tubular assemblies and also map the binding of cofactors and the dynamics of cofactor-CA complexes. In solution, we measured how the addition of host- and co-factors to CA -hexamers perturbed the chemical shifts and relaxation properties of CA-Ile and -Met methyl groups using transverse-relaxation-optimized NMR spectroscopy to exploit the sensitivity of methyl groups as probes in high-molecular weight proteins. These data show how dynamics of the CA protein assembly over a range of spatial and temporal scales play a critical role in CA function. Moreover, we show that binding of IP6, ATPγS and CPSF6 results in local chemical shift as well as dynamic changes for a significant, contiguous portion of CA, highlighting how allosteric pathways communicate ligand interactions between adjacent CA protomers.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Massimo Lucci
- CIRMMP, University of Florence, Via L. Sacconi, 6 50019 Sesto Fiorentino (FI), Italy
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tom A Frenkiel
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
2
|
Porat-Dahlerbruch G, Goldbourt A, Polenova T. Virus Structures and Dynamics by Magic-Angle Spinning NMR. Annu Rev Virol 2021; 8:219-237. [PMID: 34586870 DOI: 10.1146/annurev-virology-011921-064653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Techniques for atomic-resolution structural biology have evolved during the past several decades. Breakthroughs in instrumentation, sample preparation, and data analysis that occurred in the past decade have enabled characterization of viruses with an unprecedented level of detail. Here we review the recent advances in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for structural analysis of viruses and viral assemblies. MAS NMR is a powerful method that yields information on 3D structures and dynamics in a broad range of experimental conditions. After a brief introduction, we discuss recent structural and functional studies of several viruses investigated with atomic resolution at various levels of structural organization, from individual domains of a membrane protein reconstituted into lipid bilayers to virus-like particles and intact viruses. We present examples of the unique information revealed by MAS NMR about drug binding, conduction mechanisms, interactions with cellular host factors, and DNA packaging in biologically relevant environments that are inaccessible by other methods.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA;
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA; .,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
3
|
Solid-State NMR for Studying the Structure and Dynamics of Viral Assemblies. Viruses 2020; 12:v12101069. [PMID: 32987909 PMCID: PMC7599928 DOI: 10.3390/v12101069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Structural virology reveals the architecture underlying infection. While notably electron microscopy images have provided an atomic view on viruses which profoundly changed our understanding of these assemblies incapable of independent life, spectroscopic techniques like NMR enter the field with their strengths in detailed conformational analysis and investigation of dynamic behavior. Typically, the large assemblies represented by viral particles fall in the regime of biological high-resolution solid-state NMR, able to follow with high sensitivity the path of the viral proteins through their interactions and maturation steps during the viral life cycle. We here trace the way from first solid-state NMR investigations to the state-of-the-art approaches currently developing, including applications focused on HIV, HBV, HCV and influenza, and an outlook to the possibilities opening in the coming years.
Collapse
|
4
|
Strategies for identifying dynamic regions in protein complexes: Flexibility changes accompany methylation in chemotaxis receptor signaling states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183312. [PMID: 32304758 DOI: 10.1016/j.bbamem.2020.183312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Bacterial chemoreceptors are organized in arrays composed of helical receptors arranged as trimers of dimers, coupled to a histidine kinase CheA and a coupling protein CheW. Ligand binding to the external domain inhibits the kinase activity, leading to a change in the swimming behavior. Adaptation to an ongoing stimulus involves reversible methylation and demethylation of specific glutamate residues. However, the exact mechanism of signal propagation through the helical receptor to the histidine kinase remains elusive. Dynamics of the receptor cytoplasmic domain is thought to play an important role in the signal transduction, and current models propose inverse dynamic changes in different regions of the receptor. We hypothesize that the adaptational modification (methylation) controls the dynamics by stabilizing a partially ordered domain, which in turn modulates the binding of the kinase, CheA. We investigated the difference in dynamics between the methylated and unmethylated states of the chemoreceptor using solid-state NMR. The unmethylated receptor (CF4E) shows increased flexibility relative to the methylated mimic (CF4Q). Methylation helix 1 (MH1) has been shown to be flexible in the methylated mimic receptor. Our analysis indicates that in addition to MH1, methylation helix 2 also becomes flexible in the unmethylated receptor. In addition, we have demonstrated that both states of the receptor have a rigid region and segments with intermediate timescale dynamics. The strategies used in this study for identifying dynamic regions are applicable to a broad class of proteins and protein complexes with intrinsic disorder and dynamics spanning multiple timescales.
Collapse
|
5
|
Cerofolini L, Giuntini S, Ravera E, Luchinat C, Berti F, Fragai M. Structural characterization of a protein adsorbed on aluminum hydroxide adjuvant in vaccine formulation. NPJ Vaccines 2019; 4:20. [PMID: 31149351 PMCID: PMC6538755 DOI: 10.1038/s41541-019-0115-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
The heterogeneous composition of vaccine formulations and the relatively low concentration make the characterization of the protein antigens extremely challenging. Aluminum-containing adjuvants have been used to enhance the immune response of several antigens over the last 90 years and still remain the most commonly used. Here, we show that solid-state NMR and isotope labeling methods can be used to characterize the structural features of the protein antigen component of vaccines and to investigate the preservation of the folding state of proteins adsorbed on Alum hydroxide matrix, providing the way to identify the regions of the protein that are mainly affected by the presence of the inorganic matrix. l-Asparaginase from E. coli has been used as a pilot model of protein antigen. This methodology can find application in several steps of the vaccine development pipeline, from the antigen optimization, through the design of vaccine formulation, up to stability studies and manufacturing process.
