1
|
da Silva ERO, da Silva TL, Wei MCF, de Souza RA, Molin JP. Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs. PLANTS (BASEL, SWITZERLAND) 2025; 14:169. [PMID: 39861523 PMCID: PMC11769169 DOI: 10.3390/plants14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results. The spatio-temporal study was conducted using a database composed of yield and soil and plant attributes from four harvest seasons of coffee plantation in the southeast region of Brazil. We used small plots as cells, where soil, leaf, and yield samples were taken, and the average value of each variable was assigned to each cell. The results indicated that macro- and micronutrient contents in the soil and leaves exhibited spatio-temporal heterogeneity between cells, suggesting that customized coffee tree management practices could be employed. The cell-size sampling strategy identified regions of varying yield over time and associated them with their biennial effect, enabling the identification of profitable areas to direct resource and input management in subsequent seasons. This approach optimized the recommendation of potassium and phosphate fertilizers on farms, demonstrating that localized management is feasible even with low spatial resolution. The cell-size approach proved to be adequate on two coffee farms and can be applied in scenarios with limited resources for high-density sampling, especially for small- and medium-sized farms.
Collapse
Affiliation(s)
- Eudocio Rafael Otavio da Silva
- Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (M.C.F.W.); (J.P.M.)
| | - Thiago Lima da Silva
- Laboratory of Agricultural Machinery and Precision Agriculture (LAMAP), Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo, Brazil;
| | - Marcelo Chan Fu Wei
- Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (M.C.F.W.); (J.P.M.)
| | - Ricardo Augusto de Souza
- Faculty of Civil Engineering, Architecture and Urbanism (FECFAU), State University of Campinas, Campinas 13083-970, São Paulo, Brazil;
| | - José Paulo Molin
- Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; (M.C.F.W.); (J.P.M.)
| |
Collapse
|
2
|
Manson S, Nekaris KAI, Nijman V, Campera M. Effect of shade on biodiversity within coffee farms: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169882. [PMID: 38215842 DOI: 10.1016/j.scitotenv.2024.169882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
Aligning crop production with conservation initiatives has long been a topic of debate, with agricultural intensification threatening biodiversity across the globe. Shade-grown coffee allows farmers to preserve biodiversity by providing viable habitat, but its conservation value remains unclear. In this meta-analysis, we screened existing literature using the PRISMA protocol to compare the effect of three shade intensities on species diversity and individual abundance: sun, low shade (LS) and high shade (HS). Furthermore, we examine differences between taxa, within taxa and between regions to establish which species benefit most from shade and whether these benefits vary dependent on geographical location. Out of 1889 studies, we included 69 studies in the analysis, and performed random-effects meta-analyses and meta-regressions. Overall, we found that species diversity was significantly higher in HS when compared to sun and LS, and species diversity in LS tended to be higher than in sun. In each treatment, the species diversity of birds was higher in the higher shade treatment, i.e., HS and LS. In addition, mammal and epiphyte species diversity was higher in HS when compared to LS. Similarly, studies from Latin America showed significantly higher species diversity and abundance in shaded farms when compared to sun farms. Studies conducted in Africa detailed the opposite relationship, with abundance being significantly higher in less shaded systems, highlighting that land-use strategies must be region-specific. Moving forward, strategies to conserve biodiversity within coffee farms should: 1) account for region-specific variables; 2) end further encroachment; 3) maintain connectivity; and 4) optimise yield through prioritising faunal and floral diversity.
