1
|
Yarava JR, Gautam I, Jacob A, Fu R, Wang T. Proton-Detected Solid-State NMR for Deciphering Structural Polymorphism and Dynamic Heterogeneity of Cellular Carbohydrates in Pathogenic Fungi. J Am Chem Soc 2025; 147:17416-17432. [PMID: 40328234 PMCID: PMC12100651 DOI: 10.1021/jacs.5c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Carbohydrate polymers in their cellular context display highly polymorphic structures and dynamics essential to their diverse functions, yet they are challenging to analyze biochemically. Proton-detection solid-state NMR spectroscopy offers high isotopic abundance and sensitivity, enabling the rapid and high-resolution structural characterization of biomolecules. Here, an array of 2D/3D 1H-detection solid-state NMR techniques are tailored to investigate polysaccharides in fully protonated or partially deuterated cells of three prevalent pathogenic fungi: Rhizopus delemar, Aspergillus fumigatus, and Candida albicans, representing filamentous species and yeast forms. Selective detection of acetylated carbohydrates reveals 15 forms of N-acetylglucosamine units in R. delemar chitin, which coexists with chitosan, and associates with proteins only at limited sites. This is supported by distinct order parameters and effective correlation times of their motions, analyzed through relaxation measurements and model-free analysis. Five forms of α-1,3-glucan with distinct structural origins and dynamics were identified in A. fumigatus, important for this buffering polysaccharide to perform diverse roles of supporting wall mechanics and regenerating a soft matrix under antifungal stress. Eight α-1,2-mannan side chain variants in C. albicans were resolved, highlighting the crucial role of mannan side chains in maintaining interactions with other cell wall polymers to preserve structural integrity. These methodologies provide novel insights into the functional structures of key fungal polysaccharides and create new opportunities for exploring carbohydrate biosynthesis and modifications across diverse organisms.
Collapse
Affiliation(s)
- Jayasubba Reddy Yarava
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Isha Gautam
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Anand Jacob
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Riqiang Fu
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida32310, United States
| | - Tuo Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
2
|
Yarava JR, Gautam I, Jacob A, Fu R, Wang T. Proton-Detected Solid-State NMR for Deciphering Structural Polymorphism and Dynamic Heterogeneity of Cellular Carbohydrates in Pathogenic Fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642223. [PMID: 40161786 PMCID: PMC11952318 DOI: 10.1101/2025.03.09.642223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Carbohydrate polymers in their cellular context display highly polymorphic structures and dynamics essential to their diverse functions, yet they are challenging to analyze biochemically. Proton-detection solid-state NMR spectroscopy offers high isotopic abundance and sensitivity, enabling rapid and high-resolution structural characterization of biomolecules. Here, an array of 2D/3D 1H-detection solid-state NMR techniques are tailored to investigate polysaccharides in fully protonated or partially deuterated cells of three prevalent pathogenic fungi: Rhizopus delemar, Aspergillus fumigatus, and Candida albicans, representing filamentous species and yeast forms. Selective detection of acetylated carbohydrates reveals fifteen forms of N-acetylglucosamine units in R. delemar chitin, which coexists with chitosan as separate domains or polymers and associates with proteins only at limited sites. This is supported by distinct order parameters and effective correlation times of their motions, analyzed through relaxation measurements and model-free analysis. Five forms of α-1,3-glucan with distinct structural origins and dynamics were identified in A. fumigatus, important for this buffering polysaccharide to perform diverse roles of supporting wall mechanics and regenerating soft matrix under antifungal stress. Eight α-1,2-mannan sidechain variants in C. albicans were resolved, highlighting the crucial role of mannan sidechains in maintaining interactions with other cell wall polymers to preserve structural integrity. These methodologies provide novel insights into the functional structures of key fungal polysaccharides and create new opportunities for exploring carbohydrate biosynthesis and modifications across diverse organisms.
