1
|
Li N, Jiang D, Zhou Z, Lu Y, Lei-Zhong, Law WC, Tang CY. Development of carboxymethyl cellulose/starch films enriched with ZnO-NPs and anthocyanins for antimicrobial and pH-indicating food packaging. Int J Biol Macromol 2024; 282:136814. [PMID: 39454908 DOI: 10.1016/j.ijbiomac.2024.136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Active packaging, which can monitor food freshness and extend the shelf life, has gained significant attention in recent years. This study aims to develop a novel carboxymethyl cellulose (CMC)/starch/anthocyanins/ZnO active films with enhanced properties and specific functionalities. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that the addition of anthocyanins and nano-ZnO particles (ZnO-NPs) led to heterogeneous microstructures and a slight decrease in the crystallinity. Fourier transform infrared spectroscopy (FTIR) indicated that there were no chemical interactions among film components. Active films containing ZnO-NPs exhibited improved ductility, as well as enhanced light barrier and water resistance properties. Notably, a shift from hydrophilic to hydrophobic behavior of the films was observed with high ZnO-NP content, as evidenced by a significant increase in the water contact angle (from 63.44° to 114.22°). Furthermore, the presence of only 1 % ZnO-NPs resulted in efficient inhibition of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth. Moreover, active films containing both anthocyanins and ZnO-NPs were highly sensitive to pH changes in buffer solutions (pH 2-11). Based on the results, a recommended film formulation for future active packaging applications is a 80:20 CMC/starch blend with 3 % ZnO-NPs and 0.1 g anthocyanins.
Collapse
Affiliation(s)
- Nannan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Dongyang Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Zeguang Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Yanyue Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Lei-Zhong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Wing Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chak Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Alghamdi HM, Rajeh A. Synthesis and improved optical, electrical, and dielectric properties of PEO/PVA/CuCo 2O 4 nanocomposites. Sci Rep 2024; 14:18925. [PMID: 39147883 PMCID: PMC11327243 DOI: 10.1038/s41598-024-69982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
This study investigates the development of novel nanocomposite films based on a blend of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) loaded with varying weight percentages of copper cobaltite nanoparticles (CuCo2O4 NPs). The primary objective was to fabricate these nanocomposites using a solution casting technique and explore the influence of CuCo2O4 content on their structural, optical, electrical, and dielectric properties. Spinel-type CuCo2O4 NPs were synthesized via the hydrothermal method and incorporated into the PEO/PVA blend. X-ray diffraction (XRD) analysis revealed the transformation of the polymer matrix towards an amorphous state with increasing CuCo2O4 content. UV-Vis spectroscopy studies demonstrated a decrease in both the direct and indirect band gaps of the nanocomposites, suggesting potential applications in optoelectronic devices. Impedance spectroscopy measurements revealed a significant enhancement in ionic conductivity (three orders of magnitude higher than the pristine blend) for the nanocomposite film containing 1.8 wt% CuCo2O4. The real permittivity (ε') and imaginary permittivity (ε″) of the polymer nanocomposites exhibited a decrease with increasing frequency due to the interplay of various polarization mechanisms. Notably, incorporating 1.8 wt% CuCo2O4 nanoparticles led to a remarkable improvement in energy density compared to the pristine blend. Additionally, a significant decrease in the potential barrier was observed. These findings demonstrate the successful fabrication of PEO/PVA-CuCo2O4 nanocomposite films with enhanced optical, electrical, and dielectric properties. The observed improvements suggest promising applications for these materials in energy storage devices and potentially in optoelectronic devices like light-emitting diodes.
