1
|
Eubank TD, Bobko AA, Hoblitzell EH, Gencheva M, Driesschaert B, Khramtsov VV. In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer. Mol Imaging Biol 2024; 26:424-434. [PMID: 37610610 PMCID: PMC10884355 DOI: 10.1007/s11307-023-01847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Hypoxia and acidosis are recognized tumor microenvironment (TME) biomarkers of cancer progression. Alterations in cancer redox status and metabolism are also associated with elevated levels of intracellular glutathione (GSH) and interstitial inorganic phosphate (Pi). This study aims to evaluate the capability of these biomarkers to discriminate between stages and inform on a switch to malignancy. PROCEDURES These studies were performed using MMTV-PyMT( +) female transgenic mice that spontaneously develop breast cancer and emulate human tumor staging. In vivo assessment of oxygen concentration (pO2), extracellular acidity (pHe), Pi, and GSH was performed using L-band electron paramagnetic resonance spectroscopy and multifunctional trityl and GSH-sensitive nitroxide probes. RESULTS Profiling of the TME showed significant deviation of measured biomarkers upon tumor progression from pre-malignancy (pre-S4) to the malignant stage (S4). For the combined marker, HOP: (pHe × pO2)/Pi, a value > 186 indicated that the tumors were pre-malignant in 85% of the mammary glands analyzed, and when < 186, they were malignant 42% of the time. For GSH, a value < 3 mM indicated that the tumors were pre-malignant 74% of the time, and when > 3 mM, they were malignant 80% of the time. The only marker that markedly deviated as early as stage 1 (S1) from its value in pre-S1 was elevated Pi, followed by a decrease of pHe and pO2 and increase in GSH at later stages. CONCLUSION Molecular TME profiling informs on alteration of tumor redox and metabolism during tumor staging. Early elevation of interstitial Pi at S1 may reflect tumor metabolic alterations that demand elevated phosphorus supply in accordance with the high rate growth hypothesis. These metabolic changes are supported by the following decrease of pHe due to a high tumor reliance on glycolysis and increase of intracellular GSH, a major intracellular redox buffer. The appreciable decrease in TME pO2 was observed only at malignant S4, apparently as a consequence of tumor mass growth and corresponding decrease in perfusion efficacy and increase in oxygen consumption as the tumor cells proliferate.
Collapse
Affiliation(s)
- Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - E Hannah Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
2
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Halpern H, Pan X. Accurate reconstruction of 4D spectral-spatial images from sparse-view data in continuous-wave EPRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107654. [PMID: 38492546 DOI: 10.1016/j.jmr.2024.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral-spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Woodcock LB, Legenzov EA, Dirda NDA, Kao JPY, Eaton GR, Eaton SS. Cyclic Disulfide-Bridged Dinitroxide Biradical for Measuring Thiol Redox Status by Electron Paramagnetic Resonance. J Phys Chem B 2023; 127:8762-8768. [PMID: 37811968 PMCID: PMC10990597 DOI: 10.1021/acs.jpcb.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Among low-molecular-weight thiols, glutathione (GSH) is the main antioxidant in the cell, and its concentration is an indicator of the redox status. A cyclic disulfide-linked dinitroxide was designed for monitoring GSH by electron-paramagnetic resonance (EPR) spectroscopy. Reaction of the disulfide with GSH and three other thiols was measured at 9.6 GHz (X-band) and shown to be of first order in thiols. It is proposed that the reaction of the disulfide with 1 equiv of thiolate produced a short-lived intermediate that reacts with 1 equiv of thiolate to produce the cleavage product. The equilibrium ratio of the cleaved and intact disulfide is a measure of the redox state. Since the long-term goal is to use the disulfide to probe physiology in vivo, the feasibility of EPR spectroscopy and imaging of the disulfide and its cleavage product was demonstrated at 1 GHz (L-band).
Collapse
Affiliation(s)
- Lukas B. Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Eric A. Legenzov
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nathaniel D. A. Dirda
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering & Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
4
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Responsive Nanostructure for Targeted Drug Delivery. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Currently, intelligent, responsive biomaterials have been widely explored, considering the fact that responsive biomaterials provide controlled and predictable results in various biomedical systems. Responsive nanostructures undergo reversible or irreversible changes in the presence of a stimulus, and that stimuli can be temperature, a magnetic field, ultrasound, pH, humidity, pressure, light, electric field, etc. Different types of stimuli being used in drug delivery shall be explained here. Recent research progress in the design, development and applications of biomaterials comprising responsive nanostructures is also described here. More emphasis will be given on the various nanostructures explored for the smart stimuli responsive drug delivery at the target site such as wound healing, cancer therapy, inflammation, and pain management in order to achieve the improved efficacy and sustainability with the lowest side effects. However, it is still a big challenge to develop well-defined responsive nanostructures with ordered output; thus, challenges faced during the design and development of these nanostructures shall also be included in this article. Clinical perspectives and applicability of the responsive nanostructures in the targeted drug delivery shall be discussed here.
Collapse
|
6
|
Gluth TD, Poncelet M, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Biocompatible Monophosphonated Trityl Spin Probe, HOPE71, for In Vivo Measurement of pO 2, pH, and [P i] by Electron Paramagnetic Resonance Spectroscopy. Anal Chem 2023; 95:946-954. [PMID: 36537829 PMCID: PMC9852220 DOI: 10.1021/acs.analchem.2c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.
Collapse
Affiliation(s)
- Teresa D. Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Emily H. Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
7
|
O'Connell RC, Tseytlin O, Bobko AA, Eubank TD, Tseytlin M. Rapid scan EPR: Automated digital resonator control for low-latency data acquisition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107308. [PMID: 36356489 PMCID: PMC10266206 DOI: 10.1016/j.jmr.2022.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/05/2023]
Abstract
Automation has become an essential component of modern scientific instruments which often capture large amounts of complex dynamic data. Algorithms are developed to read multiple sensors in parallel with data acquisition and to adjust instrumental parameters on the fly. Decisions are made on a time scale unattainable to the human operator. In addition to speed, automation reduces human error, improves the reproducibility of experiments, and improves the reliability of acquired data. An automatic digital control (ADiC) was developed to reliably sustain critical coupling of a resonator over a wide range of time-varying loading conditions. The ADiC uses the computational power of a microcontroller that directly communicates with all system components independent of a personal computer (PC). The PC initiates resonator tuning and coupling by sending a command to MC via serial port. After receiving the command, ADiC establishes critical coupling conditions within approximately 5 ms. A printed circuit board resonator was designed to permit digital control. The performance of the resonator together with the ADiC was evaluated by varying the resonator loading from empty to heavily loaded. For the loading, samples containing aqueous sodium chloride that strongly absorb electromagnetic waves were used. A previously reported rapid scan (RS) electron paramagnetic resonance (EPR) imaging instrument was upgraded by the incorporation of ADiC. RS spectra and an in vivo image of oxygen in a mouse tumor model have been acquired using the upgraded system. ADiC robustly sustained critical coupling of the resonator to the transmission line during these measurements. The design implemented in this study can be used in slow-scan and pulsed EPR with modifications.
