1
|
Sarvari S, McGee D, O'Connell R, Tseytlin O, Bobko AA, Tseytlin M. Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs. Mol Imaging Biol 2024; 26:511-524. [PMID: 38038860 PMCID: PMC11211156 DOI: 10.1007/s11307-023-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Bioprinting is an additive manufacturing technology analogous to 3D printing. Instead of plastic or resin, cell-laden hydrogels are used to produce a construct of the intended biological structure. Over time, cells transform this construct into a functioning tissue or organ. The process of printing followed by tissue maturation is referred to as 4D bioprinting. The fourth dimension is temporal. Failure to provide living cells with sufficient amounts of oxygen at any point along the developmental timeline may jeopardize the bioprinting goals. Even transient hypoxia may alter cells' differentiation and proliferation or trigger apoptosis. Electron paramagnetic resonance (EPR) imaging modality is proposed to permit 4D monitoring of oxygen within bioprinted structures. PROCEDURES Lithium octa-n-butoxy-phthalocyanine (LiNc-BuO) probes have been introduced into gelatin methacrylate (GelMA) bioink. GelMA is a cross-linkable hydrogel, and LiNc-BuO is an oxygen-sensitive compound that permits longitudinal oximetric measurements. The effects of the oxygen probe on printability have been evaluated. A digital light processing (DLP) bioprinter was built in the laboratory. Bioprinting protocols have been developed that consider the optical properties of the GelMA/LiNc-BuO composites. Acellular and cell-laden constructs have been printed and imaged. The post-printing effect of residual photoinitiator on oxygen depletion has been investigated. RESULTS Models have been successfully printed using a lab-built bioprinter. Rapid scan EPR images reflective of the expected oxygen concentration levels have been acquired. An unreported problem of oxygen depletion in bioprinted constructs by the residual photoinitiator has been documented. EPR imaging is proposed as a control method for its removal. The oxygen consumption rates by HEK293T cells within a bioprinted cylinder have been imaged and quantified. CONCLUSIONS The feasibility of the cointegration of 4D EPR imaging and 4D bioprinting has been demonstrated. The proof-of-concept experiments, which were conducted using oxygen probes loaded into GelMA, lay the foundation for a broad range of applications, such as bioprinting with many types of bioinks loaded with diverse varieties of molecular spin probes.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Duncan McGee
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Ryan O'Connell
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Oxana Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
- West Virginia University Cancer Institute, Morgantown, WV, USA.
| |
Collapse
|
2
|
Oba M, Taguchi M, Kudo Y, Yamashita K, Yasui H, Matsumoto S, Kirilyuk IA, Inanami O, Hirata H. Partial Acquisition of Spectral Projections Accelerates Four-dimensional Spectral-spatial EPR Imaging for Mouse Tumor Models: A Feasibility Study. Mol Imaging Biol 2024; 26:459-472. [PMID: 38811467 DOI: 10.1007/s11307-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Our study aimed to accelerate the acquisition of four-dimensional (4D) spectral-spatial electron paramagnetic resonance (EPR) imaging for mouse tumor models. This advancement in EPR imaging should reduce the acquisition time of spectroscopic mapping while reducing quality degradation for mouse tumor models. PROCEDURES EPR spectra under magnetic field gradients, called spectral projections, were partially measured. Additional spectral projections were later computationally synthesized from the measured spectral projections. Four-dimensional spectral-spatial images were reconstructed from the post-processed spectral projections using the algebraic reconstruction technique (ART) and assessed in terms of their image qualities. We applied this approach to a sample solution and a mouse Hs766T xenograft model of human-derived pancreatic ductal adenocarcinoma cells to demonstrate the feasibility of our concept. The nitroxyl radical imaging agent 2H,15N-DCP was exogenously infused into the mouse xenograft model. RESULTS The computation code of 4D spectral-spatial imaging was tested with numerically generated spectral projections. In the linewidth mapping of the sample solution, we achieved a relative standard uncertainty (standard deviation/| mean |) of 0.76 μT/45.38 μT = 0.017 on the peak-to-peak first-derivative EPR linewidth. The qualities of the linewidth maps and the effect of computational synthesis of spectral projections were examined. Finally, we obtained the three-dimensional linewidth map of 2H,15N-DCP in a Hs766T tumor-bearing leg in vivo. CONCLUSION We achieved a 46.7% reduction in the acquisition time of 4D spectral-spatial EPR imaging without significantly degrading the image quality. A combination of ART and partial acquisition in three-dimensional raster magnetic field gradient settings in orthogonal coordinates is a novel approach. Our approach to 4D spectral-spatial EPR imaging can be applied to any subject, especially for samples with less variation in one direction.