Collapse
Affiliation(s)
- Haifa Mohammed Alghamdi
- Department of Physical Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - A Rajeh
- Physics Department, Faculty of Science, Amran University, Amran, Yemen.
| |
Collapse
|
3
|
El-Sawaf AK, Abdelgawad AM, Nassar AA, Elsherbiny DA. Immobilization of biosynthesized gallium nanoparticles in Polyvinylpyrrolidone/Sodium alginate films: Potent bactericidal protection against food spoilage bacteria. Int J Biol Macromol 2024; 274:133438. [PMID: 38936583 DOI: 10.1016/j.ijbiomac.2024.133438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The increasing threat of spoilage bacterial infections, driven by the resistance of bacteria to many antimicrobial treatments, is a significant worldwide public health problem, especially concerning food preservation. To tackle these difficulties, this research investigates the possibility of using packaging sheets that include antimicrobial agents and increasing the prolonged storage time by preventing the bioburden of foodborne pathogens. This approach uses metal nanoparticles' ability to prevent harmful bacteria that cause food spoiling. Gallium nanoparticles (GaNPs) were created using a water-based extract from Andrographis paniculata leaves as a bioreducing agent. The GaNPs were added to a film made of sodium alginate (SA) and polyvinylpyrrolidone (PVP). The study showed that incorporating GaNPs into polymer films resulted in films with a desirable contact angle and decreased water vapor permeability. Significantly, the developed films demonstrated increased efficiency against E.coli O157 compared to other species. Also, it exhibited increased vulnerability to bacterial strains at the biofilm stage, surpassing PVP-SA/GaNPs-0. Remarkably, the toxicity tests showed that the films exhibited no cytotoxicity. Overall, the films indicated their potential for avoiding bacterial bioburden, prolonging the shelf life of perishable products, and contributing to diverse antimicrobial applications in the food industry.
Collapse
Affiliation(s)
- Ayman K El-Sawaf
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Chemistry, Faculty of Science, Menoufia University, Shibin El-Kom, Egypt
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Center (Affiliation ID: 60014618), 12622, Dokki, Giza, Egypt; Textile Engineering Chemistry and Science Department, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Amal A Nassar
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Dalia A Elsherbiny
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Chemistry, Faculty of Science, Menoufia University, Shibin El-Kom, Egypt.
| |
Collapse
|
4
|
Alghamdi AM. Optical, thermal, mechanical, and antibacterial properties of polyvinyl alcohol/sodium alginate/ZnMn 2O 4 nanocomposites films for various optical devices and food packaging applications. Int J Biol Macromol 2024; 271:132689. [PMID: 38806084 DOI: 10.1016/j.ijbiomac.2024.132689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
This work involves preparing zinc manganite nanoparticles (ZnMn2O4 NPs) using the Sol-gel method. Polymer nanocomposites of polyvinyl alcohol (PVA)/Sodium alginate (NaAlg)- ZnMn2O4 NPs were created using the solution casting technique. The polymer nanocomposites films were made with varying weight percentages of ZnMn2O4 nanoparticles. With the addition of nanofiller, the reduced direct and indirect energy band gap values and increased Urbach energy values were discovered in the UV-Vis data. XRD data showed a reduction in crystallinity degree with dopant. ZnMn2O4 NPs had a strong interaction with PVA/NaAlg blend, as confirmed by FTIR. The addition of ZnMn2O4 NPs led to improved thermal stability of the polymer nanocomposites films. Additionally, the nanocomposites films' mechanical characteristics were examined. The loading of ZnMn2O4 nanoparticles has been associated with an increasing trend in the mechanical properties of the nanocomposites, including its toughness, Young's modulus, Tensile strength (Ts), and elongation. The antibacterial activity of the nanocomposites against fungus and bacteria was studied. Additionally, PVA/NaAlg-ZnMn2O4 nanocomposites films had good antibacterial characteristics against environmental microorganisms such as Gram-positive (G+) S. aureus and Gram-negative(G-) E. coli bacteria as well as fungi C. albicans and A. niger. It was observed that the biodegradability of the nanocomposite films was lower compared to the pure PVA/NaAlg film. Compared to pure film, the water solubility was decreased upon the addition of ZnMn2O4 NPs. After ZnMn2O4 was added to the pure blend, the WVTR decreased. The produced polymer nanocomposites films appear to be a promising material for food packing, according to these results.