Collapse
Affiliation(s)
- Ryan C O'Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; West Virginia University Cancer Institute, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
8
|
Abstract
Progress has been made in hardware for low frequencies, demonstrations of rapid frequency scans, hybrid instrumentation, and improved deconvolution software. The recent availability of the commercial Bruker BioSpin rapid scan accessory for their X-band EMX and Elexsys systems makes this technique available to a wide range of users without the need to construct their own system. Developments at lower frequencies are underway in several labs with the goal of facilitating in vivo and preclinical rapid scan imaging. Development of new deconvolution algorithms will make data processing more robust. Frequency scans have substantial promise at higher frequencies. New examples of applications show the wide applicability and advantages of rapid scan.
Collapse
Affiliation(s)
- Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States.
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| |
Collapse
|
9
|
Rane V. Harnessing Electron Spin Hyperpolarization in Chromophore-Radical Spin Probes for Subcellular Resolution in Electron Paramagnetic Resonance Imaging: Concept and Feasibility. J Phys Chem B 2022; 126:2715-2728. [PMID: 35353514 DOI: 10.1021/acs.jpcb.1c10920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a subcellular resolution for biological samples doped with stable radicals at room temperature (RT) is a long-sought goal in electron paramagnetic resonance imaging (EPRI). The spatial resolution in current EPRI methods is constrained either because of low electron spin polarization at RT or the experimental limitations associated with the field gradients and the radical linewidth. Inspired by the recent demonstration of a large electron spin hyperpolarization in chromophore-nitroxyl spin probe molecules, the present work proposes a novel optically hyperpolarized EPR imaging (OH-EPRI) method, which combines the optical method of two-photon confocal microscopy for hyperpolarization generation and the rapid scan (RS) EPR method for signal detection. An important aspect of OH-EPRI is that it is not limited by the abovementioned restrictions of conventional EPRI since the large hyperpolarization in the spin probes overcomes the poor thermal spin polarization at RT, and the use of two-photon optical excitation of the chromophore naturally generates the required spatial resolution, without the need for any magnetic field gradient. Simulations based on time-dependent Bloch equations, which took into account both the RS field modulation and the hyperpolarization generation by optical means, were performed to examine the feasibility of OH-EPRI. The simulation results revealed that a spatial resolution of up to 2 fL can be achieved in OH-EPRI at RT under in vitro conditions. Notably, the majority of the requirements for an OH-EPRI experiment can be fulfilled by the currently available technologies, thereby paving the way for its easy implementation. Thus, the proposed method could potentially bridge the sensitivity gap between the optical and magnetic imaging techniques.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
10
|
Campanella AJ, Ozvat TM, Zadrozny JM. Ligand design of zero-field splitting in trigonal prismatic Ni(II) cage complexes. Dalton Trans 2022; 51:3341-3348. [PMID: 35137732 PMCID: PMC8992015 DOI: 10.1039/d1dt02156g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complexes of encapsulated metal ions are promising potential metal-based electron paramagnetic resonance imaging (EPRI) agents due to zero-field splitting. Herein, we synthesize and magnetically characterize a series of five new Ni(II) complexes based on a clathrochelate ligand to provide a new design strategy for zero-field splitting in an encaged environment. UV-Vis and X-ray single-crystal diffraction experiments demonstrate slight physical and electronic structure changes as a function of the differing substituents. The consequence of these changes at the remote apical and sidearm positions of the encaging ligands is a zero-field splitting parameter (D) that varies over a large range of 11 cm-1. These results demonstrate a remarkable flexibility of the zero-field splitting and electronic structure in nickelous cages and give a clear toolkit for modifying zero-field splitting in highly stable ligand shells.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Tyler M Ozvat
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Koyasu N, Hyodo F, Iwasaki R, Eto H, Elhelaly AE, Tomita H, Shoda S, Takasu M, Mori T, Murata M, Hara A, Noda Y, Kato H, Matsuo M. Spatiotemporal imaging of redox status using in vivo dynamic nuclear polarization magnetic resonance imaging system for early monitoring of response to radiation treatment of tumor. Free Radic Biol Med 2022; 179:170-180. [PMID: 34968704 DOI: 10.1016/j.freeradbiomed.2021.12.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
In general, the effectiveness of radiation treatment is evaluated through the observation of morphological changes with computed tomography (CT) or magnetic resonance imaging (MRI) images after treatment. However, the evaluation of the treatment effects can be very time consuming, and thus can delay the verification of patient cases where treatment has not been fully effective. It is known that the treatment efficacy depends on redox modulation in tumor tissues, which is an indirect effect of oxidizing redox molecules such as hydroxyl radicals and of reactive oxygen species generated by radiation treatment. In vivo dynamic nuclear polarization-MRI (DNP-MRI) using carbamoyl-PROXYL (CmP) as a redox sensitive DNP probe enables the accurate monitoring of the anatomical distribution of free radicals based on interactions of electrons and nuclear spin, known as Overhauser effect. However, spatiotemporal response of the redox status in tumor tissues post-irradiation remains unknown. In this study, we demonstrate the usefulness of spatiotemporal redox status as an early imaging biomarker of tumor response after irradiation using in vivo DNP-MRI. Our results highlight that in vivo DNP-MRI/CmP allowed us to visualize the tumor redox status responses significantly faster and earlier compared to the verification of morphological changes observed with 1.5 T MRI and cancer metabolism (Warburg effect) obtained by hyperpolarized 13C pyruvate MRS. Our findings suggest that the early assessment of redox status alterations with in vivo DNP-MRI/CmP probe may provide very efficient information regarding the effectiveness of the subsequent radiation treatment.