Collapse
Affiliation(s)
- Misa Oba
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Mai Taguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Yohei Kudo
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Koya Yamashita
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Ac. Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Osamu Inanami
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
3
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Halpern H, Pan X. Accurate reconstruction of 4D spectral-spatial images from sparse-view data in continuous-wave EPRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107654. [PMID: 38492546 DOI: 10.1016/j.jmr.2024.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral-spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Mihalik NE, Steinberger KJ, Stevens AM, Bobko AA, Hoblitzell EH, Tseytlin O, Akhter H, Dziadowicz SA, Wang L, O’Connell RC, Monaghan KL, Hu G, Mo X, Khramtsov VV, Tseytlin M, Driesschaert B, Wan EC, Eubank TD. Dose-Specific Intratumoral GM-CSF Modulates Breast Tumor Oxygenation and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1589-1604. [PMID: 37756529 PMCID: PMC10656117 DOI: 10.4049/jimmunol.2300326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.
Collapse
Affiliation(s)
- Nicole E. Mihalik
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Alyson M. Stevens
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Andrey A. Bobko
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Ryan C. O’Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210, USA
| | - Valery V. Khramtsov
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Mark Tseytlin
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
- C. Eugene Bennet Department of Chemistry, West Virginia University, Morgantown, WV, 26505, United States
| | - Edwin C.K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26505
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
5
|
Zhang Z, Epel B, Chen B, Xia D, Sidky EY, Qiao Z, Halpern H, Pan X. 4D-image reconstruction directly from limited-angular-range data in continuous-wave electron paramagnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107432. [PMID: 37058955 PMCID: PMC10197356 DOI: 10.1016/j.jmr.2023.107432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE We investigate and develop optimization-based algorithms for accurate reconstruction of four-dimensional (4D)-spectral-spatial (SS) images directly from data collected over limited angular ranges (LARs) in continuous-wave (CW) electron paramagnetic resonance imaging (EPRI). METHODS Basing on a discrete-to-discrete data model devised in CW EPRI employing the Zeeman-modulation (ZM) scheme for data acquisition, we first formulate the image reconstruction problem as a convex, constrained optimization program that includes a data fidelity term and also constraints on the individual directional total variations (DTVs) of the 4D-SS image. Subsequently, we develop a primal-dual-based DTV algorithm, simply referred to as the DTV algorithm, to solve the constrained optimization program for achieving image reconstruction from data collected in LAR scans in CW-ZM EPRI. RESULTS We evaluate the DTV algorithm in simulated- and real-data studies for a variety of LAR scans of interest in CW-ZM EPRI, and visual and quantitative results of the studies reveal that 4D-SS images can be reconstructed directly from LAR data, which are visually and quantitatively comparable to those obtained from data acquired in the standard, full-angular-range (FAR) scan in CW-ZM EPRI. CONCLUSION An optimization-based DTV algorithm is developed for accurately reconstructing 4D-SS images directly from LAR data in CW-ZM EPRI. Future work includes the development and application of the optimization-based DTV algorithm for reconstructions of 4D-SS images from FAR and LAR data acquired in CW EPRI employing schemes other than the ZM scheme. SIGNIFICANCE The DTV algorithm developed may be exploited potentially for enabling and optimizing CW EPRI with minimized imaging time and artifacts by acquiring data in LAR scans.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Buxin Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Dan Xia
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Emil Y Sidky
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Zhiwei Qiao
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China
| | - Howard Halpern
- Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, IL, USA; Department of Radiation & Cellular Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Nakaoka R, Kato K, Yamamoto K, Yasui H, Matsumoto S, Kirilyuk IA, Khramtsov VV, Inanami O, Hirata H. Electron Paramagnetic Resonance Implemented with Multiple Harmonic Detections Successfully Maps Extracellular pH In Vivo. Anal Chem 2023; 95:3940-3950. [PMID: 36725678 PMCID: PMC9979135 DOI: 10.1021/acs.analchem.2c03194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular acidification indicates a metabolic shift in cancer cells and is, along with tissue hypoxia, a hallmark of tumor malignancy. Thus, non-invasive mapping of extracellular pH (pHe) is essential for researchers to understand the tumor microenvironment and to monitor tumor response to metabolism-targeting drugs. While electron paramagnetic resonance (EPR) has been successfully used to map pHe in mouse xenograft models, this method is not sensitive enough to map pHe with a moderate amount of exogenous pH-sensitive probes. Here, we show that a modified EPR system achieves twofold higher sensitivity by using the multiple harmonic detection (MHD) method and improves the robustness of pHe mapping in mouse xenograft models. Our results demonstrate that treatment of a mouse xenograft model of human-derived pancreatic ductal adenocarcinoma cells with the carbonic anhydrase IX (CAIX) inhibitor U-104 delays tumor growth with a concurrent tendency toward further extracellular acidification. We anticipate that EPR-based pHe mapping can be expanded to monitor the response of other metabolism-targeting drugs. Furthermore, pHe monitoring can also be used for the development of improved metabolism-targeting cancer treatments.