Collapse
Affiliation(s)
- Linda Cerofolini
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- 2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Francesco Berti
- Technical R&D, GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Fragai
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Lecoq L, Wang S, Wiegand T, Bressanelli S, Nassal M, Meier BH, Böckmann A. Solid-state [ 13C- 15N] NMR resonance assignment of hepatitis B virus core protein. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:205-214. [PMID: 29450824 DOI: 10.1007/s12104-018-9810-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Each year, nearly 900,000 deaths are due to serious liver diseases caused by chronic hepatitis B virus infection. The viral particle is composed of an outer envelope and an inner icosahedral nucleocapsid formed by multiple dimers of a ~ 20 kDa self-assembling core protein (Cp). Here we report the solid-state 13C and 15N resonance assignments of the assembly domain, Cp149, of the core protein in its capsid form. A secondary chemical shift analysis of the 140 visible residues suggests an overall alpha-helical three-dimensional fold matching that derived for Cp149 from the X-ray crystallography of the capsid, and from solution-state NMR of the Cp149 dimer. Interestingly, however, at three distinct regions the chemical shifts in solution differ significantly between core proteins in the capsid state versus in the dimer state, strongly suggesting the respective residues to be involved in capsid assembly.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Shishan Wang
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, 91198, Gif sur Yvette Cedex, France
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
7
|
Gupta R, Polenova T. Magic angle spinning NMR spectroscopy guided atomistic characterization of structure and dynamics in HIV-1 protein assemblies. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Fritz M, Quinn CM, Wang M, Hou G, Lu X, Koharudin LMI, Polenova T, Gronenborn AM. Toward Closing the Gap: Quantum Mechanical Calculations and Experimentally Measured Chemical Shifts of a Microcrystalline Lectin. J Phys Chem B 2017; 121:3574-3585. [PMID: 28001418 PMCID: PMC5465307 DOI: 10.1021/acs.jpcb.6b09479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR chemical shifts are exquisitely sensitive probes for conformation and dynamics in molecules and supramolecular assemblies. Although isotropic chemical shifts are easily measured with high accuracy and precision in conventional NMR experiments, they remain challenging to calculate quantum mechanically, particularly in inherently dynamic biological systems. Using a model benchmark protein, the 133-residue agglutinin from Oscillatoria agardhii (OAA), which has been extensively characterized by us previously, we have explored the integration of X-ray crystallography, solution NMR, MAS NMR, and quantum mechanics/molecular mechanics (QM/MM) calculations for analysis of 13Cα and 15NH isotropic chemical shifts. The influence of local interactions, quaternary contacts, and dynamics on the accuracy of calculated chemical shifts is analyzed. Our approach is broadly applicable and expected to be beneficial in chemical shift analysis and chemical-shift-based structure refinement for proteins and protein assemblies.
Collapse
Affiliation(s)
- Matthew Fritz
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Leonardus M. I. Koharudin
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine,3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine,3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
9
|
Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy. Sci Rep 2017; 7:44506. [PMID: 28303963 PMCID: PMC5355874 DOI: 10.1038/srep44506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/08/2017] [Indexed: 01/22/2023] Open
Abstract
Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and endocytosis. Actin’s involvement in these processes is mediated by many actin-binding proteins, among which the cofilin family plays unique and essential role in accelerating actin treadmilling in filamentous actin (F-actin) in a nucleotide-state dependent manner. Cofilin preferentially interacts with older filaments by recognizing time-dependent changes in F-actin structure associated with the hydrolysis of ATP and release of inorganic phosphate (Pi) from the nucleotide cleft of actin. The structure of cofilin on F-actin and the details of the intermolecular interface remain poorly understood at atomic resolution. Here we report atomic-level characterization by magic angle spinning (MAS) NMR of the muscle isoform of human cofilin 2 (CFL2) bound to F-actin. We demonstrate that resonance assignments for the majority of atoms are readily accomplished and we derive the intermolecular interface between CFL2 and F-actin. The MAS NMR approach reported here establishes the foundation for atomic-resolution characterization of a broad range of actin-associated proteins bound to F-actin.
Collapse
|
10
|
Ravera E, Martelli T, Geiger Y, Fragai M, Goobes G, Luchinat C. Biosilica and bioinspired silica studied by solid-state NMR. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Gupta R, Lu M, Hou G, Caporini MA, Rosay M, Maas W, Struppe J, Suiter C, Ahn J, Byeon IJL, Franks WT, Orwick-Rydmark M, Bertarello A, Oschkinat H, Lesage A, Pintacuda G, Gronenborn AM, Polenova T. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies. J Phys Chem B 2016; 120:329-39. [PMID: 26709853 DOI: 10.1021/acs.jpcb.5b12134] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Marc A Caporini
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Melanie Rosay
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive, Billerica, Massachusetts United States
| | - Christopher Suiter
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | | - W Trent Franks
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Marcella Orwick-Rydmark
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Andrea Bertarello
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon , 5 rue de la Doua, 69100 Villeurbanne (Lyon), France
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon , 5 rue de la Doua, 69100 Villeurbanne (Lyon), France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon , 5 rue de la Doua, 69100 Villeurbanne (Lyon), France
| | | | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|