Collapse
Affiliation(s)
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | | | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takashi Mori
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University, Gifu, Japan
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | | |
Collapse
|
12
|
Tseytlin O, O'Connell R, Sivashankar V, Bobko AA, Tseytlin M. Rapid Scan EPR Oxygen Imaging in Photoactivated Resin Used for Stereolithographic 3D Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:358-365. [PMID: 34977276 PMCID: PMC8713732 DOI: 10.1089/3dp.2020.0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxygen plays a critical role in the photopolymerization process resulting in the formation of solid structures from liquid resins during three-dimensional (3D) printing: it acts as a polymerization inhibitor. Upon exposure to light, oxygen is depleted. As a result, the polymerization process becomes activated. Electron paramagnetic resonance (EPR) imaging is described as a tool to visualize changes in oxygen distribution caused by light exposure. This nondestructive method uses radio waves and, therefore, is not constrained by optical opacity offering greater penetrating depth. Three proof-of-principle imaging experiments were demonstrated: (1) spatial propagation of the photopolymerization process; (2) oxygen depletion as a result of postcuring; and (3) oxygen visualization in a 3D printed spiral model. Commercial stereolithography (SLA) resin was used in these experiments. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) probe was mixed with the resin to permit oxygen imaging. Li-naphthalocyanine probes are routinely used in various EPR applications because of their long-term stability and high functional sensitivity to oxygen. In this study, we demonstrate that EPR imaging has the potential to become a powerful visualization tool in the development of 3D printing technology, including bioprinting and tissue engineering.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
| | - Ryan O'Connell
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
| | - Vignesh Sivashankar
- Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Andrey A. Bobko
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
| | - Mark Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Fehling P, Buckenmaier K, Dobrynin SA, Morozov DA, Polienko YF, Khoroshunova YV, Borozdina Y, Mayer P, Engelmann J, Scheffler K, Angelovski G, Kirilyuk IA. The effects of nitroxide structure upon 1H Overhauser dynamic nuclear polarization efficacy at ultralow-field. J Chem Phys 2021; 155:144203. [PMID: 34654311 DOI: 10.1063/5.0064342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The efficacy in 1H Overhauser dynamic nuclear polarization in liquids at ultralow magnetic field (ULF, B0 = 92 ± 0.8 µT) and polarization field (Bp = 1-10 mT) was studied for a broad variety of 26 different spin probes. Among others, piperidine, pyrrolidine, and pyrroline radicals specifically synthesized for this study, along with some well-established commercially available nitroxides, were investigated. Isotope-substituted variants, some sterically shielded reduction-resistant nitroxides, and some biradicals were included in the measurements. The maximal achievable enhancement, Emax, and the radio frequency power, P1/2, needed for reaching Emax/2 were measured. Physico-chemical features such as molecular weight, spectral linewidth, heterocyclic structure, different types of substituents, deuteration, and 15N-labeling as well as the difference between monoradicals and biradicals were investigated. For the unmodified nitroxide radicals, the Emax values correlate with the molecular weight. The P1/2 values correlate with the spectral linewidth and are additionally influenced by the type of substituents neighboring the nitroxide group. The nitroxide biradicals with high intramolecular spin-spin coupling show low performance. Nitroxides enriched with 15N and/or 2H afford significantly higher |Emax| and require lower power to do so, compared to their unmodified counterparts containing at natural abundance predominantly 14N and 1H. The results allow for a correlation of chemical features with physical hyperpolarization-related properties and indicate that small nitroxides with narrow spectral lines have clear advantages for the use in Overhauser dynamic nuclear polarization experiments. Perdeuteration and 15N-labeling can be used to additionally boost the spin probe performance.
Collapse
Affiliation(s)
- Paul Fehling
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Kai Buckenmaier
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Sergey A Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Denis A Morozov
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yulia V Khoroshunova
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yulia Borozdina
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Philipp Mayer
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Jörn Engelmann
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Goran Angelovski
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Komarov DA, Samouilov A, Hirata H, Zweier JL. High fidelity triangular sweep of the magnetic field for millisecond scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107024. [PMID: 34198184 PMCID: PMC8316393 DOI: 10.1016/j.jmr.2021.107024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Linearity of the magnetic field sweep is important for high resolution continuous wave EPR imaging. Driving the field with triangular wave function is the most efficient way to scan EPR projections. However, the magnetic field sweep profile can be significantly distorted during fast millisecond projection scan. In this work, we introduce a method to generate highly linear and properly symmetrical triangular sweeps of the magnetic field using calibrated harmonics of the triangular wave function. First, the frequency response function of the EPR magnet and its power circuitry was obtained. For this, the field sweeping coil was driven with sinusoidal signals of different frequencies and the actual magnetic field inside the magnet was recorded. To cover wide range of frequencies, the measurements were carried out independently using gaussmeter, Hall-effect linear sensor integrated circuit, and an inductance coil. For each frequency, the system gain and the phase delay were determined. These data were used to adjust the amplitudes and the phases of individual harmonics of the triangular wave function. After the calibration, the maximum deviation of the magnetic field from the linear function was 0.05% of sweep width for 4 ms scan. The maximum discrepancy between the forward and the reverse scan was less than 0.04%. Sweep overhead time for changing the scan direction was 5%. The proposed approach allows generation of high fidelity triangular magnetic field sweeps with accuracy better than 0.1% for the range of the magnetic field sweep widths up to 48 G and scan duration from 10 s down to 1 ms.
Collapse
Affiliation(s)
- Denis A Komarov
- The EPR Center and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- The EPR Center and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Jay L Zweier
- The EPR Center and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Gluth TD, Poncelet M, DeVience S, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Large-scale synthesis of a monophosphonated tetrathiatriarylmethyl spin probe for concurrent in vivo measurement of pO 2, pH and inorganic phosphate by EPR. RSC Adv 2021; 11:25951-25954. [PMID: 34354828 PMCID: PMC8314523 DOI: 10.1039/d1ra04551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Low-field electron paramagnetic resonance spectroscopy paired with pTAM, a mono-phosphonated triarylmethyl radical, is an unmatched technique for concurrent and non-invasive measurement of oxygen concentration, pH, and inorganic phosphate concentration for in vivo investigations. However, the prior reported synthesis is limited by its low yield and poor scalability, making wide-spread application of pTAM unfeasible. Here, we report a new strategy for the synthesis of pTAM with significantly greater yields demonstrated on a large scale. We also present a standalone application with user-friendly interface for automatic spectrum fitting and extraction of pO2, pH, and [Pi] values. Finally, we confirm that pTAM remains in the extracellular space and has low cytotoxicity appropriate for local injection.