Collapse
Affiliation(s)
- Ririko Nakaoka
- Division
of Bioengineering and Bioinformatics, Graduate School of Information
Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo060-0814, Japan
| | - Kazuhiro Kato
- Laboratory
of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Kumiko Yamamoto
- Laboratory
of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Hironobu Yasui
- Laboratory
of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Shingo Matsumoto
- Division
of Bioengineering and Bioinformatics, Faculty of Information Science
and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo060-0814, Japan
| | - Igor A. Kirilyuk
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Ac. Lavrentieva Ave., Novosibirsk630090, Russia
| | - Valery V. Khramtsov
- Department
of Biochemistry and Molecular Medicine, and In Vivo Multifunctional
Magnetic Resonance Center, West Virginia
University Robert C. Byrd Health Sciences Center, 1 Medical Center Drive, Morgantown, West Virginia26506, United States
| | - Osamu Inanami
- Laboratory
of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo060-0818, Japan
| | - Hiroshi Hirata
- Division
of Bioengineering and Bioinformatics, Faculty of Information Science
and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo060-0814, Japan,
| |
Collapse
|
7
|
O'Connell RC, Tseytlin O, Bobko AA, Eubank TD, Tseytlin M. Rapid scan EPR: Automated digital resonator control for low-latency data acquisition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107308. [PMID: 36356489 PMCID: PMC10266206 DOI: 10.1016/j.jmr.2022.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/05/2023]
Abstract
Automation has become an essential component of modern scientific instruments which often capture large amounts of complex dynamic data. Algorithms are developed to read multiple sensors in parallel with data acquisition and to adjust instrumental parameters on the fly. Decisions are made on a time scale unattainable to the human operator. In addition to speed, automation reduces human error, improves the reproducibility of experiments, and improves the reliability of acquired data. An automatic digital control (ADiC) was developed to reliably sustain critical coupling of a resonator over a wide range of time-varying loading conditions. The ADiC uses the computational power of a microcontroller that directly communicates with all system components independent of a personal computer (PC). The PC initiates resonator tuning and coupling by sending a command to MC via serial port. After receiving the command, ADiC establishes critical coupling conditions within approximately 5 ms. A printed circuit board resonator was designed to permit digital control. The performance of the resonator together with the ADiC was evaluated by varying the resonator loading from empty to heavily loaded. For the loading, samples containing aqueous sodium chloride that strongly absorb electromagnetic waves were used. A previously reported rapid scan (RS) electron paramagnetic resonance (EPR) imaging instrument was upgraded by the incorporation of ADiC. RS spectra and an in vivo image of oxygen in a mouse tumor model have been acquired using the upgraded system. ADiC robustly sustained critical coupling of the resonator to the transmission line during these measurements. The design implemented in this study can be used in slow-scan and pulsed EPR with modifications.