Collapse
Affiliation(s)
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Perras FA, Wang S, Mayer J, Halder M, Paterson AL, Culver DB, Rienstra CM. Removal of Homogeneous Broadening from 1H-Detected Multidimensional Solid-State NMR Spectra. Anal Chem 2025; 97:4653-4660. [PMID: 39961603 DOI: 10.1021/acs.analchem.4c06696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
1H-detected magic-angle spinning (MAS) NMR experiments have revolutionized the NMR studies of biological and inorganic solids by providing unparalleled sensitivity and resolution. Despite these gains, homogeneous broadening, originating from the incomplete removal of homonuclear dipolar interactions under fast MAS, remains highly prevalent and limits the achievable resolution. In direct analogy to super-resolution microscopy methods, we show that resolution beyond that currently achievable by fast MAS alone can be obtained by experiment-driven deconvolution. Following the acquisition of a single 2D NMR spectrum to measure the frequency-dependent homogeneous lineshapes, any number of 1H-detected spectra can be enhanced in resolution, yielding comparable spectra as obtained with twice the MAS frequency. The versatility of this approach is demonstrated in the enhancement of single- and double-quantum homonuclear correlation spectra, in addition to heteronuclear correlation spectra acquired on a surface organometallic complex and the protein GB1.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Songlin Wang
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jacob Mayer
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mita Halder
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Alexander L Paterson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Damien B Culver
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Chad M Rienstra
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Kobayashi N, Ishii Y. Analysis of solid-state NMR data facilitated by MagRO_NMRViewJ with Graph_Robot: Application for membrane protein and amyloid. Biophys Chem 2025; 318:107356. [PMID: 39637606 DOI: 10.1016/j.bpc.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Solid-state NMR (ssNMR) methods have continued to be developed in recent years for the efficient assignment of signals and 3D structure modeling of biomacromolecules. Consequently, we are approaching an era in which vigorous applications of these methods are more widespread in research, including functional elucidation of biomacromolecules and drug discovery. However, multidimensional ssNMR methods are not as advanced as solution NMR methods, especially for automated data analysis. This article describes how a newly developed Graph_Robot module, implemented in MagRO-NMRViewJ, evolved from integrated tools for NMR data analysis named Kujira (developed by Kobayashi et al. [1]). These packaged tools systematically utilize flexible, sophisticated, yet simple libraries that facilitate only for solution-NMR data analysis, offering an intuitive interface accessible even to novice users. In this study, semi-automated assignments of backbone and side chain signals of ssNMR datasets for uniformly 13C/15N labeled aquaporin Z and 42-residue amyloid-β fibril were examined as examples to demonstrate how Graph_Robot can expedite the visual inspection and handling of multidimensional ssNMR spectral data. In addition, the functionality of the Graph_Robot system enables a computer to interpret the behavior of magnetization transfer based on a finite automaton model.
Collapse
Affiliation(s)
- Naohiro Kobayashi
- RIKEN, RIKEN Center for Biosystems Dynamics Research (BDR), Yokohama 230-0045, Japan.
| | - Yoshitaka Ishii
- RIKEN, RIKEN Center for Biosystems Dynamics Research (BDR), Yokohama 230-0045, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Koppe J, Sanders KJ, Robinson TC, Lejeune AL, Proriol D, Wegner S, Purea A, Engelke F, Clément RJ, Grey CP, Pell AJ, Pintacuda G. Resolving Structures of Paramagnetic Systems in Chemistry and Materials Science by Solid-State NMR: The Revolving Power of Ultra-Fast MAS. Angew Chem Int Ed Engl 2025; 64:e202408704. [PMID: 39388344 DOI: 10.1002/anie.202408704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ultra-fast magic-angle spinning (100+kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with low sensitivity from the reduced sample volumes. Here, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution. While previous approaches employing slower MAS are often unsuccessful in providing sufficient resolution, we show that ultra-fast 100+kHz MAS allows site-specific assignments of all resonances from complex paramagnetic solids. Combined with more reliable rotor materials and handling methods, this opens the way to the routine characterization of geometry and electronic structures of functional paramagnetic systems in chemistry, including catalysts and battery materials. We benchmark this approach on a hygroscopic luminescent Tb3+ complex, an air-sensitive homogeneous high-spin Fe2+ catalyst, and a series of mixed Fe2+/Mn2+/Mg2+ olivine-type cathode materials.
Collapse
Affiliation(s)
- Jonas Koppe
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Kevin J Sanders
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Thomas C Robinson
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Arthur L Lejeune
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | - David Proriol
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | | | - Armin Purea
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Frank Engelke
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Raphaële J Clément
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrew J Pell
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
6
|
Schröder N, Bartalucci E, Wiegand T. Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More. Chemphyschem 2024; 25:e202400537. [PMID: 39129653 DOI: 10.1002/cphc.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Indexed: 08/13/2024]
Abstract
Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.