Collapse
Affiliation(s)
- Teresa D Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| | - Stephen DeVience
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| |
Collapse
|
16
|
Campanella AJ, Nguyen MT, Zhang J, Ngendahimana T, Antholine WE, Eaton GR, Eaton SS, Glezakou VA, Zadrozny JM. Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes. Dalton Trans 2021; 50:5342-5350. [PMID: 33881070 PMCID: PMC8173706 DOI: 10.1039/d1dt00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - William E Antholine
- National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
17
|
Tseytlin O, Bobko AA, Tseytlin M. Rapid Scan EPR imaging as a Tool for Magnetic Field Mapping. APPLIED MAGNETIC RESONANCE 2020; 51:1117-1124. [PMID: 33642700 PMCID: PMC7909464 DOI: 10.1007/s00723-020-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Indexed: 06/05/2023]
Abstract
Functional four-dimensional spectral-spatial electron paramagnetic imaging (EPRI) is routinely used in biomedical research. Positions and widths of EPR lines in the spectral dimension report oxygen partial pressure, pH, and other important parameters of the tissue microenvironment. Images are measured in the homogeneous external magnetic field. An application of EPRI is proposed in which the field is perturbed by a magnetized object. A proof-of-concept imaging experiment was conducted, which permitted visualization of the magnetic field created by this object. A single-line lithium octa-n-butoxynaphthalocyanine spin probe was used in the experiment. The spectral position of the EPR line directly measured the strength of the perturbation field with spatial resolution. A three-dimensional magnetic field map was reconstructed as a result. Several applications of this technology can be anticipated. First is EPRI/MPI co-registration, where MPI is an emerging magnetic particle imaging technique. Second, EPRI can be an alternative to magnetic field cameras that are used for the development of high-end permanent magnets and their assemblies, consumer electronics, and industrial sensors. Besides the high resolution of magnetic field readings, EPR probes can be placed in the internal areas of various assemblies that are not accessible by the standard sensors. Third, EPRI can be used to develop systems for magnetic manipulation of cell cultures.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Department of Biochemistry, West Virginia University,
Morgantown, WV 26506, USA
- In Vivo Multifunctional Magnetic Resonance center at Robert
C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506,
USA
| | - Andrey A. Bobko
- Department of Biochemistry, West Virginia University,
Morgantown, WV 26506, USA
- In Vivo Multifunctional Magnetic Resonance center at Robert
C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506,
USA
| | - Mark Tseytlin
- Department of Biochemistry, West Virginia University,
Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV
26506, USA
- In Vivo Multifunctional Magnetic Resonance center at Robert
C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506,
USA
| |
Collapse
|
18
|
Komarov DA, Samouilov A, Ahmad R, Zweier JL. Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106812. [PMID: 32966948 PMCID: PMC7554188 DOI: 10.1016/j.jmr.2020.106812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A novel method for reconstructing 3D spatial EPR images from large numbers of noisy projections was developed that minimizes mean square error between the experimental projections and those from the reconstructed image. The method utilizes raw projection data and zero gradient spectrum to account for EPR line shape and hyperfine structure of the paramagnetic probe without the need for deconvolution techniques that are poorly suited for processing of high noise projections. A numerical phantom was reconstructed for method validation. Reconstruction time for the matrix of 1283 voxels and 16,384 noiseless projections was 4.6 min for a single iteration. The algorithm converged quickly, reaching R2 ~ 0.99975 after the very first iteration. An experimental phantom sample with nitroxyl radical was measured. With 16,384 projections and a field gradient of 8 G/cm, resolutions of 0.4 mm were achieved for a cubical area of 25 × 25 × 25 mm3. Reconstruction was sufficiently fast and memory efficient making it suitable for applications with large 3D matrices and fully determined system of equations. The developed algorithm can be used with any gradient distribution and does not require adjustable filter parameters that makes for simple application. A thorough analysis of the strengths and limitations of this method for 3D spatial EPR imaging is provided.
Collapse
Affiliation(s)
- Denis A Komarov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rizwan Ahmad
- Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Tseytlin M. General solution for rapid scan EPR deconvolution problem. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 318:106801. [PMID: 32862080 PMCID: PMC7575242 DOI: 10.1016/j.jmr.2020.106801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/05/2023]
Abstract
A general solution for the RS EPR deconvolution problem has been derived. This solution permits the use of arbitrary magnetic field scans. As a result, constraints on the current experimental designs can be lifted. For example, a trapezoidal waveform can be used to accelerate the scan rate without affecting the signal bandwidth. The assumptions made to develop the previous algorithms are mathematically validated.
Collapse
Affiliation(s)
- Mark Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; West Virginia University Cancer Institute, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
20
|
Shi Y, Eaton SS, Eaton GR. Rapid-scan EPR imaging of a phantom comprised of species with different linewidths and relaxation times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106593. [PMID: 31520789 PMCID: PMC6829054 DOI: 10.1016/j.jmr.2019.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
As a demonstration of the application of rapid-scan EPR to imaging at low frequency and magnetic field, a multi-compartment phantom containing six different samples was imaged. The samples were nitroxide radicals, trityl (substituted triarylmethyl) radicals, and the oxygen-sensitive solid lithium phthalocyanine (LiPc), all of which are useful for in vivo imaging. The 2D spectral-spatial image demonstration was performed at 250 MHz, with samples in sealed tubes of various sizes arranged in a 3D-printed plastic holder. Maximum gradients of 10 G/cm gave a spatial resolution of about 0.1 mm for the narrow trityl and LiPc signals and about 1 mm for the nitroxide. The importance of proper selection of resonator bandwidth and scan rate for obtaining accurate linewidth information is demonstrated for a case in which the phantom is composed of species with signal linewidths and relaxation times that differ by more than a factor of 10.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA.
| |
Collapse
|
21
|
Merging Preclinical EPR Tomography with other Imaging Techniques. Cell Biochem Biophys 2019; 77:187-196. [PMID: 31440878 PMCID: PMC6742609 DOI: 10.1007/s12013-019-00880-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
This paper presents a survey of electron paramagnetic resonance (EPR) image registration. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints and/or different techniques. EPR-imaging (EPRI) techniques belong to the functional-imaging modalities and therefore suffer from a lack of anatomical reference which is mandatory in preclinical imaging. For this reason, it is necessary to merging EPR images with other modalities which allow for obtaining anatomy images. Methodological analysis and review of the literature were done, providing a summary for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in EPR preclinical image registration and also communicate to them the contribution of this research in the field of image processing.