Collapse
Affiliation(s)
- Ryan C O'Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; West Virginia University Cancer Institute, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
8
|
Tseytlin O, O'Connell R, Sivashankar V, Bobko AA, Tseytlin M. Rapid Scan EPR Oxygen Imaging in Photoactivated Resin Used for Stereolithographic 3D Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:358-365. [PMID: 34977276 PMCID: PMC8713732 DOI: 10.1089/3dp.2020.0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxygen plays a critical role in the photopolymerization process resulting in the formation of solid structures from liquid resins during three-dimensional (3D) printing: it acts as a polymerization inhibitor. Upon exposure to light, oxygen is depleted. As a result, the polymerization process becomes activated. Electron paramagnetic resonance (EPR) imaging is described as a tool to visualize changes in oxygen distribution caused by light exposure. This nondestructive method uses radio waves and, therefore, is not constrained by optical opacity offering greater penetrating depth. Three proof-of-principle imaging experiments were demonstrated: (1) spatial propagation of the photopolymerization process; (2) oxygen depletion as a result of postcuring; and (3) oxygen visualization in a 3D printed spiral model. Commercial stereolithography (SLA) resin was used in these experiments. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) probe was mixed with the resin to permit oxygen imaging. Li-naphthalocyanine probes are routinely used in various EPR applications because of their long-term stability and high functional sensitivity to oxygen. In this study, we demonstrate that EPR imaging has the potential to become a powerful visualization tool in the development of 3D printing technology, including bioprinting and tissue engineering.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
| | - Ryan O'Connell
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
| | - Vignesh Sivashankar
- Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Andrey A. Bobko
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
| | - Mark Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, West Virginia, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, and West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Komarov DA, Samouilov A, Hirata H, Zweier JL. High fidelity triangular sweep of the magnetic field for millisecond scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107024. [PMID: 34198184 PMCID: PMC8316393 DOI: 10.1016/j.jmr.2021.107024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Linearity of the magnetic field sweep is important for high resolution continuous wave EPR imaging. Driving the field with triangular wave function is the most efficient way to scan EPR projections. However, the magnetic field sweep profile can be significantly distorted during fast millisecond projection scan. In this work, we introduce a method to generate highly linear and properly symmetrical triangular sweeps of the magnetic field using calibrated harmonics of the triangular wave function. First, the frequency response function of the EPR magnet and its power circuitry was obtained. For this, the field sweeping coil was driven with sinusoidal signals of different frequencies and the actual magnetic field inside the magnet was recorded. To cover wide range of frequencies, the measurements were carried out independently using gaussmeter, Hall-effect linear sensor integrated circuit, and an inductance coil. For each frequency, the system gain and the phase delay were determined. These data were used to adjust the amplitudes and the phases of individual harmonics of the triangular wave function. After the calibration, the maximum deviation of the magnetic field from the linear function was 0.05% of sweep width for 4 ms scan. The maximum discrepancy between the forward and the reverse scan was less than 0.04%. Sweep overhead time for changing the scan direction was 5%. The proposed approach allows generation of high fidelity triangular magnetic field sweeps with accuracy better than 0.1% for the range of the magnetic field sweep widths up to 48 G and scan duration from 10 s down to 1 ms.
Collapse
Affiliation(s)
- Denis A Komarov
- The EPR Center and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- The EPR Center and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Jay L Zweier
- The EPR Center and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Tseytlin O, Bobko AA, Tseytlin M. Rapid Scan EPR imaging as a Tool for Magnetic Field Mapping. APPLIED MAGNETIC RESONANCE 2020; 51:1117-1124. [PMID: 33642700 PMCID: PMC7909464 DOI: 10.1007/s00723-020-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Indexed: 06/05/2023]
Abstract
