1
|
Bocquelet C, Rougier N, Le HN, Veyre L, Thieuleux C, Melzi R, Purea A, Banks D, Kempf JG, Stern Q, Vaneeckhaute E, Jannin S. Boosting 1H and 13C NMR signals by orders of magnitude on a bench. SCIENCE ADVANCES 2024; 10:eadq3780. [PMID: 39630888 PMCID: PMC11616688 DOI: 10.1126/sciadv.adq3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Sensitivity is often the Achilles' heel of liquid-state nuclear magnetic resonance (NMR) experiments. This problem is perhaps most pressing at the lowest fields (e.g., 80-MHz 1H frequency), with rapidly increasing access to NMR through benchtop systems, but also sometimes for higher-field NMR systems from 300 MHz to 1.2 GHz. Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) can address this sensitivity limitation. However, dDNP implies massive and complex cryogenic and high-field instrumentation, which cannot be installed on the bench. We introduce here a compact helium-free 1-T tabletop polarizer as a simple and low-cost alternative. After freezing and polarizing the frozen analyte solutions at 77 K, we demonstrate 1H signal enhancement factors of 100, with rapid 1-s buildup times. The high polarization is subsequently transferred by 1H→13C cross polarization (CP) to 13C spins. Such a simple benchtop polarizer, in combination with hyperpolarizing solid matrices (HYPSOs), may open the way to replenishable hyperpolarization throughout multiple liquid-state NMR experiments.
Collapse
Affiliation(s)
- Charlotte Bocquelet
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Nathan Rougier
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Huu-Nghia Le
- Universite Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Laurent Veyre
- Universite Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Chloe Thieuleux
- Universite Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Roberto Melzi
- Bruker Italia S.r.l., Viale V. Lancetti 43, 20158 Milano, Italy
| | | | | | | | - Quentin Stern
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Ewoud Vaneeckhaute
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Sami Jannin
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| |
Collapse
|
2
|
Narwal P, Lorz N, Minaei M, Jannin S, Kouřil K, Gossert A, Meier B. Bullet-DNP Enables NMR Spectroscopy of Pyruvate and Amino Acids at Nanomolar to Low Micromolar Concentrations. Anal Chem 2024; 96:14734-14740. [PMID: 39227032 PMCID: PMC11411493 DOI: 10.1021/acs.analchem.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/05/2024]
Abstract
Hyperpolarized pyruvate is a widely used marker to track metabolism in vivo and a benchmark molecule for hyperpolarization methods. Here, we show how a combination of improved bullet-DNP instrumentation, an optimized sample preparation and a further sensitivity increase via a 13C-1H polarization transfer after dissolution enable the observation of pyruvate at a concentration of 250 nM immediately after dissolution. At this concentration, the experiment employs a total mass of pyruvate of only 20 ng or 180 pmol. If the concentration is increased to 45 μM, pyruvate may be detected 1 min after dissolution with a signal-to-noise ratio exceeding 50. The procedure can be extended to observe a mixture of amino acids at low micromolar concentrations.
Collapse
Affiliation(s)
- Pooja Narwal
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Nils Lorz
- Department
of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Masoud Minaei
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Sami Jannin
- CRMN
UMR-5082, CNRS, ENS Lyon, Universite Claude
Bernard Lyon 1, Villeurbanne 69100, France
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Alvar Gossert
- Department
of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
3
|
Vaneeckhaute E, Bocquelet C, Bellier L, Le HN, Rougier N, Jegadeesan SA, Vinod-Kumar S, Mathies G, Veyre L, Thieuleux C, Melzi R, Banks D, Kempf J, Stern Q, Jannin S. Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids. Phys Chem Chem Phys 2024; 26:22049-22061. [PMID: 39114945 PMCID: PMC11307143 DOI: 10.1039/d4cp02022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 μmol cm-3) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Charlotte Bocquelet
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Léa Bellier
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Huu-Nghia Le
- Université Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Nathan Rougier
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | | | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Laurent Veyre
- Université Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Chloe Thieuleux
- Université Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Roberto Melzi
- Bruker Italia S.r.l., Viale V. Lancetti 43, 20158 Milano, Italy
| | - Daniel Banks
- Bruker Biospin, Billerica, Massachusetts 01821, USA
| | - James Kempf
- Bruker Biospin, Billerica, Massachusetts 01821, USA
| | - Quentin Stern
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS Lyon, UCBL, CRMN UMR 5082, 69100 Villeurbanne, France.