Collapse
Affiliation(s)
- Nina Schröder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
7
|
Perras FA. Elimination of homogeneous broadening in 1H solid-state NMR. Chem Commun (Camb) 2024; 60:6552-6555. [PMID: 38842442 DOI: 10.1039/d4cc02191f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
1H solid-state NMR spectra are plagued by low resolution, necessitating the use of complex pulse sequences or specialized equipment. We introduce a new resolution enhancement method, inspired by super-resolution microscopy, that uses a 2D Hahn-echo experiment to constrain deconvolution. The result is an effective doubling of the MAS frequency.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Zheng M, Chu Y, Wang Q, Wang Y, Xu J, Deng F. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:1-41. [PMID: 38705634 DOI: 10.1016/j.pnmrs.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Mingji Zheng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongxiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Yan Z, Zhao P, Yan X, Zhang R. Using Abundant 1H Polarization to Enhance the Sensitivity of Solid-State NMR Spectroscopy. J Phys Chem Lett 2024; 15:1866-1878. [PMID: 38343090 DOI: 10.1021/acs.jpclett.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Solid-state NMR spectroscopy has been playing a significant role in elucidating the structures and dynamics of materials and proteins at the atomic level for decades. As an extremely abundant nucleus with a very high gyromagnetic ratio, protons are widely present in most organic/inorganic materials. Thus, this Perspective highlights the advantages of proton detection at fast magic-angle spinning (MAS) and presents strategies to utilize and exhaust 1H polarization to achieve signal sensitivity enhancement of solid-state NMR spectroscopy, enabling substantial time savings and extraction of more structural and dynamics information per unit time. Those strategies include developing sensitivity-enhanced single-channel 1H multidimensional NMR spectroscopy, implementing multiple polarization transfer steps in each scan to enhance low-γ nuclei signals, and making full use of 1H polarization to obtain homonuclear and heteronuclear chemical shift correlation spectra in a single experiment. Finally, outlooks and perspectives are provided regarding the challenges and future for the further development of sensitivity-enhanced proton-based solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Peizhi Zhao
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
10
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
11
|
Osborn Popp TM, Matchett BT, Green RG, Chhabra I, Mumudi S, Bernstein AD, Perodeau JR, Nieuwkoop AJ. 3D-Printable centrifugal devices for biomolecular solid state NMR rotors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107524. [PMID: 37481918 PMCID: PMC10528322 DOI: 10.1016/j.jmr.2023.107524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The advent of magic angle spinning (MAS) rates exceeding 100 kHz has facilitated the acquisition of 1H-detected solid-state NMR spectra of biomolecules with high resolution. However, challenges can arise when preparing rotors for these experiments, due to the physical properties of biomolecular solid samples and the small dimensions of the rotors. In this study, we have designed 3D-printable centrifugal devices that facilitate efficient and consistent packing of crystalline protein slurries or viscous phospholipids into 0.7 mm rotors. We demonstrate the efficacy of these packing devices using 1H-detected solid state NMR at 105 kHz. In addition to devices for 0.7 mm rotors, we have also developed devices for other frequently employed rotor sizes and styles. We have made all our designs openly accessible, and we encourage their usage and ongoing development as a shared effort within the solid state NMR community.
Collapse
Affiliation(s)
- Thomas M Osborn Popp
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States.
| | - Brandon T Matchett
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Rashawn G Green
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Insha Chhabra
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Smriti Mumudi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Ashley D Bernstein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Jacqueline R Perodeau
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
12
|
Xiao H, Zhang Z, Kang H, Yang J. Solid-State NMR Double-Quantum Dipolar Recoupling Enhanced by Additional Phase Modulation. Chemphyschem 2023; 24:e202300141. [PMID: 37309720 DOI: 10.1002/cphc.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Additional phase modulation (APM) is proposed to generally enhance the theoretical efficiency of homonuclear double-quantum (DQ) recoupling in solid-state NMR. APM applies an additional phase list to DQ recoupling in steps of an entire block. The sine-based phase list can enhance the theoretical efficiency by 15-30 %, from 0.52 to 0.68 (non-γ-encoded recoupling) or from 0.73 to 0.84 (γ-encoded recoupling), with doubled recoupling time. The genetic-algorithm (GA) optimized APM can adiabatically enhance the efficiency to ∼1.0 at longer times. The concept of APM has been tested on SPR-51 , BaBa, and SPR-31 , which represent γ-encoded recoupling, non-γ-encoded recoupling, and another kind beyond the former two, respectively. Simulations reveal that enhancements from APM are due to the activation of more crystallites in the powder. Experiments on 2,3-13 C labeled alanine are used to validate the APM recoupling. This new concept shall shed light on developing more efficient homonuclear recoupling methods.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huimin Kang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
13
|
Golota NC, Fredin ZP, Banks DP, Preiss D, Bahri S, Patil P, Langford WK, Blackburn CL, Strand E, Michael B, Dastrup B, Nelson KA, Gershenfeld N, Griffin R. Diamond rotors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107475. [PMID: 37224586 PMCID: PMC10504678 DOI: 10.1016/j.jmr.2023.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The resolution of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra remains bounded by the spinning frequency, which is limited by the material strength of MAS rotors. Since diamond is capable of withstanding 1.5-2.5x greater MAS frequencies, compared to state-of-the art zirconia, we fabricated rotors from single crystal diamond. When combined with bearings optimized for spinning with helium gas, diamond rotors could achieve the highest MAS frequencies to date. Furthermore, the excellent microwave transmission properties and thermal conductivity of diamond could improve sensitivity enhancements in dynamic nuclear polarization (DNP) experiments. The fabrication protocol we report involves novel laser micromachining and produced rotors that presently spin at ωr/2π = 111.000 ± 0.004 kHz, with stable spinning up to 124 kHz, using N2 gas as the driving fluid. We present the first proton-detected 13C/15N MAS spectra recorded using diamond rotors, a critical step towards studying currently inaccessible ex-vivo protein samples with MAS NMR. Previously, the high aspect ratio of MAS rotors (∼10:1) precluded fabrication of MAS rotors from diamond.
