1
|
Sunthon W, Sopananurakkul T, Konguthaithip G, Amornlertwatana Y, Watcharakhom S, Intui K, Jaikang C. Manner of death prediction: A machine learning approach to classify suicide and non-suicide using blood metabolomics. Forensic Sci Int Synerg 2025; 10:100580. [PMID: 40092626 PMCID: PMC11908544 DOI: 10.1016/j.fsisyn.2025.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The classification of the manner of death (MOD) is a critical step in forensic investigations. The process is based on scene investigation, autopsy, histological and toxicological findings. However, in complex suicide cases, these findings may be insufficient to clearly establish the MOD and need potential biomarkers to assist judicial determinations. This study aims to identify specific biomarkers in the blood that could distinguish suicide from the non-suicidal deaths group. Heart blood samples were collected from suicide (n = 45) and non-suicide cases (n = 45) and metabolomic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. Nineteen blood metabolites were significantly different between the groups (p < 0.05); especially, 4-hydroxyproline, sarcosine and heparan sulfate emerged as potential biomarkers for differentiating between the groups. A logistic regression-based predictive model incorporating sarcosine and heparan sulfate achieved sensitivity and specificity values of 73 % and 72 %, respectively. The integration of machine learning with blood metabolomics holds significant potential in forensic science and may apply to the model to adopt in criminal justice.
Collapse
Affiliation(s)
- Witchayawat Sunthon
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitiwat Sopananurakkul
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Giatgong Konguthaithip
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somlada Watcharakhom
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanicnan Intui
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Picard LP, Pichugin D, Huang SK, Suleiman M, Prosser RS. Reducing experimental time through spin-lattice relaxation enhancement via dissolved oxygen. JOURNAL OF BIOMOLECULAR NMR 2025; 79:67-78. [PMID: 39960596 DOI: 10.1007/s10858-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Large proteins and dilute spin systems within a deuterated background are often characterized by long proton (1H) spin-lattice relaxation times (T1), which directly impacts the recycle delay and hence, the total experimental time. Dioxygen (O2) is a well-known paramagnetic species whose short electronic spin-lattice relaxation time (7.5 ps) contributes to effective spin-lattice relaxation of high gamma nuclei. Oxygen's chemical potential and high diffusivity also allows it to access both the protein exterior and much of the (hydrophobic) interior of the protein. Consequently, at O2 partial pressures of ~ 10 bar, 1H and 19F spin-lattice relaxation rates (R1) typically reach 3-5 Hz (versus rates of 0.7-1.0 Hz without oxygen) with comparable line-broadening in protein NMR spectra. Using fluoroacetate dehalogenase (FAcD) a soluble 35 kDa homodimeric enzyme, a nanodisc-stabilized G protein-coupled receptor (A2AR), and bovine serum albumin (BSA) as test cases, a 3-fold savings in time was achieved in acquiring 1H-15 N HSQC and 19F NMR spectra, after oxygenation at 9 bar for 24 h. Additional spin-diffusion effects are anticipated to contribute to uniform 1H spin-lattice relaxation for both solvent-exposed and buried protons, as demonstrated by T1 relaxation analysis of amides in 15N-labeled FAcD. Finally, we show that in protein samples dissolved oxygen pre-equilibrated at 9 bar (pO2) is largely retained in solution at 20° C or lower, using a standard NMR tube for a period of 3-4 days, thus avoiding the use of specialized apparatus or high-pressure NMR tubes in the spectrometer. The convenience of being able to add or remove the quenching species, while avoiding any complex apparatus in the NMR experiment, makes this a practical tool for both 19F, 1H-13 C, and 1H-15 N NMR studies of proteins.
Collapse
Affiliation(s)
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, Toronto, Canada
| | | | | | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Canada.