| |
Collapse
|
4
|
Liang J, Davoodi H, Wadhwa S, Badilita V, Korvink JG. Broadband stripline Lenz lens achieves 11 × NMR signal enhancement. Sci Rep 2024; 14:1645. [PMID: 38238376 PMCID: PMC10796323 DOI: 10.1038/s41598-023-50616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.e., the [Formula: see text]-field acts along the longitudinal volume of a sample container, such as a capillary or other microfluidic channel that is coincident with the axis of the stripline. The almost vanishing self-resonance of the stripline Lenz lens, at frequencies relevant for NMR, leads to a desirable [Formula: see text]-field amplitude that is nearly perfectly uniform across the sample and hence lacking a characteristic sinusoidal modal shape. The action of Lenz' law ensures that no stray [Formula: see text]-field is found outside of the stripline's active volume. Because the stripline Lenz lens does not rely on its own geometry to achieve resonance, its frequency response is thus widely broadband for field enhancements up to a factor of 11, with only the external driving resonator properties governing the overall resonant behaviour. We explore the use of the stripline Lenz lens with a sub-nanolitre sample volume, readily detecting 4 isotopes with resonances ranging from 125.76 to 500 MHz. The concept holds potential for the NMR study of thin films, small biological samples, as well as the in situ study of battery materials.
Collapse
Affiliation(s)
- Jianyi Liang
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
6
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
8
|
Kouřil K, Gramberg M, Jurkutat M, Kouřilová H, Meier B. A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:815-825. [PMID: 37905208 PMCID: PMC10539728 DOI: 10.5194/mr-2-815-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 11/01/2023]
Abstract
In dissolution-dynamic nuclear polarization, a hyperpolarized solid is dissolved with a jet of hot solvent. The solution is then transferred to a secondary magnet, where spectra can be recorded with improved sensitivity. In bullet-dynamic nuclear polarization this order is reversed. Pressurized gas is used to rapidly transfer the hyperpolarized solid to the secondary magnet, and the hyperpolarized solid is dissolved only upon arrival. A potential advantage of this approach is that it may avoid excessive dilution and the associated signal loss, in particular for small sample quantities. Previously, we have shown that liquid-state NMR spectra with polarization levels of up to 30 % may be recorded within less than 1 s after the departure of the hyperpolarized solid from the polarizing magnet. The resolution of the recorded spectra however was limited. The system consumed significant amounts of liquid helium, and substantial manual work was required in between experiments to prepare for the next shot. Here, we present a new bullet-DNP (dynamic nuclear polarization) system that addresses these limitations.
Collapse
Affiliation(s)
- Karel Kouřil
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michel Gramberg
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jurkutat
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hana Kouřilová
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benno Meier
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
9
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
10
|
Keller T, Maly T. Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:117-128. [PMID: 35465650 PMCID: PMC9030190 DOI: 10.5194/mr-2-117-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 04/16/2023]
Abstract
The majority of low-field Overhauser dynamic nuclear polarization (ODNP) experiments reported so far have been 1D NMR experiments to study molecular dynamics and in particular hydration dynamics. In this work, we demonstrate the application of ODNP-enhanced 2D J-resolved (JRES) spectroscopy to improve spectral resolution beyond the limit imposed by the line broadening introduced by the paramagnetic polarizing agent. Using this approach, we are able to separate the overlapping multiplets of ethyl crotonate into a second dimension and clearly identify each chemical site individually. Crucial to these experiments is interleaved spectral referencing, a method introduced to compensate for temperature-induced field drifts over the course of the NMR acquisition. This method does not require additional hardware such as a field-frequency lock, which is especially challenging when designing compact systems.