Functional four-dimensional spectral-spatial electron paramagnetic imaging (EPRI) is routinely used in biomedical research. Positions and widths of EPR lines in the spectral dimension report oxygen partial pressure, pH, and other important parameters of the tissue microenvironment. Images are measured in the homogeneous external magnetic field. An application of EPRI is proposed in which the field is perturbed by a magnetized object. A proof-of-concept imaging experiment was conducted, which permitted visualization of the magnetic field created by this object. A single-line lithium octa-n-butoxynaphthalocyanine spin probe was used in the experiment. The spectral position of the EPR line directly measured the strength of the perturbation field with spatial resolution. A three-dimensional magnetic field map was reconstructed as a result. Several applications of this technology can be anticipated. First is EPRI/MPI co-registration, where MPI is an emerging magnetic particle imaging technique. Second, EPRI can be an alternative to magnetic field cameras that are used for the development of high-end permanent magnets and their assemblies, consumer electronics, and industrial sensors. Besides the high resolution of magnetic field readings, EPR probes can be placed in the internal areas of various assemblies that are not accessible by the standard sensors. Third, EPRI can be used to develop systems for magnetic manipulation of cell cultures.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Department of Biochemistry, West Virginia University,
Morgantown, WV 26506, USA
- In Vivo Multifunctional Magnetic Resonance center at Robert
C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506,
USA
| | - Andrey A. Bobko
- Department of Biochemistry, West Virginia University,
Morgantown, WV 26506, USA
- In Vivo Multifunctional Magnetic Resonance center at Robert
C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506,
USA
| | - Mark Tseytlin
- Department of Biochemistry, West Virginia University,
Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV
26506, USA
- In Vivo Multifunctional Magnetic Resonance center at Robert
C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506,
USA
| |
Collapse
|
11
|
Komarov DA, Samouilov A, Ahmad R, Zweier JL. Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106812. [PMID: 32966948 PMCID: PMC7554188 DOI: 10.1016/j.jmr.2020.106812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A novel method for reconstructing 3D spatial EPR images from large numbers of noisy projections was developed that minimizes mean square error between the experimental projections and those from the reconstructed image. The method utilizes raw projection data and zero gradient spectrum to account for EPR line shape and hyperfine structure of the paramagnetic probe without the need for deconvolution techniques that are poorly suited for processing of high noise projections. A numerical phantom was reconstructed for method validation. Reconstruction time for the matrix of 1283 voxels and 16,384 noiseless projections was 4.6 min for a single iteration. The algorithm converged quickly, reaching R2 ~ 0.99975 after the very first iteration. An experimental phantom sample with nitroxyl radical was measured. With 16,384 projections and a field gradient of 8 G/cm, resolutions of 0.4 mm were achieved for a cubical area of 25 × 25 × 25 mm3. Reconstruction was sufficiently fast and memory efficient making it suitable for applications with large 3D matrices and fully determined system of equations. The developed algorithm can be used with any gradient distribution and does not require adjustable filter parameters that makes for simple application. A thorough analysis of the strengths and limitations of this method for 3D spatial EPR imaging is provided.
Collapse
Affiliation(s)
- Denis A Komarov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rizwan Ahmad
- Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering and the EPR Center, College of Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Taguchi A, DeVience S, Driesschaert B, Khramtsov VV, Hirata H. In vitro simultaneous mapping of the partial pressure of oxygen, pH and inorganic phosphate using electron paramagnetic resonance. Analyst 2020; 145:3236-3244. [PMID: 32134072 DOI: 10.1039/d0an00168f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The partial pressure of oxygen (pO2) and the extracellular pH in the tumour microenvironment are essential parameters for understanding the physiological state of a solid tumour. Also, phosphate-containing metabolites are involved in energy metabolism, and interstitial inorganic phosphate (Pi) is an informative marker for tumour growth. This article describes the simultaneous mapping of pO2, pH and Pi using 750 MHz continuous-wave (CW) electron paramagnetic resonance (EPR) and a multifunctional probe, monophosphonated trityl radical p1TAM-D. The concept was demonstrated by acquiring three-dimensional (3D) maps of pO2, pH and Pi for multiple solution samples. This was made possible by combining a multifunctional radical probe, fast CW-EPR spectral acquisition, four-dimensional (4D) spectral-spatial image reconstruction, and spectral fitting. The experimental results of mapping pO2, pH and Pi suggest that the concept of simultaneous mapping using EPR is potentially applicable for the multifunctional measurements of a mouse tumour model.