Collapse
Affiliation(s)
- Natalie C Golota
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary P Fredin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel P Banks
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Preiss
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salima Bahri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prashant Patil
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William K Langford
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Camron L Blackburn
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik Strand
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian Michael
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blake Dastrup
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Gershenfeld
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Pereira D, Sardo M, Marín-Montesinos I, Mafra L. One-Shot Resin 3D-Printed Stators for Low-Cost Fabrication of Magic-Angle Spinning NMR Probeheads. Anal Chem 2023. [PMID: 37376721 DOI: 10.1021/acs.analchem.3c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Additive manufacturing such as three-dimensional (3D)-printing has revolutionized the fast and low-cost fabrication of otherwise expensive NMR parts. High-resolution solid-state NMR spectroscopy demands rotating the sample at a specific angle (54.74°) inside a pneumatic turbine, which must be designed to achieve stable and high spinning speeds without mechanical friction. Moreover, instability of the sample rotation often leads to crashes, resulting in costly repairs. Producing these intricate parts requires traditional machining, which is time-consuming, costly, and relies on specialized labor. Herein, we show that 3D-printing can be used to fabricate the sample holder housing (stator) in one shot, while the radiofrequency (RF) solenoid was constructed using conventional materials available in electronics stores. The 3D-printed stator, equipped with a homemade RF coil, showed remarkable spinning stability, yielding high-quality NMR data. At a cost below 5 €, the 3D-printed stator represents a cost reduction of over 99% compared to repaired commercial stators, illustrating the potential of 3D-printing for mass-producing affordable magic-angle spinning stators.
Collapse
Affiliation(s)
- Daniel Pereira
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ildefonso Marín-Montesinos
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Wong A. A roadmap to high-resolution standard microcoil MAS NMR spectroscopy for metabolomics. NMR IN BIOMEDICINE 2023; 36:e4683. [PMID: 34970795 DOI: 10.1002/nbm.4683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Current microcoil probe technology has emerged as a significant advancement in NMR applications to biofluids research. It has continued to excel as a hyphenated tool with other prominent microdevices, opening many new possibilities in multiple omics fields. However, this does not hold for biological samples such as intact tissue or organisms, due to the considerable challenges of incorporating the microcoil in a magic-angle spinning (MAS) probe without relinquishing the high-resolution spectral data. Not until 2012 did a microcoil MAS probe show promise in profiling the metabolome in a submilligram tissue biopsy with spectral resolution on par with conventional high-resolution MAS (HR-MAS) NMR. This result subsequently triggered a great interest in the possibility of NMR analysis with microgram tissues and striving toward the probe development of "high-resolution" capable microcoil MAS NMR spectroscopy. This review gives an overview of the issues and challenges in the probe development and summarizes the advancements toward metabolomics.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
17
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
18
|
Yan Z, Zhang R. Multiple acquisitions in a single scan: exhausting abundant 1H polarization at fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107338. [PMID: 36463686 DOI: 10.1016/j.jmr.2022.107338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Proton-detected solid-state NMR spectroscopy is emerging as a unique tool for atomic characterization of organic solids due to the boost of resolution and sensitivity afforded by the combined use of high magnetic field and ultrafast magic angle spinning (MAS). Here, we proposed a new set of proton-detected solid-state NMR sequences that hybrid multi-dimensional 1H-1H homonuclear chemical shift correlation (HOMCOR) and two-dimensional 1H-13C heteronuclear chemical shift correlation (HETCOR) sequences into a single experiment, enabling the simultaneous acquisition of multidimensional HOMCOR and HETCOR spectra and thus significant time savings. Based on the core idea of exhausting 1H polarization in each transient scan, we firstly demonstrated that 3D 1H multiple-quantum (MQ) HOMCOR sequence can be combined with 2D HETCOR sequence into a single experiment, leading to the simultaneous acquisition of a 3D 1H MQ HOMCOR and a 2D 1H-13C HETCOR spectrum. Besides, we also showed that 2D 1H/1H double-quantum/single-quantum (DQ/SQ) and single-quantum/single-quantum (SQ/SQ) HOMCOR sequence can be simultaneously combined with HETCOR sequence either, and thus three spectra can be simultaneously obtained from one experiment, including 2D 1H DQ/SQ, 2D 1H SQ/SQ and 2D 1H-13C HETCOR spectra. Since there is only one recycle delay in each experiment, experimental time is substantially reduced compared to separate acquisition of each multi-dimensional solid-state NMR spectrum. Furthermore, those new sequences can be implemented on any standard solid-state spectrometer with only one receiver. Thus, we foresee that these approaches can be valuable for the study of a broad range of molecular systems, including polymers, pharmaceuticals, covalent-organic frameworks (COF) and so on.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, PR China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
19
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
20
|
Yuan EC, Chen P, Huang S, Org M, Samoson A, Chan JCC. Solid‐state heteronuclear multiple‐quantum spectroscopy under a magic‐angle spinning frequency of 150
kHz. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Po‐Wen Chen
- Department of Chemistry National Taiwan University Taipei Republic of China
| | - Shing‐Jong Huang
- Instrumentation Center National Taiwan University Taipei Republic of China
| | - Mai‐Liis Org
- Institute of Health Technologies Tallinn University of Technology Tallinn Estonia
| | - Ago Samoson
- Institute of Health Technologies Tallinn University of Technology Tallinn Estonia
| | | |
Collapse
|
21
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
22
|
Malär AA, Sun Q, Zehnder J, Kehr G, Erker G, Wiegand T. Proton-phosphorous connectivities revealed by high-resolution proton-detected solid-state NMR. Phys Chem Chem Phys 2022; 24:7768-7778. [DOI: 10.1039/d2cp00616b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-detected solid-state NMR enables atomic-level insight in solid-state reactions, for instance in heterogeneous catalysis, which is fundamental for deciphering chemical reaction mechanisms. We herein introduce a phosphorus-31 radiofrequency channel in...