Collapse
Affiliation(s)
- Timothy J. Keller
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| | - Thorsten Maly
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
11
|
Keller TJ, Maly T. Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021. [PMID: 35465650 DOI: 10.5281/zenodo.4479048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The majority of low-field Overhauser dynamic nuclear polarization (ODNP) experiments reported so far have been 1D NMR experiments to study molecular dynamics and in particular hydration dynamics. In this work, we demonstrate the application of ODNP-enhanced 2D J-resolved (JRES) spectroscopy to improve spectral resolution beyond the limit imposed by the line broadening introduced by the paramagnetic polarizing agent. Using this approach, we are able to separate the overlapping multiplets of ethyl crotonate into a second dimension and clearly identify each chemical site individually. Crucial to these experiments is interleaved spectral referencing, a method introduced to compensate for temperature-induced field drifts over the course of the NMR acquisition. This method does not require additional hardware such as a field-frequency lock, which is especially challenging when designing compact systems.
Collapse
Affiliation(s)
- Timothy J Keller
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| | - Thorsten Maly
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
12
|
van Meerten SGJ, Janssen GE, Kentgens APM. Rapid-melt DNP for multidimensional and heteronuclear high-field NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106656. [PMID: 31812888 DOI: 10.1016/j.jmr.2019.106656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Low sensitivity is the main limitation of NMR for efficient chemical analysis of mass-limited samples. Hyperpolarization techniques such as Dynamic Nuclear Polarization (DNP) have greatly improved the efficiency of NMR experiments. In this manuscript, we demonstrate a 400 MHz rapid-melt DNP setup. With this setup it is possible to perform liquid-state NMR experiments with solid-state DNP enhancement at high magnetic field. Sample volumes of 100 nL in fused-silica capillaries are detected using a stripline microcoil. Due to the small heat capacity of these samples it is possible to melt them with relatively low relaxation losses. With this 400 MHz setup, proton enhancements of up to -175 have been obtained in the liquid-state. The probe is double tuned, so it can be used for heteronuclear DNP-NMR and since the sample composition does not change during the experiment, it is possible to perform signal averaging and multidimensional experiments. This type of rapid-melt DNP setup thus allows for most types of liquid-state NMR experiments to be combined with efficient solid-state DNP. This makes rapid-melt DNP an interesting method for high-throughput chemical analysis of mass-limited samples.
Collapse
Affiliation(s)
- S G J van Meerten
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - G E Janssen
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - A P M Kentgens
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Abstract
In this contribution we present a novel system for shimming capillary samples such as used in microfluidic NMR probe heads. Due to the small sample size, shimming microliter samples using regular shim coils is complicated. Here we demonstrate the use of a series of parallel wires placed perpendicular to B0 as a Shim-on-Chip shim system. This is achieved by placing a ribbon flat cable horizontally over the NMR detector, in our case a stripline. The current through each wire of the ribbon cable can be controlled independently employing a 16 channel DAC. This makes for a simple, cheap, and easy to construct alternative to regular shim systems. The Shim-on-Chip is, nevertheless, quite flexible in creating a magnetic field which matches the inhomogeneity of the magnet in one dimension. The capillary sample geometry is well suited for this type of shimming since its length is much larger than its width. With this Shim-on-Chip system we have reached line widths of 2.2 Hz (at 50%) and 27 Hz (at 0.55%) on a 144 MHz NMR spectrometer without any other room temperature shims. Unlike regular shims, the Shim-on-Chip is located inside the NMR probe. It is always centered on the NMR sample, because of this the shims have an intuitive effect on the line shape. Therefore, the manual shimming is simpler when compared to a regular shim system, as it is difficult to position a microliter sample in the exact center of the shim coils. We furthermore demonstrate the use of a Shim-on-Chip method in a 400 MHz Rapid-Melt DNP system. Decent line widths were achieved even for a sample which is located off-center inside the NMR magnet.
