1
|
Zhao Q, Yokomizo S, Perle SJ, Lee YF, Zhou H, Miller MR, Li H, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Optogenetic targeting of cortical astrocytes selectively improves NREM sleep in an Alzheimer's disease mouse model. Sci Rep 2024; 14:23044. [PMID: 39362954 PMCID: PMC11450172 DOI: 10.1038/s41598-024-73082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory impairments and distinct histopathological features such as amyloid-beta (Aβ) accumulations. Alzheimer's patients experience sleep disturbances at early stages of the disease. APPswe/PS1dE9 (APP) mice exhibit sleep disruptions, including reductions in non-rapid eye movement (NREM) sleep, that contribute to their disease progression. In addition, astrocytic calcium transients associated with a sleep-dependent brain rhythm, slow oscillations prevalent during NREM sleep, are disrupted in APP mice. However, at present it is unclear whether restoration of circuit function by targeting astrocytic activity could improve sleep in APP mice. To that end, APP mice expressing channelrhodopsin-2 (ChR2) targeted to astrocytes underwent optogenetic stimulation at the slow oscillation frequency. Optogenetic stimulation of astrocytes significantly increased NREM sleep duration but not duration of rapid eye movement (REM) sleep. Optogenetic treatment increased delta power and reduced sleep fragmentation in APP mice. Thus, optogenetic activation of astrocytes increased sleep quantity and improved sleep quality in an AD mouse model. Astrocytic activity provides a novel therapeutic avenue to pursue for enhancing sleep and slowing AD progression.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Haam J, Gunin S, Wilson L, Fry S, Bernstein B, Thomson E, Noblet H, Cushman J, Yakel JL. Entorhinal cortical delta oscillations drive memory consolidation. Cell Rep 2023; 42:113267. [PMID: 37838945 PMCID: PMC10872950 DOI: 10.1016/j.celrep.2023.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Long-term memories are formed by creating stable memory representations via memory consolidation, which mainly occurs during sleep following the encoding of labile memories in the hippocampus during waking. The entorhinal cortex (EC) has intricate connections with the hippocampus, but its role in memory consolidation is largely unknown. Using cell-type- and input-specific in vivo neural activity recordings, here we show that the temporoammonic pathway neurons in the EC, which directly innervate the output area of the hippocampus, exhibit potent oscillatory activities during anesthesia and sleep. Using in vivo individual and populational neuronal activity recordings, we demonstrate that a subpopulation of the temporoammonic pathway neurons, which we termed sleep cells, generate delta oscillations via hyperpolarization-activated cyclic-nucleotide-gated channels during sleep. The blockade of these oscillations significantly impaired the consolidation of hippocampus-dependent memory. Together, our findings uncover a key driver of delta oscillations and memory consolidation that are found in the EC.
Collapse
Affiliation(s)
- Juhee Haam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - Suman Gunin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Leslie Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Sydney Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Briana Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Eric Thomson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Hayden Noblet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jesse Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
3
|
Bergum N, Berezin CT, King CM, Vigh J. µ-Opioid Receptors Expressed by Intrinsically Photosensitive Retinal Ganglion Cells Contribute to Morphine-Induced Behavioral Sensitization. Int J Mol Sci 2022; 23:15870. [PMID: 36555511 PMCID: PMC9781919 DOI: 10.3390/ijms232415870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Opioid drugs are the most effective tools for treating moderate to severe pain. Despite their analgesic efficacy, long-term opioid use can lead to drug tolerance, addiction, and sleep/wake disturbances. While the link between opioids and sleep/wake problems is well-documented, the mechanism underlying opioid-related sleep/wake problems remains largely unresolved. Importantly, intrinsically photosensitive retinal ganglion cells (ipRGCs), the cells that transmit environmental light/dark information to the brain's sleep/circadian centers to regulate sleep/wake behavior, express μ-opioid receptors (MORs). In this study, we explored the potential contribution of ipRGCs to opioid-related sleep/circadian disruptions. Using implanted telemetry transmitters, we measured changes in horizontal locomotor activity and body temperature in mice over the course of a chronic morphine paradigm. Mice lacking MORs expressed by ipRGCs (McKO) exhibited reduced morphine-induced behavioral activation/sensitization compared with control littermates with normal patterns of MOR expression. Contrastingly, mice lacking MORs globally (MKO) did not acquire morphine-induced locomotor activation/sensitization. Control mice also showed morphine-induced hypothermia in both the light and dark phases, while McKO littermates only exhibited morphine-induced hypothermia in the dark. Interestingly, only control animals appeared to acquire tolerance to morphine's hypothermic effect. Morphine, however, did not acutely decrease the body temperature of MKO mice. These findings support the idea that MORs expressed by ipRGCs could contribute to opioid-related sleep/wake problems and thermoregulatory changes.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Connie M. King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Lee JH, Moon E, Park J, Hong YR, Yoon M. Analysis of ultradian rest-activity rhythms using locomotor activity in mice. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Locomotor activity in mice may have an ultradian rest-activity rhythm. However, to date, no study has shown how locomotor activity can be explained statistically using fitted cosine curves. Therefore, this study explored whether the ultradian rhythm of locomotor activity in mice could be analyzed using cosine fitting analysis.Methods: The locomotor activity of 20 male mice under a 12/12-hour dark/light cycle for 2 days was fitted to a cosine function to obtain the best fit. The mean absolute error (MAE) values were used to determine the explanatory power of the calculated cosine model for locomotor activity. The cosine fitting analysis was performed using R statistical software (version 4.1.1).Results: The mean MAE was 0.2944, whereas the mean MAE for integrating the individual analyses in the two experimental groups was 0.3284. The periods of the estimated ultradian rest-activity rhythm ranged from 1.602 to 4.168 hours. Conclusions: These results suggest that locomotor activity data reflect an ultradian rhythm better than a circadian rhythm. Locomotor activity can be statistically fitted to a cosine curve under well-controlled conditions. In the future, it will be necessary to explore whether this cosine-fitting analysis can be used to analyze ultradian rhythms under different experimental conditions.