Collapse
Affiliation(s)
- Sophie Manson
- School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - K A I Nekaris
- School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Vincent Nijman
- School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Marco Campera
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| |
Collapse
|
3
|
Dyson K, Nicolau AP, Tenneson K, Francesconi W, Daniels A, Andrich G, Caldas B, Castaño S, de Campos N, Dilger J, Guidotti V, Jaques I, McCullough IM, McDevitt AD, Molina L, Nekorchuk DM, Newberry T, Pereira CL, Perez J, Richards-Dimitrie T, Rivera O, Rodriguez B, Sales N, Tello J, Wespestad C, Zutta B, Saah D. Coupling remote sensing and eDNA to monitor environmental impact: A pilot to quantify the environmental benefits of sustainable agriculture in the Brazilian Amazon. PLoS One 2024; 19:e0289437. [PMID: 38354171 PMCID: PMC10866516 DOI: 10.1371/journal.pone.0289437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Monitoring is essential to ensure that environmental goals are being achieved, including those of sustainable agriculture. Growing interest in environmental monitoring provides an opportunity to improve monitoring practices. Approaches that directly monitor land cover change and biodiversity annually by coupling the wall-to-wall coverage from remote sensing and the site-specific community composition from environmental DNA (eDNA) can provide timely, relevant results for parties interested in the success of sustainable agricultural practices. To ensure that the measured impacts are due to the environmental projects and not exogenous factors, sites where projects have been implemented should be benchmarked against counterfactuals (no project) and control (natural habitat) sites. Results can then be used to calculate diverse sets of indicators customized to monitor different projects. Here, we report on our experience developing and applying one such approach to assess the impact of shaded cocoa projects implemented by the Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA) near São Félix do Xingu, in Pará, Brazil. We used the Continuous Degradation Detection (CODED) and LandTrendr algorithms to create a remote sensing-based assessment of forest disturbance and regeneration, estimate carbon sequestration, and changes in essential habitats. We coupled these remote sensing methods with eDNA analyses using arthropod-targeted primers by collecting soil samples from intervention and counterfactual pasture field sites and a control secondary forest. We used a custom set of indicators from the pilot application of a coupled monitoring framework called TerraBio. Our results suggest that, due to IMAFLORA's shaded cocoa projects, over 400 acres were restored in the intervention area and the community composition of arthropods in shaded cocoa is closer to second-growth forests than that of pastures. In reviewing the coupled approach, we found multiple aspects worked well, and we conclude by presenting multiple lessons learned.
Collapse
Affiliation(s)
- Karen Dyson
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Andréa P. Nicolau
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Karis Tenneson
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Wendy Francesconi
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Amy Daniels
- United States Agency for International Development (USAID), Washington, DC, United States of America
| | - Giulia Andrich
- Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA), Piracicaba, Brazil
| | - Bernardo Caldas
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Silvia Castaño
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Nathanael de Campos
- Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA), Piracicaba, Brazil
| | - John Dilger
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Vinicius Guidotti
- Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA), Piracicaba, Brazil
| | - Iara Jaques
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Ian M. McCullough
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | | | - Luis Molina
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Dawn M. Nekorchuk
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Tom Newberry
- University of Salford, Salford, Manchester, United Kingdom
| | | | - Jorge Perez
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | | | - Ovidio Rivera
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Beatriz Rodriguez
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Naiara Sales
- University of Salford, Salford, Manchester, United Kingdom
| | - Jhon Tello
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Kasarani, Nairobi
| | - Crystal Wespestad
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - Brian Zutta
- Spatial Informatics Group, LLC, Pleasanton, California, United States of America
| | - David Saah
- University of San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Plant Diversity Increased Arthropod Diversity and Crop Yield in Traditional Agroforestry Systems but Has No Effect on Herbivory. SUSTAINABILITY 2022. [DOI: 10.3390/su14052942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Improving agricultural production in response to the increasing food demand remains a major challenge in agroecology. The world has made significant efforts to meet this issue by developing several cultivation techniques, such as the use of chemical fertilizers and arable land conversion into agricultural land. However, most of these techniques have caused a significant loss of biodiversity and ecosystems services. Recent data suggest that biological conservation within and around agroforestry systems are potential solutions that can both reduce biodiversity loss and guarantee crop production. This logic is based on the hypothesis that increasing plant diversity in and around agricultural systems can limit the pest attack rate and increase crop yield. We tested this hypothesis using structural equation modeling on empirical data collected in agroforestry systems around the Pendjari biosphere reserve in West Africa. We measured crop diversity, crop yield, arthropod pest diversity, abundance, the rate of crop herbivory, and the diversity of plants in surrounding natural vegetation in 32 permanent plots. We estimated arthropod diversity and abundance using pitfall traps. We found a direct positive effect for plant diversity and a direct negative effect of arthropod herbivory on crop yield. The diversity of plants in surrounding natural vegetation had a direct positive effect on arthropod pest diversity but a marginal negative direct effect on the rate of crop herbivory. We found no significant direct or indirect effect for crop diversity. Our findings underline the important role of biodiversity conservation in agricultural production improvement. We suggest that the conservation of plant diversity around agroforestry systems may be an effective option to control herbivory damage. Its combination with other pest control techniques may further limit crop depredation and ensure the long-term conservation of wildlife.
Collapse
|