Collapse
Affiliation(s)
- S G J van Meerten
- Solid State NMR , Radboud University , Heyendaalseweg 135 , Nijmegen , The Netherlands 6525 AJ
| | - P J M van Bentum
- Solid State NMR , Radboud University , Heyendaalseweg 135 , Nijmegen , The Netherlands 6525 AJ
| | - A P M Kentgens
- Solid State NMR , Radboud University , Heyendaalseweg 135 , Nijmegen , The Netherlands 6525 AJ
| |
Collapse
|
14
|
Zhang G, Hilty C. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:566-582. [PMID: 29602263 DOI: 10.1002/mrc.4735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 05/15/2023]
Abstract
Sensitivity of detection is one of the most limiting aspects when applying NMR spectroscopy to current problems in the molecular sciences. A number of hyperpolarization methods exist for increasing the population difference between nuclear spin Zeeman states and enhance the signal-to-noise ratio by orders of magnitude. Among these methods, dissolution dynamic nuclear polarization (D-DNP) is unique in its capability of providing high spin polarization for many types of molecules in the liquid state. Originally proposed for biomedical applications including in vivo imaging, applications in high resolution NMR spectroscopy are now emerging. These applications are the focus of the present review. Using D-DNP, a small sample aliquot is first hyperpolarized as a frozen solid at low temperature, followed by dissolution into the liquid state. D-DNP extends the capabilities of liquid state NMR spectroscopy towards shorter timescales and enables the study of nonequilibrium processes, such as the kinetics and mechanisms of reactions. It allows the determination of intermolecular interactions, in particular based on spin relaxation parameters. At the same time, a challenge in the application of this hyperpolarization method is that spin polarization is nonrenewable. Substantial effort has been devoted to develop methods for enabling rapid correlation spectroscopy, the measurement of time-dependent signals, and the extension of the observable time window. With these methods, D-DNP has the potential to open new application areas in the chemical and biochemical sciences.
Collapse
Affiliation(s)
- Guannan Zhang
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
15
|
Plainchont B, Berruyer P, Dumez JN, Jannin S, Giraudeau P. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal Chem 2018; 90:3639-3650. [PMID: 29481058 DOI: 10.1021/acs.analchem.7b05236] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization (DNP) can boost sensitivity in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. This Feature illustrates how the coupling of DNP with both liquid- and solid-state NMR spectroscopy has the potential to considerably extend the range of applications of NMR in analytical chemistry.
Collapse
Affiliation(s)
- Bertrand Plainchont
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France
| | - Pierrick Berruyer
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Univ. Paris Sud, Université Paris-Saclay , 91190 Gif-sur Yvette , France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Patrick Giraudeau
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France.,Institut Universitaire de France , 75005 Paris , France
| |
Collapse
|
16
|
Chen Y, Mehta HS, Butler MC, Walter ED, Reardon PN, Renslow RS, Mueller KT, Washton NM. High-resolution microstrip NMR detectors for subnanoliter samples. Phys Chem Chem Phys 2018; 19:28163-28174. [PMID: 29022609 DOI: 10.1039/c7cp03933f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the numerical optimization and experimental characterization of two microstrip-based nuclear magnetic resonance (NMR) detectors. The first detector, introduced in our previous work, was a flat wire detector with a strip resting on a substrate, and the second detector was created by adding a ground plane on top of the strip conductor, separated by a sample-carrying capillary and a thin layer of insulator. The dimensional parameters of the detectors were optimized using numerical simulations with regards to radio frequency (RF) sensitivity and homogeneity, with particular attention given to the effect of the ground plane. The influence of copper surface finish and substrate surface on the spectral resolution was investigated, and a resolution of 0.8-1.5 Hz was obtained on 1 nL deionized water depending on sample positioning. For 0.13 nmol sucrose (0.2 M in 0.63 nL H2O) encapsulated between two Fluorinert plugs, high RF homogeneity (A810°/A90° = 70-80%) and high sensitivity (expressed in the limit of detection nLODm = 0.73-1.21 nmol s1/2) were achieved, allowing for high-performance 2D NMR spectroscopy of subnanoliter samples.