- Biochemistry Department, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Budsayapanpong V, Amornlertwatana Y, Konguthaithip G, Watcharakhom S, Intui K, Chaichana J, Khamenkhetkarn M, Jaikang C. Metabolomic insights into methamphetamine exposure: 1H-NMR-based urinary biomarker identification and pathway disruption. Chem Biol Interact 2025; 412:111449. [PMID: 40024497 DOI: 10.1016/j.cbi.2025.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Varat Budsayapanpong
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Giatgong Konguthaithip
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somlada Watcharakhom
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanicnan Intui
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jatuporn Chaichana
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai, 50180, Thailand
| | - Manee Khamenkhetkarn
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai, 50180, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Drevet Mulard E, Gilard V, Balayssac S, Rautureau GJP. Quantitative Nuclear Magnetic Resonance for Small Biological Molecules in Complex Mixtures: Practical Guidelines and Key Considerations for Non-Specialists. Molecules 2025; 30:1838. [PMID: 40333863 PMCID: PMC12029823 DOI: 10.3390/molecules30081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical approach that enables both the structural determination and precise quantification of small molecules, such as metabolites. However, achieving precise quantification with NMR involves more than simply comparing integrals derived from NMR peaks to a concentration reference; quantitative NMR (qNMR) is a distinct and specialized application within the field. To obtain absolute quantitative results, spectra must be acquired under strict experimental conditions. Unfortunately, these acquisition parameters can be challenging to implement experimentally and often require trade-offs that compromise high throughput or practicality. In such situations, alternative strategies based on relative quantification and advanced software tools offer valuable solutions. This review aims to provide non-specialists with the key concepts and methodologies required for accurate NMR-based quantification in biomedical research, focusing on practical guidelines and experimental considerations. Unlike prior reviews, it prioritizes accessibility and practical implementation for researchers outside the field, emphasizing key experimental workflows and applications in biological and clinical studies. It clarifies the distinctions between absolute and relative concentration determinations and emphasizes the critical importance of sample preparation, pulse sequence selection, and rigorous control of experimental parameters. Recent technological advancements, such as high-field spectrometers and cryoprobes, have significantly enhanced the sensitivity and accuracy of NMR, enabling the reliable detection of low-concentration metabolites. Quantitative NMR thus offers critical potential in elucidating metabolic processes, supporting drug development, and aiding disease diagnosis.
Collapse
Affiliation(s)
- Eva Drevet Mulard
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France
- France INSERM Research Unit 1033 LYOS, Lyon 1 University, F-69372 Lyon, France
| | - Véronique Gilard
- Laboratoire Softmat, CNRS UMR 5623, Université de Toulouse, F-31062 Toulouse, France
| | - Stéphane Balayssac
- Laboratoire Softmat, CNRS UMR 5623, Université de Toulouse, F-31062 Toulouse, France
| | - Gilles J. P. Rautureau
- Institute of Chemistry and Biochemistry (ICBMS), UMR 5246, CNRS, University Lyon, F-69622 Villeurbanne, France
- France INSERM Research Unit 1033 LYOS, Lyon 1 University, F-69372 Lyon, France
| |
Collapse
|
5
|
Del Coco L, Girelli CR, Gambacorta L, Solfrizzo M, Fanizzi FP. 1H NMR Spectroscopy Primitivo Red Wine Screening After Grape Pomace Repassage for Possible Toxin Contamination Removal. Foods 2025; 14:734. [PMID: 40077432 PMCID: PMC11898919 DOI: 10.3390/foods14050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Food safety and quality awareness have reached significant relevance as consumers are more interested in authentic foods and drinks with specific organoleptic values. Among foodstuffs, grape products can be contaminated by Ochratoxin A (OTA), a mycotoxin that can occur in red grape after infection with Aspergillus carbonarius. The high affinity of grape pomace with OTA makes its use advantageous as an adsorbing/decontaminating material whether the pomace is fresh, has undergone pressing, or has undergone a stabilizing process. The effects of different grape repassage treatments on wine metabolic profiles were studied by 1H NMR spectroscopy coupled with metabolomics. The relative quantification of discriminating metabolites for activated-carbon-treated samples revealed higher levels of ethyl acetate and succinate than for the grape-pomace-repassed wine samples. On the contrary, the latter exhibited a relatively high content of glycerol, lactate, tartaric, isobutanol, isopentanol, and polyphenols. Although a specific decrease in aromatic compounds such as gallic acid, tyrosine, and tyrosol was also observed compared with the controls, for the pomace-based processes, the activated carbon treatment led to a marked general impoverishment of the metabolomic profiles, with a reduction in organic acids and glycerol. The repassage of wine over the grape pomace did not significantly affect the quality attributes of the wine, offering an alternative natural adsorbing/decontaminating material for the removal of OTA.