Collapse
Affiliation(s)
- Akihiro Taguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | | | | | | | | |
Collapse
|
13
|
Yokoyama T, Taguchi A, Kubota H, Stewart NJ, Matsumoto S, Kirilyuk IA, Hirata H. Simultaneous T 2* mapping of 14N- and 15N-labeled dicarboxy-PROXYLs using CW-EPR-based single-point imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:122-130. [PMID: 31271927 DOI: 10.1016/j.jmr.2019.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
This article reports a method of simultaneous T2* mapping of 14N- and 15N-labeled dicarboxy-PROXYLs using 750-MHz continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To separate the spectra of 14N- and 15N-labeled dicarboxy-PROXYLs under magnetic field gradients, an optimization problem for spectral projections was formulated with the spatial total variation as a regularization term and solved using a local search based on the gradient descent algorithm. Using the single-point imaging (SPI) method with spectral projections of each radical, simultaneous T2* mapping was performed for solution samples. Simultaneous T2* mapping enabled visualization of the response of T2* values to the level of dissolved oxygen in the solution. Simultaneous T2* mapping applied to a mouse tumor model demonstrated the feasibility of the reported method for potential application to in vivo oxygenation imaging.
Collapse
Affiliation(s)
- Takahito Yokoyama
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Akihiro Taguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Harue Kubota
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Ac. Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0814, Japan.
| |
Collapse
|
14
|
Tseytlin O, Guggilapu P, Bobko AA, AlAhmad H, Xu X, Epel B, O'Connell R, Hoblitzell EH, Eubank TD, Khramtsov VV, Driesschaert B, Kazkaz E, Tseytlin M. Modular imaging system: Rapid scan EPR at 800 MHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:94-103. [PMID: 31238278 PMCID: PMC6656609 DOI: 10.1016/j.jmr.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/05/2023]
Abstract
An electron paramagnetic resonance (EPR) imaging system has been custom built for use in pre-clinical and, potentially, clinical studies. Commercial standalone modules have been used in the design that are MATLAB-controlled. The imaging system combines digital and analog technologies. It was designed to achieve maximum flexibility and versatility and to perform standard and novel user-defined experiments. This design goal is achieved by frequency mixing of an arbitrary waveform generator (AWG) output at the intermediate frequency (IF) with a constant source frequency (SF). Low noise SF at 250, 750, and 1000 MHz are available in the system. A wide range of frequencies from near-baseband to L-band can be generated as a result. Two-stage downconversion at the signal detection side is implemented that enables multi-frequency EPR capability. In the first stage, the signal frequency is converted to IF. A novel AWG-enabled digital auto-frequency control method that operates at IF is described that is used for automatic resonator tuning. Quadrature baseband EPR signal is generated in the second downconversion step. The semi-digital approach of mixing low-noise frequency sources with an AWG permits generation of arbitrary excitation patterns that include but are not limited to frequency sweeps for resonator tuning and matching, continuous-wave, and pulse sequences. Presented in this paper is the demonstration of rapid scan (RS) EPR imaging implemented at 800 MHz. Generation of stable magnetic scan waveforms is critical for the RS method. A digital automatic scan control (DASC) system was developed for sinusoidal magnetic field scans. DASC permits tight control of both amplitude and phase of the scans. A surface loop resonator was developed using 3D printing technology. RS EPR imaging system was validated using sample phantoms. In vivo imaging of a breast cancer mouse model is demonstrated.
Collapse
Affiliation(s)
- Oxana Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Priyaankadevi Guggilapu
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Hussien AlAhmad
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Industrial & Management Systems Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xuan Xu
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, University of Chicago, IL 60637, USA
| | - Ryan O'Connell
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Valery V Khramtsov
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Eiad Kazkaz
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Biochemistry Department, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
15
|
Samouilov A, Ahmad R, Boslett J, Liu X, Petryakov S, Zweier JL. Development of a fast-scan EPR imaging system for highly accelerated free radical imaging. Magn Reson Med 2019; 82:842-853. [PMID: 31020713 DOI: 10.1002/mrm.27759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE In continuous wave EPR imaging, the acquisition of high-quality images was previously limited by the requisite long acquisition times of each image projection that was typically greater than 1 second. To accelerate the process of image acquisition facilitating greater numbers of projections and higher image resolution, instrumentation was developed to greatly accelerate the magnetic field scan that is used to obtain each EPR image projection. METHODS A low-inductance solenoidal coil for field scanning was used along with a spherical solenoid air core magnet, and scans were driven by triangular symmetric waves, allowing forward and reverse spectrum acquisition as rapid as 3.8 ms. The uniform distribution of projections was used to optimize the contribution of projections for 3D image reconstruction. RESULTS Using this fast-scan EPR system, high-quality EPR images of phantoms and perfused rat hearts were performed using trityl or nanoparticulate LiNcBuO (lithium octa-n-butoxy-substituted naphthalocyanine) probes with fast-scan EPR imaging at L-band, achieving spatial resolutions of up to 250 micrometers in 1 minute. CONCLUSION Fast-scan EPR imaging can greatly facilitate the efficient and precise mapping of the spatial distribution of free radical and other paramagnetic probes in living systems.