Collapse
Affiliation(s)
- Ying Chen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
18
|
Gomez MV, de la Hoz A. NMR reaction monitoring in flow synthesis. Beilstein J Org Chem 2017; 13:285-300. [PMID: 28326137 PMCID: PMC5331343 DOI: 10.3762/bjoc.13.31] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/03/2017] [Indexed: 01/06/2023] Open
Abstract
Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.
Collapse
Affiliation(s)
- M Victoria Gomez
- Área Química Orgánica, Facultad de Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela nº 10, E-13071 Ciudad Real, Spain and Instituto Regional de Investigación Científica Aplicada (IRICA), Avda. Camilo José Cela s/n, E-13071 Ciudad Real, Spain
| | - Antonio de la Hoz
- Área Química Orgánica, Facultad de Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela nº 10, E-13071 Ciudad Real, Spain and Instituto Regional de Investigación Científica Aplicada (IRICA), Avda. Camilo José Cela s/n, E-13071 Ciudad Real, Spain
| |
Collapse
|
19
|
Dumez JN. Perspectives on hyperpolarised solution-state magnetic resonance in chemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:38-46. [PMID: 27495362 DOI: 10.1002/mrc.4496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
This perspective article reviews some of the recent developments in the field of hyperpolarisation, with a focus on solution-state NMR spectroscopy of small molecules. Two techniques are considered in more detail, dissolution dynamic nuclear polarisation (D-DNP) and signal amplification by reversible exchange (SABRE). Some of the opportunities and challenges for applications of hyperpolarised solution-state magnetic resonance in chemistry are discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Yoon D, Soundararajan M, Caspers C, Braunmueller F, Genoud J, Alberti S, Ansermet JP. 500-fold enhancement of in situ (13)C liquid state NMR using gyrotron-driven temperature-jump DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:142-146. [PMID: 27490302 DOI: 10.1016/j.jmr.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
A 550-fold increase in the liquid state (13)C NMR signal of a 50μL sample was obtained by first hyperpolarizing the sample at 20K using a gyrotron (260GHz), then, switching its frequency in order to apply 100W for 1.5s so as to melt the sample, finally, turning off the gyrotron to acquire the (13)C NMR signal. The sample stays in its NMR resonator, so the sequence can be repeated with rapid cooling as the entire cryostat stays cold. DNP and thawing of the sample are performed only by the switchable and tunable gyrotron without external devices. Rapid transition from DNP to thawing in one second time scale was necessary especially in order to enhance liquid (1)H NMR signal.
Collapse
Affiliation(s)
- Dongyoung Yoon
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - Murari Soundararajan
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Christian Caspers
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Falk Braunmueller
- Swiss Plasma Center, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jérémy Genoud
- Swiss Plasma Center, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Stefano Alberti
- Swiss Plasma Center, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
21
|
van Meerten SGJ, Tayler MCD, Kentgens APM, van Bentum PJM. Towards Overhauser DNP in supercritical CO(2). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:30-6. [PMID: 27082277 DOI: 10.1016/j.jmr.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 05/14/2023]
Abstract
Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2.
Collapse
Affiliation(s)
- S G J van Meerten
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - M C D Tayler
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - A P M Kentgens
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - P J M van Bentum
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Olsen G, Markhasin E, Szekely O, Bretschneider C, Frydman L. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:49-58. [PMID: 26920830 DOI: 10.1016/j.jmr.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 05/22/2023]
Abstract
A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5mm NMR tubes. All these ingredients--particularly the ⩾ 3000× (1)H polarization enhancements over 11.7T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.