Collapse
|
22
|
Tseytlin O, Guggilapu P, Bobko AA, AlAhmad H, Xu X, Epel B, O'Connell R, Hoblitzell EH, Eubank TD, Khramtsov VV, Driesschaert B, Kazkaz E, Tseytlin M. Modular imaging system: Rapid scan EPR at 800 MHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:94-103. [PMID: 31238278 PMCID: PMC6656609 DOI: 10.1016/j.jmr.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/05/2023]
Abstract
An electron paramagnetic resonance (EPR) imaging system has been custom built for use in pre-clinical and, potentially, clinical studies. Commercial standalone modules have been used in the design that are MATLAB-controlled. The imaging system combines digital and analog technologies. It was designed to achieve maximum flexibility and versatility and to perform standard and novel user-defined experiments. This design goal is achieved by frequency mixing of an arbitrary waveform generator (AWG) output at the intermediate frequency (IF) with a constant source frequency (SF). Low noise SF at 250, 750, and 1000 MHz are available in the system. A wide range of frequencies from near-baseband to L-band can be generated as a result. Two-stage downconversion at the signal detection side is implemented that enables multi-frequency EPR capability. In the first stage, the signal frequency is converted to IF. A novel AWG-enabled digital auto-frequency control method that operates at IF is described that is used for automatic resonator tuning. Quadrature baseband EPR signal is generated in the second downconversion step. The semi-digital approach of mixing low-noise frequency sources with an AWG permits generation of arbitrary excitation patterns that include but are not limited to frequency sweeps for resonator tuning and matching, continuous-wave, and pulse sequences. Presented in this paper is the demonstration of rapid scan (RS) EPR imaging implemented at 800 MHz. Generation of stable magnetic scan waveforms is critical for the RS method. A digital automatic scan control (DASC) system was developed for sinusoidal magnetic field scans. DASC permits tight control of both amplitude and phase of the scans. A surface loop resonator was developed using 3D printing technology. RS EPR imaging system was validated using sample phantoms. In vivo imaging of a breast cancer mouse model is demonstrated.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Priyaankadevi Guggilapu
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Hussien AlAhmad
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Industrial & Management Systems Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xuan Xu
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, University of Chicago, IL 60637, USA
| | - Ryan O'Connell
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Valery V Khramtsov
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Eiad Kazkaz
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
23
|
Sato-Akaba H, Tseytlin M. Development of an L-band rapid scan EPR digital console. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:42-52. [PMID: 31100585 PMCID: PMC7549020 DOI: 10.1016/j.jmr.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 06/05/2023]
Abstract
The development of a digital console for in-vivo rapid scan electron paramagnetic resonance (RS-EPR) spectroscopy and imaging is described in detail. The console was build using field programmable gate array (FGPA) technology that permits real-time control of the resonator and scanning magnetic fields during the measurements. Automatic resonator tuning and matching are achieved by implementing a digital feedback control system and using voltage-tunable capacitors. A band-pass subsampling method is used to directly digitize EPR signals at the carrier frequencies of about 1.2 GHz. The magnetic field scan waveforms, excitation EPR frequency, and sampling clock are all internally synchronized. Full-cycle RS-EPR signals are accumulated in the FPGA in real time without any time gaps. The result is the elimination of the re-arm time, during which data are not acquired. The proposed design in this manuscript has a small footprint and is relatively low cost. The FPGA-based RS-EPR system was tested using standard LiNc-BuO and tempone-d16 samples. The RS-EPR linewidth of the LiNc-BuO sample was consistent with an independent pulsed EPR measurement.
Collapse
Affiliation(s)
- Hideo Sato-Akaba
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Mark Tseytlin
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
24
|
Yasukawa K, Shigemi R, Kanbe T, Mutsumoto Y, Oda F, Ichikawa K, Yamada KI, Tun X, Utsumi H. In Vivo Imaging of the Intra- and Extracellular Redox Status in Rat Stomach with Indomethacin-Induced Gastric Ulcers Using Overhauser-Enhanced Magnetic Resonance Imaging. Antioxid Redox Signal 2019; 30:1147-1161. [PMID: 29631421 DOI: 10.1089/ars.2017.7336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Repeated use of nonsteroidal anti-inflammatory drugs can induce changes in the redox status, including production of reactive oxygen species (ROS), but the specific details of these changes remain unknown. Overhauser-enhanced magnetic resonance imaging (OMRI) has been used in vivo to monitor the redox status in several diseases and map tissue oxygen concentrations. We monitored the intra- and extracellular redox status in the stomach of rats with indomethacin-induced gastric ulcers using OMRI and investigated the relationship with gastric mucosal damage. RESULTS One hour after oral administration of indomethacin (30 mg/kg), OMRI measurements in the stomach were made following nitroxyl probe administration. OMRI with the membrane-permeable nitroxyl probe, 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPOL), demonstrated a redox change toward oxidation, which was reversed by a membrane-permeable antioxidant. Conversely, imaging with the impermeable probe, 4-trimethylammonium-2,2,6,6-tetramethyl-piperidine-1-oxyl (CAT-1), demonstrated little redox change. Redox imbalance imaging of a live rat stomach with indomethacin-induced gastric ulcers was produced by dual imaging of 15N-labeled TEMPOL and 14N-labeled CAT-1, in addition to imaging with another membrane-permeable 15N-labeled probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL), and 14N-labeled CAT-1. Pretreatment with MC-PROXYL suppressed gastric mucosal damage, whereas pretreatment with CAT-1 did not suppress ulcer formation. INNOVATION OMRI combined with a dual probe is a less invasive imaging technique for evaluation of intracellular ROS production contributing to the formation of gastric ulcers in the stomach of indomethacin-treated rats, which cannot be done with other methods. CONCLUSION This method may be a very powerful tool for characterizing the pathogenesis of various diseases and may have medical applications.