Collapse
Affiliation(s)
- Azzah M Alghamdi
- University of Jeddah, College of Science, Department of Physical Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Joshi NC, Negi PB, Gururani P. A review on metal/metal oxide nanoparticles in food processing and packaging. Food Sci Biotechnol 2024; 33:1307-1322. [PMID: 38585561 PMCID: PMC10991644 DOI: 10.1007/s10068-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
Consuming hygienic and secure food has become challenging for everyone. The preservation of excess food without negatively affecting its nutritional values, shelf life, freshness, or effectiveness would undoubtedly strengthen the food industry. Nanotechnology is a new and intriguing technology that is currently being implemented in the food industry. Metal-based nanomaterials have considerable potential for use in packaging and food processing. These materials have many advanced physical and chemical characteristics. Since these materials are increasingly being used in food applications, there are certain negative health consequences related to their toxicity when swallowed through food. In this article, we have addressed the introduction and applications of metal/metal oxide nanoparticles (MNPs), food processing and food packaging, applications of MNPs-based materials in food processing and food packaging, health hazards, and future perspectives.
Collapse
Affiliation(s)
| | - Pushpa Bhakuni Negi
- Department of Chemistry, Graphic Era Hill University, Bhimtal Campus, Nainital, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| |
Collapse
|
6
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Development and characterization of active poly (3-hydroxybutyrate) based composites with grapeseed oil and MgO nanoparticles for shelf-life extension of white button mushrooms (Agaricus bisporus). Int J Biol Macromol 2024; 260:129521. [PMID: 38246453 DOI: 10.1016/j.ijbiomac.2024.129521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Poly (3-hydroxybutyrate) (PHB) is undoubtedly a potential substitute for petroleum-based non-biodegradable food packaging materials due to its renewability, high crystallinity, biocompatibility, and biodegradability. Nonetheless, PHB exhibits certain shortcomings, including low flexibility, moderate gas barrier properties, and negligible antimicrobial and antioxidant activities, which limit its direct application in food packaging. Loading essential oils can increase flexibility and induce antimicrobial and antioxidant activities in biopolymers but at the cost of reduced tensile strength. In contrast, nanofiller reinforcement can increase the tensile strength and barrier properties of such biopolymers. Therefore, to harness the synergistic effects of essential oil and nanofiller, PHB-based films incorporated with 5 wt% grapeseed oil (GS) and varying concentrations (0.1-1 wt%) of MgO nanoparticles (MgO NPs) were prepared in this study following simple sonication-assisted solution casting technique. Physicochemical, tensile, microstructural, optical, barrier, antimicrobial, and antioxidant properties were then evaluated for the prepared composite films. FESEM analysis of the PHB-based films with 5 wt% GS and 0.7 wt% MgO NPs (PHB/5GS/0.7MgO) confirmed its compact morphology without any aggregates, pores, or phase separation. In comparison with pristine PHB, the PHB/5GS/0.7MgO films demonstrated higher tensile strength (by 1.4-fold) and flexibility (by 30-fold), along with 79 and 90 % reduction in water vapor and oxygen transmission, respectively. In addition, PHB/5GS/0.7MgO showed good UV-blocking properties, 65.25 ± 0.98 % antioxidant activity, and completely inhibited the growth of Staphylococcus aureus and Escherichia coli. Moreover, PHB/5GS/0.7MgO films proved beneficial effects in terms of extending the shelf-life of white button mushrooms up to 6 days at ambient room conditions.