Collapse
|
23
|
Yan Z, Zhang R. Rapid Structural Analysis of Minute Quantities of Organic Solids by Exhausting 1H Polarization in Solid-State NMR Spectroscopy Under Fast Magic Angle Spinning. J Phys Chem Lett 2021; 12:12067-12074. [PMID: 34910488 DOI: 10.1021/acs.jpclett.1c03672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) often suffers from significant limitations due to the inherent low signal sensitivity when low-γ nuclei are involved. Herein, we report an elegant solid-state NMR approach for rapid structural analysis of minute amounts of organic solids. By encoding staggered chemical shift evolution in the indirect dimension and staggered acquisition in the 1H dimension, a proton-detected homonuclear 1H/1H and heteronuclear 13C/1H chemical shift correlation (HETCOR) spectrum can be obtained simultaneously in a single experiment at a fast magic-angle-spinning (MAS) condition with barely increasing the experimental time. We further show that during the conventional 1H-detected HETCOR experimental time, multiple homonuclear 1H/1H correlation spectra can be recorded in addition to the HETCOR spectrum, enabling the determination of 1H-1H distances. We establish that abundant 1H polarization can be efficiently manipulated and fully utilized in proton-detected solid-state NMR spectroscopy for extraction of more critical structural information and thus reduction of the total experimental time.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
24
|
Han Q, Gao P, Liang L, Chen K, Dong A, Liu Z, Han X, Fu Q, Hou G. Unraveling the Surface Hydroxyl Network on In 2O 3 Nanoparticles with High-Field Ultrafast Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2021; 93:16769-16778. [PMID: 34878248 DOI: 10.1021/acs.analchem.1c02759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxyl groups are among the major active surface sites over metal oxides. However, their spectroscopic characterizations have been challenging due to limited resolutions, especially on hydroxyl-rich surfaces where strong hydroxyl networks are present. Here, using nanostructured In2O3 as an example, we show significantly enhanced discrimination of the surface hydroxyl groups, owing to the high-resolution 1H NMR spectra performed at a high magnetic field (18.8 T) and a fast magic angle spinning (MAS) of up to 60 kHz. A total of nine kinds of hydroxyl groups were distinguished and their assignments (μ1, μ2, and μ3) were further identified with the assistance of 17O NMR. The spatial distribution of these hydroxyl groups was further explored via two-dimensional (2D) 1H-1H homonuclear correlation experiments with which the complex surface hydroxyl network was unraveled at the atomic level. Moreover, the quantitative analysis of these hydroxyl groups with such high resolution enables further investigations into the physicochemical property and catalytic performance characterizations (in CO2 reduction) of these hydroxyl groups. This work provides insightful understanding on the surface structure/property of the In2O3 nanoparticles and, importantly, may prompt general applications of high-field ultrafast MAS NMR techniques in the study of hydroxyl-rich surfaces on other metal oxide materials.