Collapse
Affiliation(s)
- Keiji Yasukawa
- 1 Laboratory of Advanced Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan.,2 Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,3 Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Ryota Shigemi
- 2 Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Kanbe
- 2 Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Mutsumoto
- 2 Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumiko Oda
- 2 Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Ichikawa
- 3 Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Yamada
- 2 Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Xin Tun
- 4 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideo Utsumi
- 5 School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
25
|
Buchanan LA, Woodcock LB, Rinard GA, Quine RW, Shi Y, Eaton SS, Eaton GR. 250 MHz Rapid Scan Cross Loop Resonator. APPLIED MAGNETIC RESONANCE 2019; 50:333-345. [PMID: 30799909 PMCID: PMC6380496 DOI: 10.1007/s00723-018-1078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A 25 mm diameter 250 MHz crossed-loop resonator was designed for rapid scan electron paramagnetic resonance imaging. It has a saddle coil for the driven resonator and a fine wire, loop gap resonator for the sample resonator. There is good separation of E and B fields and high isolation between the two resonators, permitting a wide range of sample types to be measured. Applications to imaging of nitroxide, trityl, and LiPc samples illustrate the utility of the resonator. Using this resonator and a trityl sample the signal-to-noise of a rapid scan absorption spectrum is about 20 times higher than for a first-derivative CW spectrum.
Collapse
Affiliation(s)
- Laura A. Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Lukas B. Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - George A. Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210
| | - Richard W. Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210
| | - Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| |
Collapse
|
26
|
Molecular Probes for Evaluation of Oxidative Stress by In Vivo EPR Spectroscopy and Imaging: State-of-the-Art and Limitations. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress, defined as a misbalance between the production of reactive oxygen species and the antioxidant defenses of the cell, appears as a critical factor either in the onset or in the etiology of many pathological conditions. Several methods of detection exist. However, they usually rely on ex vivo evaluation or reports on the status of living tissues only up to a few millimeters in depth, while a whole-body, real-time, non-invasive monitoring technique is required for early diagnosis or as an aid to therapy (to monitor the action of a drug). Methods based on electron paramagnetic resonance (EPR), in association with molecular probes based on aminoxyl radicals (nitroxides) or hydroxylamines especially, have emerged as very promising to meet these standards. The principles involve monitoring the rate of decrease or increase of the EPR signal in vivo after injection of the nitroxide or the hydroxylamine probe, respectively, in a pathological versus a control situation. There have been many successful applications in various rodent models. However, current limitations lie in both the field of the technical development of the spectrometers and the molecular probes. The scope of this review will mainly focus on the latter.
Collapse
|
27
|
Brain Redox Imaging Using In Vivo Electron Paramagnetic Resonance Imaging and Nitroxide Imaging Probes. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism. Under normal physiological conditions, oxidative damage is prevented by the regulation of ROS by the antioxidant network. However, increased ROS and decreased antioxidant defense may contribute to many brain disorders, such as stroke, Parkinson’s disease, and Alzheimer’s disease. Noninvasive assessment of brain redox status is necessary for monitoring the disease state and the oxidative damage. Continuous-wave electron paramagnetic resonance (CW-EPR) imaging using redox-sensitive imaging probes, such as nitroxides, is a powerful method for visualizing the redox status modulated by oxidative stress in vivo. For conventional CW-EPR imaging, however, poor signal-to-noise ratio, low acquisition efficiency, and lack of anatomic visualization limit its ability to achieve three-dimensional redox mapping of small rodent brains. In this review, we discuss the instrumentation and coregistration of EPR images to anatomical images and appropriate nitroxide imaging probes, all of which are needed for a sophisticated in vivo EPR imager for all rodents. Using new EPR imaging systems, site-specific distribution and kinetics of nitroxide imaging probes in rodent brains can be obtained more accurately, compared to previous EPR imaging systems. We also describe the redox imaging studies of animal models of brain disease using newly developed EPR imaging.
Collapse
|
28
|
Elajaili HB, Hernandez-Lagunas L, Ranguelova K, Dikalov S, Nozik-Grayck E. Use of Electron Paramagnetic Resonance in Biological Samples at Ambient Temperature and 77 K. J Vis Exp 2019. [PMID: 30688300 DOI: 10.3791/58461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accurate and specific detection of reactive oxygen species (ROS) in different cellular and tissue compartments is essential to the study of redox-regulated signaling in biological settings. Electron paramagnetic resonance spectroscopy (EPR) is the only direct method to assess free radicals unambiguously. Its advantage is that it detects physiologic levels of specific species with a high specificity, but it does require specialized technology, careful sample preparation, and appropriate controls to ensure accurate interpretation of the data. Cyclic hydroxylamine spin probes react selectively with superoxide or other radicals to generate a nitroxide signal that can be quantified by EPR spectroscopy. Cell-permeable spin probes and spin probes designed to accumulate rapidly in the mitochondria allow for the determination of superoxide concentration in different cellular compartments. In cultured cells, the use of cell permeable 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) along with and without cell-impermeable superoxide dismutase (SOD) pretreatment, or use of cell-permeable PEG-SOD, allows for the differentiation of extracellular from cytosolic superoxide. The mitochondrial 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido] piperidinium dichloride (mito-TEMPO-H) allows for measurement of mitochondrial ROS (predominantly superoxide). Spin probes and EPR spectroscopy can also be applied to in vivo models. Superoxide can be detected in extracellular fluids such as blood and alveolar fluid, as well as tissues such as lung tissue. Several methods are presented to process and store tissue for EPR measurements and deliver intravenous 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) spin probe in vivo. While measurements can be performed at room temperature, samples obtained from in vitro and in vivo models can also be stored at -80 °C and analyzed by EPR at 77 K. The samples can be stored in specialized tubing stable at -80 °C and run at 77 K to enable a practical, efficient, and reproducible method that facilitates storing and transferring samples.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | | | - Sergey Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
29
|
Jugniot N, Duttagupta I, Rivot A, Massot P, Cardiet C, Pizzoccaro A, Jean M, Vanthuyne N, Franconi JM, Voisin P, Devouassoux G, Parzy E, Thiaudiere E, Marque SRA, Bentaher A, Audran G, Mellet P. An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. Free Radic Biol Med 2018; 126:101-112. [PMID: 30092349 DOI: 10.1016/j.freeradbiomed.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
Pulmonary inflammatory diseases are a major burden worldwide. They have in common an influx of neutrophils. Neutrophils secrete unchecked proteases at inflammation sites consequently leading to a protease/inhibitor imbalance. Among these proteases, neutrophil elastase is responsible for the degradation of the lung structure via elastin fragmentation. Therefore, monitoring the protease/inhibitor status in lungs non-invasively would be an important diagnostic tool. Herein we present the synthesis of a MeO-Suc-(Ala)2-Pro-Val-nitroxide, a line-shifting elastase activity probe suitable for Electron Paramagnetic Resonance spectroscopy (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI). It is a fast and sensitive neutrophil elastase substrate with Km = 15 ± 2.9 µM, kcat/Km = 930,000 s-1 M-1 and Km = 25 ± 5.4 µM, kcat/Km = 640,000 s-1 M-1 for the R and S isomers, respectively. These properties are suitable to detect accurately concentrations of neutrophil elastase as low as 1 nM. The substrate was assessed with broncho-alveolar lavages samples derived from a mouse model of Pseudomonas pneumonia. Using EPR spectroscopy we observed a clear-cut difference between wild type animals and animals deficient in neutrophil elastase or deprived of neutrophil Elastase, Cathepsin G and Proteinase 3 or non-infected animals. These results provide new preclinical ex vivo and in vivo diagnostic methods. They can lead to clinical methods to promote in time lung protection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Indranil Duttagupta
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Angélique Rivot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Colleen Cardiet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Anne Pizzoccaro
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Marion Jean
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Gilles Devouassoux
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Elodie Parzy
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Eric Thiaudiere
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France.