Collapse
Affiliation(s)
- Alexandre Samouilov
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Rizwan Ahmad
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - James Boslett
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Sergey Petryakov
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Jay L Zweier
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
16
|
Molecular Probes for Evaluation of Oxidative Stress by In Vivo EPR Spectroscopy and Imaging: State-of-the-Art and Limitations. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress, defined as a misbalance between the production of reactive oxygen species and the antioxidant defenses of the cell, appears as a critical factor either in the onset or in the etiology of many pathological conditions. Several methods of detection exist. However, they usually rely on ex vivo evaluation or reports on the status of living tissues only up to a few millimeters in depth, while a whole-body, real-time, non-invasive monitoring technique is required for early diagnosis or as an aid to therapy (to monitor the action of a drug). Methods based on electron paramagnetic resonance (EPR), in association with molecular probes based on aminoxyl radicals (nitroxides) or hydroxylamines especially, have emerged as very promising to meet these standards. The principles involve monitoring the rate of decrease or increase of the EPR signal in vivo after injection of the nitroxide or the hydroxylamine probe, respectively, in a pathological versus a control situation. There have been many successful applications in various rodent models. However, current limitations lie in both the field of the technical development of the spectrometers and the molecular probes. The scope of this review will mainly focus on the latter.
Collapse
|
17
|
Komarov DA, Ichikawa Y, Yamamoto K, Stewart NJ, Matsumoto S, Yasui H, Kirilyuk IA, Khramtsov VV, Inanami O, Hirata H. In Vivo Extracellular pH Mapping of Tumors Using Electron Paramagnetic Resonance. Anal Chem 2018; 90:13938-13945. [PMID: 30372035 DOI: 10.1021/acs.analchem.8b03328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electron paramagnetic resonance (EPR)-based method for noninvasive three-dimensional extracellular pH mapping was developed using a pH-sensitive nitroxyl radical as an exogenous paramagnetic probe. Fast projection scanning with a constant magnetic field sweep enabled the acquisition of four-dimensional (3D spatial +1D spectral) EPR images within 7.5 min. Three-dimensional maps of pH were reconstructed by processing the pH-dependent spectral information on the images. To demonstrate the proposed method of pH mapping, the progress of extracellular acidosis in tumor-bearing mouse legs was studied. Furthermore, extracellular pH mapping was used to visualize the spatial distribution of acidification in different tumor xenograft mouse models of human-derived pancreatic ductal adenocarcinoma cells. The proposed EPR-based pH mapping method enabled quantitative visualization of regional changes in extracellular pH associated with altered tumor metabolism.
Collapse
Affiliation(s)
- Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Yuki Ichikawa
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science , Hokkaido University , North 15, West 7 , Kita-ku,Sapporo , 060-0815 , Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry , 9, Ac. Lavrentieva Ave. , Novosibirsk , 630090 , Russia
| | - Valery V Khramtsov
- Department of Biochemistry and In Vivo Multifunctional Magnetic Resonance Center , West Virginia University, Robert C. Byrd Health Sciences Center , 1 Medical Center Drive , Morgantown , West Virginia 26506 , United States
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| |
Collapse
|
18
|
Šlouf M, Pilař J, Dybal J, Šloufová I, Michálková D, Lukešová M, Zgadzai O, Blank A, Filippov SK. UV degradation of styrene-butadiene rubber versus high density poly(ethylene) in marine conditions studied by infrared spectroscopy, micro indentation, and electron spin resonance imaging. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Tseytlin M, Stolin AV, Guggilapu P, Bobko AA, Khramtsov VV, Tseytlin O, Raylman RR. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner. Phys Med Biol 2018; 63:105010. [PMID: 29676283 DOI: 10.1088/1361-6560/aabfa1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
Collapse
Affiliation(s)
- Mark Tseytlin
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America. In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States of America
| | | | | | | | | | | | | |
Collapse
|