Collapse
Affiliation(s)
- Greg Olsen
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Evgeny Markhasin
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Or Szekely
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Jähnig F, Kwiatkowski G, Ernst M. Conceptual and instrumental progress in dissolution DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:22-29. [PMID: 26920827 DOI: 10.1016/j.jmr.2015.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 05/15/2023]
Abstract
We discuss conceptual and instrumental progress in dissolution DNP since its introduction in 2003. In our view there are three critical steps in the dissolution DNP process: (i) The achievable polarization level in a sample. (ii) The time required to build up the polarization. (iii) The transfer of the sample to the measurement system with minimum loss of polarization. In this review we describe in detail these steps and the different methodological and instrumental implementations, which have been proposed to optimize them.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland; Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
24
|
Ardenkjaer-Larsen JH. On the present and future of dissolution-DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:3-12. [PMID: 26920825 DOI: 10.1016/j.jmr.2016.01.015] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 05/03/2023]
Abstract
Dissolution-DNP is a method to create solutions of molecules with nuclear spin polarization close to unity. The many orders of magnitude signal enhancement have enabled many new applications, in particular in vivo MR metabolic imaging. The method relies on solid state dynamic nuclear polarization at low temperature followed by a dissolution to produce the room temperature solution of highly polarized spins. This work describes the present and future of dissolution-DNP in the mind of the author. The article describes some of the current trends in the field as well as outlines some of the areas where new ideas will make an impact. Most certainly, the future will take unpredicted directions, but hopefully the thoughts presented here will stimulate new ideas that can further advance the field.
Collapse
Affiliation(s)
- Jan Henrik Ardenkjaer-Larsen
- Technical University of Denmark, Department of Electrical Engineering, Kgs Lyngby, Denmark; GE Healthcare, Brøndby, Denmark
| |
Collapse
|
25
|
Bornet A, Jannin S. Optimizing dissolution dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:13-21. [PMID: 26920826 DOI: 10.1016/j.jmr.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 05/15/2023]
Abstract
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows. (i) Using broad line polarizing agents to efficiently polarize 1H spins. (ii) Increasing the magnetic field to 6.7 T and above. (iii) Applying microwave frequency modulation. (iv) Applying (1)H-(13)C cross polarization. (v) Transferring hyperpolarized solution through a magnetic tunnel.
Collapse
Affiliation(s)
- Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland.
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland; Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland.
| |
Collapse
|
26
|
Perras FA, Kobayashi T, Pruski M. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:125-130. [PMID: 26920838 DOI: 10.1016/j.jmr.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 05/13/2023]
Abstract
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI-MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP-MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that the largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. The STRAFI-MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP-MAS NMR.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA.
| |
Collapse
|
27
|
van Bentum J, van Meerten B, Sharma M, Kentgens A. Perspectives on DNP-enhanced NMR spectroscopy in solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:59-67. [PMID: 26920831 DOI: 10.1016/j.jmr.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 05/03/2023]
Abstract
More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.
Collapse
|
28
|
van Bentum PJM, Sharma M, van Meerten SGJ, Kentgens APM. Solid Effect DNP in a Rapid-melt setup. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:126-135. [PMID: 26796111 DOI: 10.1016/j.jmr.2015.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Dynamic Nuclear Polarization (DNP) has become a key element in nuclear magnetic resonance (NMR). Recently, we developed a novel approach to DNP enhanced liquid-state NMR based on rapid melting of a solid hyperpolarized sample followed by 'in situ' liquid-state NMR detection. This method allows (1)H detection with fast cycling options for signal averaging. In nonpolar solvents, doped with BDPA radicals, proton enhancement factors were achieved of up to 400. A short recycling delay of about 5s allows for a fast determination of the hyper-polarization dynamics as function of the microwave frequency and power. Here, we use the rapid melt dnp method to study the mechanisms for DNP in the solid phase in more detail. Solid Effect, Cross Effect, Solid Overhauser and Liquid-state (supercritical) Overhauser DNP enhancement can be observed in the same setup. In this paper, we concentrate on Solid Effect DNP observed with both homogeneous narrow line radicals such as BDPA and with wide line anisotropic nitroxide radicals such as TEMPOL. We find indications that BDPA protons play an important role in Solid Effect DNP with this radical. A simplified spin diffusion model for BDPA can give a semi-quantitative description of the enhancements as function of the microwave power and as function of the proton concentration in the solid solution. For aqueous frozen samples we observe a similar Solid Effect DNP enhancement, which is analyzed within the simplified spin diffusion model.
Collapse
Affiliation(s)
- P J M van Bentum
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - M Sharma
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - S G J van Meerten
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - A P M Kentgens
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|