Collapse
Affiliation(s)
- Laura Del Coco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy (C.R.G.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy (C.R.G.)
| | - Lucia Gambacorta
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (L.G.); (M.S.)
| | - Michele Solfrizzo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (L.G.); (M.S.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy (C.R.G.)
| |
Collapse
|
6
|
Musio B, Ragone R, Todisco S, Rizzuti A, Iorio E, Chirico M, Pisanu ME, Meloni N, Mastrorilli P, Gallo V. Non-Targeted Nuclear Magnetic Resonance Analysis for Food Authenticity: A Comparative Study on Tomato Samples. Molecules 2024; 29:4441. [PMID: 39339436 PMCID: PMC11434360 DOI: 10.3390/molecules29184441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Non-targeted NMR is widely accepted as a powerful and robust analytical tool for food control. Nevertheless, standardized procedures based on validated methods are still needed when a non-targeted approach is adopted. Interlaboratory comparisons carried out in recent years have demonstrated the statistical equivalence of spectra generated by different instruments when the sample was prepared by the same operator. The present study focused on assessing the reproducibility of NMR spectra of the same matrix when different operators performed individually both the sample preparation and the measurements using their spectrometer. For this purpose, two independent laboratories prepared 63 tomato samples according to a previously optimized procedure and recorded the corresponding 1D 1H NMR spectra. A classification model was built using the spectroscopic fingerprint data delivered by the two laboratories to assess the geographical origin of the tomato samples. The performance of the optimized statistical model was satisfactory, with a 97.62% correct sample classification rate. The results of this work support the suitability of NMR techniques in food control routines even when samples are prepared by different operators by using their equipment in independent laboratories.
Collapse
Affiliation(s)
- Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (R.R.); (S.T.); (A.R.); (P.M.); (V.G.)
| | - Rosa Ragone
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (R.R.); (S.T.); (A.R.); (P.M.); (V.G.)
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (R.R.); (S.T.); (A.R.); (P.M.); (V.G.)
| | - Antonino Rizzuti
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (R.R.); (S.T.); (A.R.); (P.M.); (V.G.)
| | - Egidio Iorio
- Istituto Superiore di Sanità, Core Facilities Istituto Superiore Di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Mattea Chirico
- Istituto Superiore di Sanità, Core Facilities Istituto Superiore Di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Maria Elena Pisanu
- Istituto Superiore di Sanità, Core Facilities Istituto Superiore Di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Nadia Meloni
- Agenzia Regionale Protezione Ambientale Lazio, Dipartimento Prevenzione e Laboratorio Integrato, Servizio Coordinamento delle Attività di Laboratorio, Unità Laboratorio Chimico di Latina, Via Mario Siciliano, 1, I-04100 Latina, Italy;
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (R.R.); (S.T.); (A.R.); (P.M.); (V.G.)
- Innovative Solutions S.r.l., Spin-Off Company of the Polytechnic University of Bari, Zona H 150/B, I-70015 Noci, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (R.R.); (S.T.); (A.R.); (P.M.); (V.G.)