| | - Sylvain R A Marque
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France; Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia.
| | - Abderrazzak Bentaher
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France.
| | - Gérard Audran
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Philippe Mellet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France; INSERM, 33076 Bordeaux Cedex, France.
| |
Collapse
|
30
|
Buchanan LA, Woodcock LB, Quine RW, Rinard GA, Eaton SS, Eaton GR. Background correction in rapid scan EPR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:1-8. [PMID: 29800785 PMCID: PMC6047921 DOI: 10.1016/j.jmr.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 05/12/2023]
Abstract
In rapid scan EPR the rapidly-changing magnetic field induces a background signal that may be larger than the EPR signal. A method has been developed to correct for that background signal by acquiring two sets of data, denoted as scan 1 and scan 2. In scan 2 the external field B0 is reversed and the data acquisition trigger is offset by one half cycle of the scan field relative to the settings used in scan 1. For data acquired with a cross-loop resonator subtraction of scan 2 from scan 1 cancels the background and enhances the EPR signal. Experiments were performed at an EPR frequency of about 258 MHz, which is in the range that is commonly used for in vivo imaging. Samples include nitroxide radicals, a trityl radical, a dinitroxide, and a nitroxide in the presence of a magnetic field gradient. This method has the advantage that no assumption is made about the shape of the background signal, and it provides an approach to automating the background correction.
Collapse
Affiliation(s)
- Laura A Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Richard W Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210, United States
| | - George A Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|
31
|
Duttagupta I, Jugniot N, Audran G, Franconi JM, Marque SRA, Massot P, Mellet P, Parzy E, Thiaudière E, Vanthuyne N. Selective On/Off-Nitroxides as Radical Probes to Investigate Non-radical Enzymatic Activity by Electron Paramagnetic Resonance. Chemistry 2018; 24:7615-7619. [PMID: 29722459 DOI: 10.1002/chem.201800866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 12/13/2022]
Abstract
A nitroxide carrying a peptide specific to the binding pocket of the serine proteases chymotrypsin and cathepsin G is prepared. This peptide is attached as an enol ester to the nitroxide. Upon enzymatic hydrolysis of the peptide, the enol ester moiety is transformed into a ketone moiety. This transformation affords a difference of 5 G in phosphorus hyperfine coupling constant between the electronic paramagnetic resonance (EPR) signals of each nitroxide. This property is used to monitor the enzymatic activity of chymotrypsin and cathepsin G by EPR. Michaelis constants were determined and match those reported for conventional optical probes.
Collapse
Affiliation(s)
- Indranil Duttagupta
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
| | - Natacha Jugniot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Gérard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Laurentjeva 9, Novosibirsk, 630090, Russia
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Philippe Mellet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France.,INSERM, 33076, Bordeaux Cedex, France
| | - Elodie Parzy
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ., CNRS, ISM2, UMR 7313, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
| |
Collapse
|
32
|
Khramtsov VV. In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes. Antioxid Redox Signal 2018; 28:1365-1377. [PMID: 29132215 PMCID: PMC5910053 DOI: 10.1089/ars.2017.7329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE A key role of the tumor microenvironment (TME) in cancer progression, treatment resistance, and as a target for therapeutic intervention is increasingly appreciated. Among important physiological components of the TME are tissue hypoxia, acidosis, high reducing capacity, elevated concentrations of intracellular glutathione (GSH), and interstitial inorganic phosphate (Pi). Noninvasive in vivo pO2, pH, GSH, Pi, and redox assessment provide unique insights into biological processes in the TME, and may serve as a tool for preclinical screening of anticancer drugs and optimizing TME-targeted therapeutic strategies. Recent Advances: A reasonable radiofrequency penetration depth in living tissues and progress in development of functional paramagnetic probes make low-field electron paramagnetic resonance (EPR)-based spectroscopy and imaging the most appropriate approaches for noninvasive assessment of the TME parameters. CRITICAL ISSUES Here we overview the current status of EPR approaches used in combination with functional paramagnetic probes that provide quantitative information on chemical TME and redox (pO2, pH, redox status, Pi, and GSH). In particular, an application of a recently developed dual-function pH and redox nitroxide probe and multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of several TME parameters in preclinical studies. The measurements of several parameters using a single probe allow for their correlation analyses independent of probe distribution and time of measurements. FUTURE DIRECTIONS The recent progress in clinical EPR instrumentation and development of biocompatible paramagnetic probes for in vivo multifunctional TME profiling eventually will make possible translation of these EPR techniques into clinical settings to improve prediction power of early diagnostics for the malignant transition and for future rational design of TME-targeted anticancer therapeutics. Antioxid. Redox Signal. 28, 1365-1377.