Collapse
|
5
|
Lee JH, Moon E, Park J, Oh CE, Hong YR, Yoon M. Optimization of Analysis of Circadian Rest-Activity Rhythm Using Cosinor Analysis in Mice. Psychiatry Investig 2022; 19:380-385. [PMID: 35620823 PMCID: PMC9136527 DOI: 10.30773/pi.2021.0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Data processing in analysis of circadian rhythm was performed in various ways. However, there was a lack of evidence for the optimal analysis of circadian rest-activity rhythm. Therefore, we aimed to perform mathematical simulations of data processing to investigate proper evidence for the optimal analysis of circadian rest-activity rhythm. METHODS Locomotor activities of 20 ICR male mice were measured by infrared motion detectors. The data of locomotor activities was processed using data summation, data average, and data moving average methods for cosinor analysis. Circadian indices were estimated according to time block, respectively. Also, statistical F and p-values were calculated by zero-amplitude test. RESULTS The data moving average result showed well-fitted cosine curves independent of data processing time. Meanwhile, the amplitude, MESOR, and acrophase were properly estimated within 800 seconds in data summation and data average methods. CONCLUSION These findings suggest that data moving average would be an optimal method for data processing in a cosinor analysis and data average within 800-second data processing time might be adaptable. The results of this study can be helpful to analyze circadian restactivity rhythms and integrate the results of the studies using different data processing methods.
Collapse
Affiliation(s)
- Jung Hyun Lee
- Department of Pediatrics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jeonghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chi Eun Oh
- Department of Pediatrics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yoo Rha Hong
- Department of Pediatrics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Min Yoon
- Department of Applied Mathematics, Pukyung National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Schork IG, Manzo IA, De Oliveira MRB, da Costa FV, Young RJ, de Azevedo CS. The cyclic interaction between daytime behavior and the sleep behavior of laboratory dogs. Sci Rep 2022; 12:478. [PMID: 35013533 PMCID: PMC8748904 DOI: 10.1038/s41598-021-04502-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sleep deprivation has been found to negatively affect an individual´s physical and psychological health. Sleep loss affects activity patterns, increases anxiety-like behaviors, decreases cognitive performance and is associated with depressive states. The activity/rest cycle of dogs has been investigated before, but little is known about the effects of sleep loss on the behavior of the species. Dogs are polyphasic sleepers, meaning the behavior is most observed at night, but bouts are also present during the day. However, sleep can vary with ecological and biological factors, such as age, sex, fitness, and even human presence. In this study, kennelled laboratory adult dogs' sleep and diurnal behavior were recorded during 24-h, five-day assessment periods to investigate sleep quality and its effect on daily behavior. In total, 1560 h of data were analyzed, and sleep metrics and diurnal behavior were quantified. The relationship between sleeping patterns and behavior and the effect of age and sex were evaluated using non-parametric statistical tests and GLMM modelling. Dogs in our study slept substantially less than previously reported and presented a modified sleep architecture with fewer awakenings during the night and almost no sleep during the day. Sleep loss increased inactivity, decreased play and alert behaviors, while increased time spent eating during the day. Males appeared to be more affected by sleep fragmentation than females. Different age groups also experienced different effects of sleep loss. Overall, dogs appear to compensate for the lack of sleep during the night by remaining inactive during the day. With further investigations, the relationship between sleep loss and behavior has the potential to be used as a measure of animal welfare.