- Innovative Solutions S.r.l., Spin-Off Company of the Polytechnic University of Bari, Zona H 150/B, I-70015 Noci, Italy
| |
Collapse
|
7
|
An L, Liu H, Li M, Ma J, Zheng L, Zhou J, Zhang J, Yuan Y, Wu X. Unveiling the impact of harvest time on Dioscorea opposita Thunb. cv. Tiegun maturity by NMR-based metabolomics and LC-MS/MS analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6342-6349. [PMID: 38415792 DOI: 10.1002/jsfa.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Dioscorea opposita Thunb. cv. Tiegun maturity (DM) is an important factor influencing its quality. However, there are few studies on the impact of harvest time on its maturation. In the present study, a NMR-based metabolomics approach was applied to investigate the dynamic metabolic changes of D. opposita Thunb. cv. Tiegun at six different harvest stages: stage 1 (S1), stage 2 (S2), Stage 3 (S3), stage 4 (S4), stage 5 (S5) and stage 6 (S6). RESULTS Principal component analysis showed distinct segregation of samples obtained from S1, S2 and S3 compared to those derived from S4, S5 and S6. Interestingly, these samples from the two periods were obtained before and after frost, indicating that frost descent might be important for DM. Eight differential metabolites responsible for good separation of different groups were identified by the principal component analysis loading plot and partial least squares-discriminant analysis. In addition, quantitative analysis of these metabolites using liquid chromatography-tandem mass spectrometry determined the effects of harvest time on these metabolite contents, two of which, sucrose and allantoin, were considered as potential biomarkers to determine DM. CONCLUSION The present study demonstrated that NMR-based metabolomics approach could serve as a powerful tool to identify differential metabolites during harvesting processes, also offering a fresh insight into understanding the DM and the potential mechanism of quality formation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li An
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Hao Liu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Meng Li
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Jingwei Ma
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Lufei Zheng
- Institute of Quality Standards and Testing Technology for Agro-products of CAAS, Beijing, China
| | - Juan Zhou
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Junfeng Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| | - Yongliang Yuan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xujin Wu
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou, China
| |
Collapse
|
8
|
Yu B, Bolik-Coulon N, Rangadurai AK, Kay LE, Iwahara J. Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules. J Am Chem Soc 2024; 146:20788-20801. [PMID: 39028837 PMCID: PMC11295196 DOI: 10.1021/jacs.4c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.
Collapse
Affiliation(s)
- Binhan Yu
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Nicolas Bolik-Coulon
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Atul K. Rangadurai
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E. Kay
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Junji Iwahara
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
9
|
Sun X, Yu Y, Qian K, Wang J, Huang L. Recent Progress in Mass Spectrometry-Based Single-Cell Metabolic Analysis. SMALL METHODS 2024; 8:e2301317. [PMID: 38032130 DOI: 10.1002/smtd.202301317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Single-cell analysis enables the measurement of biomolecules at the level of individual cells, facilitating in-depth investigations into cellular heterogeneity and precise interpretation of the related biological mechanisms. Among these biomolecules, cellular metabolites exhibit remarkable sensitivity to environmental and biochemical changes, unveiling a hidden world underlying cellular heterogeneity and allowing for the determination of cell physiological states. However, the metabolic analysis of single cells is challenging due to the extremely low concentrations, substantial content variations, and rapid turnover rates of cellular metabolites. Mass spectrometry (MS), characterized by its high sensitivity, wide dynamic range, and excellent selectivity, is employed in single-cell metabolic analysis. This review focuses on recent advances and applications of MS-based single-cell metabolic analysis, encompassing three key steps of single-cell isolation, detection, and application. It is anticipated that MS will bring profound implications in biomedical practices, serving as advanced tools to depict the single-cell metabolic landscape.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
10
|
Ghini V, Meoni G, Vignoli A, Di Cesare F, Tenori L, Turano P, Luchinat C. Fingerprinting and profiling in metabolomics of biosamples. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:105-135. [PMID: 38065666 DOI: 10.1016/j.pnmrs.2023.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.
Collapse
Affiliation(s)
- Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy.
| |
Collapse
|
11
|
Saviano G, Paris D, Iorizzi M. Editorial: Exploring metabolomic diversity in plant species by NMR-based and mass-based spectrometry. FRONTIERS IN PLANT SCIENCE 2023; 14:1248781. [PMID: 37534294 PMCID: PMC10392922 DOI: 10.3389/fpls.2023.1248781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|