1
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Zhang S, Wang N, Zhang Q, Guan R, Qu Z, Sun L, Li J. The Rise of Electroactive Materials in Face Masks for Preventing Virus Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48839-48854. [PMID: 37815875 DOI: 10.1021/acsami.3c10465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Air-transmitted pathogens may cause severe epidemics, posing considerable threats to public health and safety. Wearing a face mask is one of the most effective ways to prevent respiratory virus infection transmission. Especially since the new coronavirus pandemic, electroactive materials have received much attention in antiviral face masks due to their highly efficient antiviral capabilities, flexible structural design, excellent sustainability, and outstanding safety. This review first introduces the mechanism for preventing viral infection or the inactivation of viruses by electroactive materials. Then, the applications of electrostatic-, conductive-, triboelectric-, and microbattery-based materials in face masks are described in detail. Finally, the problems of various electroactive antiviral materials are summarized, and the prospects for their future development directions are discussed. In conclusion, electroactive materials have attracted great attention for antiviral face masks, and this review will provide a reference for materials scientists and engineers in antiviral materials and interfaces.
Collapse
Affiliation(s)
- Shaohua Zhang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Na Wang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| | - Qian Zhang
- Department of Respirology, Qingdao Women and Children's Hospital, Qingdao 266034, People's Republic of China
| | - Renzheng Guan
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zhenghai Qu
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Lirong Sun
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jiwei Li
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| |
Collapse
|
3
|
Hernandez R, Jimenez-Chávez A, De Vizcaya A, Lozano-Alvarez JA, Esquivel K, Medina-Ramírez IE. Synthesis of TiO 2-Cu 2+/CuI Nanocomposites and Evaluation of Antifungal and Cytotoxic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1900. [PMID: 37446416 DOI: 10.3390/nano13131900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Fungal infections have become a significant public health concern due to their increasing recurrence and harmful effects on plants, animals, and humans. Opportunistic pathogens (among others from the genera Candida and Aspergillus) can be present in indoor air, becoming a risk for people with suppressed immune systems. Engineered nanomaterials are novel alternatives to traditional antifungal therapy. In this work, copper(I) iodide (CuI) and a copper-doped titanium dioxide-copper(I) iodide (TiO2-Cu2+/CuI) composite nanomaterials (NMs)-were synthesized and tested as antifungal agents. The materials were synthesized using sol-gel (TiO2-Cu2+) and co-precipitation (CuI) techniques. The resulting colloids were evaluated as antifungal agents against Candida parapsilosis and Aspergillus niger strains. The NMs were characterized by XRD, HRTEM, AFM, and DLS to evaluate their physicochemical properties. The NMs present a high size dispersion and different geometrical shapes of agglomerates. The antifungal capacity of the NMs by the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) was below 15 µg/mL against Candida parapsilosis and below 600 µg/mL against Aspergillus niger for both NMs. Holotomography microscopy showed that the NMs could penetrate cell membranes causing cell death through its rupture and reactive oxygen species (ROS) production. Cytotoxicity tests showed that NMs could be safe to use at low concentrations. The synthesized nanomaterials could be potential antifungal agents for biomedical or environmental applications.
Collapse
Affiliation(s)
- Rafael Hernandez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Arturo Jimenez-Chávez
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico
| | - Andrea De Vizcaya
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Juan Antonio Lozano-Alvarez
- Department of Biochemical Engineering, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico
| | - Iliana E Medina-Ramírez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| |
Collapse
|
4
|
Ivanoska-Dacikj A, Oguz-Gouillart Y, Hossain G, Kaplan M, Sivri Ç, Ros-Lis JV, Mikucioniene D, Munir MU, Kizildag N, Unal S, Safarik I, Akgül E, Yıldırım N, Bedeloğlu AÇ, Ünsal ÖF, Herwig G, Rossi RM, Wick P, Clement P, Sarac AS. Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Basel) 2023; 11:1115. [PMID: 37107948 PMCID: PMC10137734 DOI: 10.3390/healthcare11081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
Collapse
Affiliation(s)
- Aleksandra Ivanoska-Dacikj
- Research Centre for Environment and Materials, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Yesim Oguz-Gouillart
- Department of Building and Urban Environment, Innovative Textile Material, JUNIA, 59000 Lille, France
| | - Gaffar Hossain
- V-Trion GmbH Textile Research, Millennium Park 15, 6890 Lustenau, Austria
| | - Müslüm Kaplan
- Department of Textile Engineering, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Çağlar Sivri
- Management Engineering Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, İstanbul 34349, Turkey
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM), Unidad Mixta Universitat Politecnica de Valencia, Universitat de Valencia, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Muhammad Usman Munir
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Nuray Kizildag
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
| | - Serkan Unal
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
- Faculty of Engineering and Natural Sciences, Material Science and Nanoengineering, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Esra Akgül
- Department of Industrial Design Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Nida Yıldırım
- Trabzon Vocational School, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ayşe Çelik Bedeloğlu
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Ömer Faruk Ünsal
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - A. Sezai Sarac
- Department of Chemistry, Polymer Science and Technology, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Chaudhary KR, Kujur S, Singh K. Recent advances of nanotechnology in COVID 19: A critical review and future perspective. OPENNANO 2023; 9. [PMCID: PMC9749399 DOI: 10.1016/j.onano.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India,Corresponding author at: Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, MOGA, Punjab 142001, India
| | - Sima Kujur
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| |
Collapse
|
6
|
Mughilmathi, Sonali JMI, Kumar PS, Archana KM, Rajagopal R, Gayathri KV. Application of copper iodide (CuI) and natural dye extracted from Hibiscus rosa-sinensis onto cotton fabric: an integrated approach. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Dahanayake MH, Athukorala SS, Jayasundera ACA. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 2022; 12:16369-16385. [PMID: 35747530 PMCID: PMC9158512 DOI: 10.1039/d2ra01567f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
COVID-19 persists as the most challenging pandemic of the 21st century with a high rate of transmission. The main pathway of SARS-CoV-2 transmission is aerosol-mediated infection transfer through virus-laden droplets that are expelled by infected people, whereas indirect transmission occurs when contact is made with a contaminated surface. This mini review delivers an overview of the current state of knowledge, research directions, and applications by examining the most recent developments in antiviral surface coatings and filters and analyzing their efficiencies. Reusable masks and other personal protective devices with antiviral properties and self-decontamination could be valuable tools in the fight against viral spread. Moreover, antiviral surface coatings that repel pathogens by preventing adhesion or neutralize pathogens with self-sanitizing ability are assumed to be the most desirable for terminating indirect transmission of viruses. Although many nanomaterials have shown high antiviral capacities, additional research is unquestionably required to develop next-generation antiviral agents with unique characteristics to face future viral outbreaks.
Collapse
Affiliation(s)
- Madushani H Dahanayake
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- National Institute of Fundamental Studies Hanthana Kandy Sri Lanka
| | - Sandya S Athukorala
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya Sri Lanka
| | - A C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Division of Mathematics and Science, Missouri Valley College Marshall MO 65340 USA
| |
Collapse
|
8
|
Chen Z, Zhang W, Yang H, Min K, Jiang J, Lu D, Huang X, Qu G, Liu Q, Jiang G. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:649-674. [PMID: 35388819 DOI: 10.1039/d1em00509j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).
Collapse
Affiliation(s)
- Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|