Collapse
Affiliation(s)
- Valery V Khramtsov
- 1 In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University , Morgantown, West Virginia.,2 Department of Biochemistry, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
33
|
Tseytlin M, Stolin AV, Guggilapu P, Bobko AA, Khramtsov VV, Tseytlin O, Raylman RR. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner. Phys Med Biol 2018; 63:105010. [PMID: 29676283 DOI: 10.1088/1361-6560/aabfa1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
Collapse
Affiliation(s)
- Mark Tseytlin
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America. In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America
| | | | | | | | | | | | | |
Collapse
|
34
|
Buchanan LA, Rinard GA, Quine RW, Eaton SS, Eaton GR. Tabletop 700 MHz electron paramagnetic resonance imaging spectrometer. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2018; 48B:e21384. [PMID: 30804714 PMCID: PMC6386469 DOI: 10.1002/cmr.b.21384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/11/2018] [Indexed: 06/05/2023]
Abstract
Low frequency electron paramagnetic resonance imaging is a powerful tool to non-invasively measure the physiological status of tumors. Here, we report on the design and functionality of a rapid scan and pulse table-top imaging spectrometer based around an arbitrary waveform generator and 25mm cross-loop resonator operating at 700 MHz. Two and four-dimensional rapid scan spectral-spatial images are presented. This table-top imager is a prototype for future pre-clinical imagers.
Collapse
Affiliation(s)
- Laura A. Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - George A. Rinard
- School of Engineering and Computer Science and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Richard W. Quine
- School of Engineering and Computer Science and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging of In Vivo Physiology, University of
Denver, Denver, CO 80210
| |
Collapse
|
35
|
Eaton SS, Woodcock LB, Eaton GR. Continuous wave electron paramagnetic resonance of nitroxide biradicals in fluid solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2018; 47A:e21426. [PMID: 31548835 PMCID: PMC6756774 DOI: 10.1002/cmr.a.21426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nitroxide biradicals have been prepared with electron-electron spin-spin exchange interaction, J, ranging from weak to very strong. EPR spectra of these biradicals in fluid solution depend on the ratio of J to the nitrogen hyperfine coupling, AN, and the rates of interconversion between conformations with different values of J. For relatively rigid biradicals EPR spectra can be simulated as the superposition of AB splitting patterns arising from different combinations of nitrogen nuclear spin states. For more flexible biradicals spectra can be simulated with a Liouville representation of the dynamics that interconvert conformations with different values of J on the EPR timescale. Analysis of spectra, factors that impact J, and examples of applications to chemical and biophysical problems are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| |
Collapse
|
36
|
Eaton SS, Woodcock LB, Eaton GR. Continuous wave electron paramagnetic resonance of nitroxide biradicals in fluid solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2018; 47A:e21426. [PMID: 31548835 DOI: 10.1002/cmr.a.21246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nitroxide biradicals have been prepared with electron-electron spin-spin exchange interaction, J, ranging from weak to very strong. EPR spectra of these biradicals in fluid solution depend on the ratio of J to the nitrogen hyperfine coupling, AN, and the rates of interconversion between conformations with different values of J. For relatively rigid biradicals EPR spectra can be simulated as the superposition of AB splitting patterns arising from different combinations of nitrogen nuclear spin states. For more flexible biradicals spectra can be simulated with a Liouville representation of the dynamics that interconvert conformations with different values of J on the EPR timescale. Analysis of spectra, factors that impact J, and examples of applications to chemical and biophysical problems are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| |
Collapse
|
37
|
Kengen J, Deglasse JP, Neveu MA, Mignion L, Desmet C, Gourgue F, Jonas JC, Gallez B, Jordan BF. Biomarkers of tumour redox status in response to modulations of glutathione and thioredoxin antioxidant pathways. Free Radic Res 2018; 52:256-266. [DOI: 10.1080/10715762.2018.1427236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Julie Kengen
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Jean-Philippe Deglasse
- Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Aline Neveu
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Céline Desmet
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Florian Gourgue
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Jean-Christophe Jonas
- Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
38
|
Rinard GA, Quine RW, Buchanan LA, Eaton SS, Eaton GR, Epel B, Sundramoorthy SV, Halpern HJ. Resonators for In Vivo Imaging: Practical Experience. APPLIED MAGNETIC RESONANCE 2017; 48:1227-1247. [PMID: 29391664 PMCID: PMC5788320 DOI: 10.1007/s00723-017-0947-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Resonators for preclinical electron paramagnetic resonance imaging have been designed primarily for rodents and rabbits and have internal diameters between 16 and 51 mm. Lumped circuit resonators include loop-gap, Alderman-Grant, and saddle coil topologies and surface coils. Bimodal resonators are useful for isolating the detected signal from incident power and reducing dead time in pulse experiments. Resonators for continuous wave, rapid scan, and pulse experiments are described. Experience at the University of Chicago and University of Denver in design of resonators for in vivo imaging is summarized.
Collapse
Affiliation(s)
- George A Rinard
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Richard W Quine
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Laura A Buchanan
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Subramanian V Sundramoorthy
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Howard J Halpern
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| |
Collapse
|
39
|
Komarov DA, Hirata H. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:44-50. [PMID: 28549338 DOI: 10.1016/j.jmr.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm.
Collapse
Affiliation(s)
- Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan.
| |
Collapse
|
40
|
Eaton SS, Shi Y, Woodcock L, Buchanan LA, McPeak J, Quine RW, Rinard GA, Epel B, Halpern HJ, Eaton GR. Rapid-scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:140-148. [PMID: 28579099 PMCID: PMC5523658 DOI: 10.1016/j.jmr.2017.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/12/2023]
Abstract
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Yilin Shi
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Lukas Woodcock
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Laura A Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Joseph McPeak
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Richard W Quine
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - George A Rinard
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States
| | - Boris Epel
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, United States.
| |
Collapse
|
41
|
Khramtsov VV, Bobko AA, Tseytlin M, Driesschaert B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. Anal Chem 2017; 89:4758-4771. [PMID: 28363027 PMCID: PMC5513151 DOI: 10.1021/acs.analchem.6b03796] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.
Collapse
Affiliation(s)
- Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Andrey A. Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| |
Collapse
|