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Wani NR, Dar AH, Dash KK, Pandey VK, Srivastava S, Jan SY, Deka P, Sabahi N. Recent advances in the production of bionanomaterials for development of sustainable food packaging: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116948. [PMID: 37611789 DOI: 10.1016/j.envres.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/08/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Polymers originating from natural macromolecule based polymeric materials have gained popularity due to the demand for green resources to develop unique, eco-friendly, and high-quality biopolymers. The objective of this review is to address the utilization of bionanomaterials to improve food quality, safety, security, and shelf life. Bionanomaterials are synthesized by integrating biological molecules with synthetic materials at the nanoscale. Nanostructured materials derived from biopolymers such as cellulose, chitin, or collagen can be employed for the development of sustainable food packaging. Green materials are cost-effective, biocompatible, biodegradable, and renewable. The interaction of nanoparticles with biological macromolecules must be analyzed to determine the properties of the packaging film. The nanoparticles control the growth of bacteria that cause food spoiling by releasing distinctive chemicals. Bio-nanocomposites and nanoencapsulation systems have been used in antimicrobial bio-based packaging solutions to improve the efficiency of synergism. Nanomaterials can regulate gas and moisture permeability, screen UV radiation, and limit microbial contamination, keeping the freshness and flavor of the food. Food packaging based on nanoparticles embedded biopolymers can alleviate environmental concerns by lowering the amount of packaging materials required and enhancing packaging recyclability. This results in less waste and a more eco-sustainable approach to food packaging. The study on current advances in the production of bionanomaterials for development of sustainable food packaging involves a detailed investigation of the available data from existing literature, as well as the compilation and analysis of relevant research results using statistical approaches.
Collapse
Affiliation(s)
- Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190025, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, 192122, India.
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India.
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Shivangi Srivastava
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Suhaib Yousuf Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190025, India
| | - Pinky Deka
- Department of Applied Biology, University of Science & Technology Meghalaya, Techno City, 793200, India
| | - Najmeh Sabahi
- Department of Food Science and Technology, Tabriz University, Tabriz, Iran
| |
Collapse
|
8
|
Tohamy HAS, Taha G, Sultan M. Dialdehyde cellulose/gelatin hydrogel as a packaging material for manganese oxides adsorbents for wastewater remediation: Characterization and performance evaluation. Int J Biol Macromol 2023; 248:125931. [PMID: 37481186 DOI: 10.1016/j.ijbiomac.2023.125931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The dialdehyde cellulose (DC) was used to synthesize gelatin-cellulose dialdehyde by Schiff base as a packaging material to manganese oxides nanoparticles adsorbents (Mn oxides@DC/Gel) for wastewater remediation and support the antimicrobial behavior of gelatin and DC. The crystallinity index% of microwave-synthesized DC prepared from cellulose II decreased from 43.18% to 34.11% and its oxidation degree was 143.77%. The greenly-produced Mn oxides were studied by XRD and TEM. XRD verified the presence of two different phases of α-MnO2 and α-Mn2O3 in the form of nanorods and nanocubes. Mn oxides@DC/Gel was investigated by FT-IR, XRD, XPS, SEM, swelling absorptivity, and thermal analysis. The optimal swelling ratio% of Mn oxides@DC/Gel nanocomposite was 1494.04±16.65%. The influence of pH on swelling ratios verified the instability of the imine group in acid and basic media. Mn oxides@DC/Gel nanocomposite hydrogel causes approximately two-fold greater inhibitory zones than gentamicin. The optimal adsorption conditions were adsorbent dose (0.05g), pH (9.0), contact time (120 min), and methylene blue dye concentration (30mg/L). The maximum adsorption capacity of Mn oxides@DC/Gel nanocomposite was 51.06±1.0 mg/g. The adsorption by Mn oxides@DC/Gel nanocomposite agrees with Langmuir, Redlich-Peterson, and Freundlich mechanisms.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt.
| | - Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
9
|
Pullulan/chitosan-based functional film incorporated with curcumin-integrated chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Rani M, Yadav J, Shanker U, Sillanpää M. Green Synthesized Zinc Derived Nanocomposites with Enhanced Photocatalytic Activity: An Updated Review on Structural Modification, Scientific Assessment and Environmental Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Al-Harbi LM, Alsulami QA, Farea O, Rajeh A. Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Abutalib M, Alghamdi HM, Rajeh A, Nur O, Hezmad A, Mannaa MA. Preparation of rGO/FeMoO4 as high-performance photocatalyst for degradation of malachite green, phenol and H2 evolution under natural sunlight. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022; 47:32955-32968. [DOI: 10.1016/j.ijhydene.2022.07.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
13
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|