Collapse
Affiliation(s)
- Qiao Han
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Aiyi Dong
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,Department of Physics, College of Science, Dalian Maritime University, Dalian 116026, China
| | - Zhengmao Liu
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwen Han
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
25
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
26
|
Zehnder J, Cadalbert R, Yulikov M, Künze G, Wiegand T. Paramagnetic spin labeling of a bacterial DnaB helicase for solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107075. [PMID: 34597956 DOI: 10.1016/j.jmr.2021.107075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Labeling of biomolecules with a paramagnetic probe for nuclear magnetic resonance (NMR) spectroscopy enables determining long-range distance restraints, which are otherwise not accessible by classically used dipolar coupling-based NMR approaches. Distance restraints derived from paramagnetic relaxation enhancements (PREs) can facilitate the structure determination of large proteins and protein complexes. We herein present the site-directed labeling of the large oligomeric bacterial DnaB helicase from Helicobacter pylori with cysteine-reactive maleimide tags carrying either a nitroxide radical or a lanthanide ion. The success of the labeling reaction was followed by quantitative continuous-wave electron paramagnetic resonance (EPR) experiments performed on the nitroxide-labeled protein. PREs were extracted site-specifically from 2D and 3D solid-state NMR spectra. A good agreement with predicted PRE values, derived by computational modeling of nitroxide and Gd3+ tags in the low-resolution DnaB crystal structure, was found. Comparison of experimental PREs and model-predicted spin label-nucleus distances indicated that the size of the "blind sphere" around the paramagnetic center, in which NMR resonances are not detected, is slightly larger for Gd3+ (∼14 Å) than for nitroxide (∼11 Å) in 13C-detected 2D spectra of DnaB. We also present Gd3+-Gd3+ dipolar electron-electron resonance EPR experiments on DnaB supporting the conclusion that DnaB was present as a hexameric assembly.
Collapse
Affiliation(s)
| | | | - Maxim Yulikov
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Georg Künze
- Institute for Drug Discovery, Medical School, Leipzig University, 04103 Leipzig, Germany.
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
27
|
Smith ME. Recent progress in solid-state nuclear magnetic resonance of half-integer spin low-γ quadrupolar nuclei applied to inorganic materials. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:864-907. [PMID: 33207003 DOI: 10.1002/mrc.5116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
An overview is presented of recent progress in the solid-state nuclear magnetic resonance (NMR) observation of low-γ nuclei, with a focus on applications to inorganic materials. The technological and methodological advances in the last 20 years, which have underpinned the increased accessibility of low-γ nuclei for study by solid-state NMR techniques, are summarised, including improvements in hardware, pulse sequences and associated computational methods (e.g., first principles calculations and spectral simulation). Some of the key initial observations from inorganic materials of these nuclei are highlighted along with some recent (most within the last 10 years) illustrations of their application to such materials. A summary of other recent reviews of the study of low-γ nuclei by solid-state NMR is provided so that a comprehensive understanding of what has been achieved to date is available.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, UK
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, UK
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
28
|
Nishiyama Y, Agarwal V, Zhang R. Efficient symmetry-based γ-encoded DQ recoupling sequences for suppression of t 1-noise in solid-state NMR spectroscopy at fast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 114:101734. [PMID: 34052760 DOI: 10.1016/j.ssnmr.2021.101734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the 1H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t1-noise, dictate the quality of the 2D 1H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t1-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded RNnν sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t1-noise. The origin of t1-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded RNnν sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t1-noise.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center and SPring-8 Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo, 196-8558, Japan.
| | - Vipin Agarwal
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 107, India.
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangzhou, 510640, PR China.
| |
Collapse
|
29
|
Potnuru LR, Duong NT, Sasank B, Raran-Kurussi S, Nishiyama Y, Agarwal V. Selective 1H- 1H recoupling via symmetry sequences in fully protonated samples at fast magic angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 328:107004. [PMID: 34049237 DOI: 10.1016/j.jmr.2021.107004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Proton-detected solid-state NMR at fast Magic Angle Spinning (MAS) is becoming the norm to characterize molecules. Routinely 1H-1H and 1H-X dipolar couplings are used to characterize the structure and dynamics of molecules. Selective proton recoupling techniques are emerging as a method for structural characterization via estimation of qualitative and quantitative distances. In the present study, we demonstrate through numerical simulations and experiments that the well-characterized CNvn sequences can also be tailored for selective recoupling of proton spins by employing C elements of the type (β)Φ(4β)Φ+π(3β)Φ. Herein, several CNvn sequences were examined through numerical simulations and experiments. C614 recoupling sequence with a modified POST-element ((β)Φ(4β)Φ+π(3β)Φ) shows selective polarization transfer efficiencies on the order of 40-50% between various proton spin pairs in fully protonated samples at rf amplitudes ranging from 0.3 to 0.8 times the MAS frequency. These selective recoupling sequences have been labeled as frequency-selective-CNvn sequences. The extent of selectivity, polarization transfer efficiency and the feasibility of experimentally measuring proton-proton distances in fully protonated samples are explored here. The development of efficient and robust selective 1H-1H recoupling experiments is required to structurally characterize molecules without artificial isotope enrichment or the need for diffracting crystals.
Collapse
Affiliation(s)
- Lokeswara Rao Potnuru
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Nghia Tuan Duong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Budaraju Sasank
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India; Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Mohali 140306, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad 500 107, India.
| |
Collapse
|
30
|
Chávez M, Wiegand T, Malär A, Meier B, Ernst M. Residual dipolar line width in magic-angle spinning proton solid-state NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:499-509. [PMID: 37904755 PMCID: PMC10539731 DOI: 10.5194/mr-2-499-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 11/01/2023]
Abstract
Magic-angle spinning is routinely used to average anisotropic interactions in solid-state nuclear magnetic resonance (NMR). Due to the fact that the homonuclear dipolar Hamiltonian of a strongly coupled spin system does not commute with itself at different time points during the rotation, second-order and higher-order terms lead to a residual dipolar line broadening in the observed resonances. Additional truncation of the residual broadening due to isotropic chemical-shift differences can be observed. We analyze the residual line broadening in coupled proton spin systems based on theoretical calculations of effective Hamiltonians up to third order using Floquet theory and compare these results to numerically obtained effective Hamiltonians in small spin systems. We show that at spinning frequencies beyond 75 kHz, second-order terms dominate the residual line width, leading to a 1 / ω r dependence of the second moment which we use to characterize the line width. However, chemical-shift truncation leads to a partial ω r - 2 dependence of the line width which looks as if third-order effective Hamiltonian terms are contributing significantly. At slower spinning frequencies, cross terms between the chemical shift and the dipolar coupling can contribute in third-order effective Hamiltonians. We show that second-order contributions not only broaden the line, but also lead to a shift of the center of gravity of the line. Experimental data reveal such spinning-frequency-dependent line shifts in proton spectra in model substances that can be explained by line shifts induced by the second-order dipolar Hamiltonian.
Collapse
Affiliation(s)
- Matías Chávez
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alexander A. Malär
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H. Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Abstract
Neurodegenerative disorders are frequently associated with β-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical β-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.
Collapse
|
32
|
Yuan ECY, Huang SJ, Huang HC, Sinkkonen J, Oss A, Org ML, Samoson A, Tai HC, Chan JCC. Faster magic angle spinning reveals cellulose conformations in woods. Chem Commun (Camb) 2021; 57:4110-4113. [PMID: 33908496 DOI: 10.1039/d1cc01149a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a first report on the detection of three different C6 conformers of cellulose in spruce, as revealed by solid-state 1H-13C correlation spectra. The breakthrough in 1H resolution is achieved by magic-angle spinning in the regime of 150 kHz. The suppression of dense dipolar network of 1H provides inverse detected 13C spectra at a good sensitivity even in natural samples. We find that the glycosidic linkages are initially more ordered in spruce than maple, but a thermal treatment of spruce leads to a more heterogeneous packing order of the remaining cellulose fibrils.
Collapse
Affiliation(s)
- Eric Chung-Yueh Yuan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Hung-Chia Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Jari Sinkkonen
- Innovation Centre for Biomaterials, Stora Enso AB, Nacka 13154, Sweden
| | - Andres Oss
- Tallinn University of Technology, Estonia.
| | | | | | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| |
Collapse
|
33
|
Bonaccorsi M, Le Marchand T, Pintacuda G. Protein structural dynamics by Magic-Angle Spinning NMR. Curr Opin Struct Biol 2021; 70:34-43. [PMID: 33915352 DOI: 10.1016/j.sbi.2021.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
Magic-Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) is a fast-developing technique, capable of complementing solution NMR, X-ray crystallography, and electron microscopy for the biophysical characterization of microcrystalline, poorly crystalline or disordered protein samples, such as enzymes, biomolecular assemblies, membrane-embedded systems or fibrils. Beyond structures, MAS NMR is an ideal tool for the investigation of dynamics, since it is unique in its ability to distinguish static and dynamic disorder, and to characterize not only amplitudes but also timescales of motion. Building on seminal work on model proteins, the technique is now ripe for widespread application in structural biology. This review briefly summarizes the recent evolutions in biomolecular MAS NMR and accounts for the growing number of systems where this spectroscopy has provided a description of conformational dynamics over the very last few years.
Collapse
Affiliation(s)
- Marta Bonaccorsi
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Tanguy Le Marchand
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
34
|
|
35
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
36
|
Zhang Z, Oss A, Org ML, Samoson A, Li M, Tan H, Su Y, Yang J. Selectively Enhanced 1H- 1H Correlations in Proton-Detected Solid-State NMR under Ultrafast MAS Conditions. J Phys Chem Lett 2020; 11:8077-8083. [PMID: 32880459 DOI: 10.1021/acs.jpclett.0c02412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proton-detected solid-state NMR has emerged as a powerful analytical technique in structural elucidation via 1H-1H correlations, which are mostly established by broadband methods. We propose a new class of frequency-selective homonuclear recoupling methods to selectively enhance 1H-1H correlations of interest under ultrafast magic-angle spinning (MAS). These methods, dubbed as selective phase-optimized recoupling (SPR), can provide a sensitivity enhancement by a factor of ∼3 over the widely used radio-frequency-driven recoupling (RFDR) to observe 1HN-1HN contacts in a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF) under 150 kHz MAS and are successfully utilized to probe a long-range 1H-1H contact in a pharmaceutical molecule, the hydrochloride form of pioglitazone (PIO-HCl). SPR is not only highly efficient in frequency-selective recoupling but also easy to implement, imparting to it great potential to probe 1H-1H contacts for the structural elucidation of organic solids such as proteins and pharmaceuticals under ultrafast MAS conditions.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Andres Oss
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Mai-Liis Org
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Ago Samoson
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
37
|
Schledorn M, Malär AA, Torosyan A, Penzel S, Klose D, Oss A, Org M, Wang S, Lecoq L, Cadalbert R, Samoson A, Böckmann A, Meier BH. Protein NMR Spectroscopy at 150 kHz Magic-Angle Spinning Continues To Improve Resolution and Mass Sensitivity. Chembiochem 2020; 21:2540-2548. [PMID: 32501630 PMCID: PMC7497035 DOI: 10.1002/cbic.202000341] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/21/2022]
Abstract
Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic-angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz. We observed a reduction in the average homogeneous linewidth by a factor of 1.5 and a decrease in the observed linewidth by a factor 1.25. We conclude that even faster MAS is highly attractive and increases mass sensitivity at a moderate price in overall sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Klose
- Physical ChemistryETH Zürich8093ZürichSwitzerland
| | - Andres Oss
- Institute of Health TechnologiesTallinn University of TechnologyAkadeemia tee 15a12618TallinnEstonia
| | - Mai‐Liis Org
- Institute of Health TechnologiesTallinn University of TechnologyAkadeemia tee 15a12618TallinnEstonia
| | - Shishan Wang
- Institut de Biologie et Chimie des Protéines MMSB UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines MMSB UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | | | - Ago Samoson
- Institute of Health TechnologiesTallinn University of TechnologyAkadeemia tee 15a12618TallinnEstonia
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines MMSB UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | | |
Collapse
|
38
|
Li M, Lu X, Xu W, Troup GM, McNevin MJ, Nie H, Su Y. Quantifying Pharmaceutical Formulations from Proton Detected Solid-State NMR under Ultrafast Magic Angle Spinning. J Pharm Sci 2020; 109:3045-3053. [PMID: 32679211 DOI: 10.1016/j.xphs.2020.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Probing form conversions of active pharmaceutical ingredients in solid dosages is critical for understanding the physicochemical stability of drug substances in formulations. The multicomponent and low drug loading nature of drug products often results in challenges to quantify the phase stability, at a low detection limit and with the chemical resolution that differentiate drug molecules and excipients, for routine laboratory techniques. Recent advancement of ultrafast magic angle spinning (UF-MAS) enables proton-detected solid-state nuclear magnetic resonance (ssNMR) techniques to characterize pharmaceutical materials with enhanced resolution and sensitivity. This study demonstrates one of the first documented cases implementing 60 kHz UF-MAS techniques to quantify the minor content of pioglitazone free base (PIO-FB) in a binary system with its hydrochloride salt (PIO-HCl) and a multicomponent formulation with typical excipients. One-dimensional 1H methods can unambiguously differentiate the two forms and exhibit a limit of detection at 1.77% (w/w). Moreover, we extended it to a two-dimensional 1H-1H correlation for minimizing peak overlap and successfully quantifying approximately 2.0% (w/w) PIO-FB in a multicomponent formulation. These results have demonstrated that 1H ssNMR as a novel method to quantify solid dosages at a higher resolution and faster acquisition than conventional 13C techniques.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Gregory M Troup
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Michael J McNevin
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Haichen Nie
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN 47907, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
39
|
Stanek J, Schubeis T, Paluch P, Güntert P, Andreas LB, Pintacuda G. Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition. J Am Chem Soc 2020; 142:5793-5799. [DOI: 10.1021/jacs.0c00251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Peter Güntert
- Physical Chemistry, Eidgenössische Technische Hochschule Zurich, Hochschule Zürich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
- Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Japan
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37077, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| |
Collapse
|
40
|
Lu X, Tsutsumi Y, Huang C, Xu W, Byrn SR, Templeton AC, Buevich AV, Amoureux JP, Su Y. Molecular packing of pharmaceuticals analyzed with paramagnetic relaxation enhancement and ultrafast magic angle pinning NMR. Phys Chem Chem Phys 2020; 22:13160-13170. [DOI: 10.1039/d0cp02049d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Probing molecular details of fluorinated pharmaceutical compounds at a faster acquisition utilizing paramagnetic relaxation enhancement and better resolution from ultrafast magic angle spinning (νrot = 110 kHz) and high magnetic field (B0 = 18.8 T).
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- MRL, Merck & Co., Inc
- Kenilworth
- USA
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- Indiana 47907
- USA
| | | | | | | | - Yongchao Su
- MRL, Merck & Co., Inc
- Kenilworth
- USA
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
| |
Collapse
|