Collapse
Affiliation(s)
- Ivana Gabriela Schork
- School of Sciences, Engineering and Environment, University of Salford Manchester, Salford, UK
| | - Isabele Aparecida Manzo
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Departamento de Evolução, Biodiversidade e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Marcos Roberto Beiral De Oliveira
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Departamento de Evolução, Biodiversidade e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Fernanda Vieira da Costa
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Departamento de Evolução, Biodiversidade e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Robert John Young
- School of Sciences, Engineering and Environment, University of Salford Manchester, Salford, UK
| | - Cristiano Schetini de Azevedo
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Departamento de Evolução, Biodiversidade e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
7
|
Park J, Jung MS, Moon E, Lim HJ, Oh CE, Lee JH. Prediction of Locomotor Activity by Infrared Motion Detector on Sleep-wake State in Mice. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:303-312. [PMID: 33888659 PMCID: PMC8077046 DOI: 10.9758/cpn.2021.19.2.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 02/02/2023]
Abstract
Objective Behavioral assessments that effectively predict sleep-wake states were tried in animal research. This study aimed to examine the prediction power of an infrared locomotion detector on the sleep-wake states in ICR (Institute Cancer Research) mice. We also explored the influence of the durations and ways of data processing on the prediction power. Methods The locomotor activities of seven male mice in home cages were recorded by infrared detectors. Their sleep-wake states were assessed by video analysis. Using the receiver operating characteristic curve analysis, the cut-off score was determined, then the area under the curve (AUC) values of the infrared motion detector that predicted sleep-wake states were calculated. In order to improve the prediction power, the four ways of data processing on the prediction power were performed by Matlab 2013b. Results In the initial analysis of raw data, the AUC value was 0.785, but it gradually reached to 0.942 after data summation. The simple data averaging and summation among four different methods showed the maximal AUC value. The 10-minute data summation improved sensitivity (0.889) and specificity (0.901) significantly from the baseline value (sensitivity 0.615; specificity 0.936) (p < 0.001). Conclusion This study suggests that the locomotor activity measured by an infrared motion detector might be useful to predict the sleep-wake states in ICR mice. It also revealed that only simple data summation may improve the predictive power. Using daily locomotor activities measured by an infrared motion detector is expected to facilitate animal research related to sleep-wake states.
Collapse
Affiliation(s)
- Jeonghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Min Soo Jung
- Maumpyeonhan Psychiatric Clinic, Changwon, Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Hyun Ju Lim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Chi Eun Oh
- Department of Pediatrics, Kosin University College of Medicine, Busan, Korea
| | - Jung Hyun Lee
- Department of Pediatrics, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
8
|
Singh S, Bermudez-Contreras E, Nazari M, Sutherland RJ, Mohajerani MH. Low-cost solution for rodent home-cage behaviour monitoring. PLoS One 2019; 14:e0220751. [PMID: 31374097 PMCID: PMC6677321 DOI: 10.1371/journal.pone.0220751] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
In the current research on measuring complex behaviours/phenotyping in rodents, most of the experimental design requires the experimenter to remove the animal from its home-cage environment and place it in an unfamiliar apparatus (novel environment). This interaction may influence behaviour, general well-being, and the metabolism of the animal, affecting the phenotypic outcome even if the data collection method is automated. Most of the commercially available solutions for home-cage monitoring are expensive and usually lack the flexibility to be incorporated with existing home-cages. Here we present a low-cost solution for monitoring home-cage behaviour of rodents that can be easily incorporated to practically any available rodent home-cage. To demonstrate the use of our system, we reliably predict the sleep/wake state of mice in their home-cage using only video. We validate these results using hippocampal local field potential (LFP) and electromyography (EMG) data. Our approach provides a low-cost flexible methodology for high-throughput studies of sleep, circadian rhythm and rodent behaviour with minimal experimenter interference.
Collapse
Affiliation(s)
- Surjeet Singh
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Edgar Bermudez-Contreras
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- * E-mail: (RJS); (MHM)
| | - Majid H. Mohajerani
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- * E-mail: (RJS); (MHM)
| |
Collapse
|
9
|
Sourioux M, Bestaven E, Guillaud E, Bertrand S, Cabanas M, Milan L, Mayo W, Garret M, Cazalets JR. 3-D motion capture for long-term tracking of spontaneous locomotor behaviors and circadian sleep/wake rhythms in mouse. J Neurosci Methods 2018; 295:51-57. [PMID: 29197617 DOI: 10.1016/j.jneumeth.2017.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Locomotor activity provides an index of an animal's behavioral state. Here, we report a reliable and cost-effective method that allows long-term (days to months) simultaneous tracking of locomotion in mouse cohorts (here consisting of 24 animals). NEW METHOD The technique is based on a motion capture system used mainly for human movement study. A reflective marker was placed on the head of each mouse using a surgical procedure and labeled animals were returned to their individual home cages. Camera-recorded data of marker displacement resulting from locomotor movements were then analyzed with custom built software. To avoid any data loss, data files were saved every hour and automatically concatenated. Long-term recordings (up to 3 months) with high spatial (<1mm) and temporal (up to 100Hz) resolution of animal movements were obtained. RESULTS The system was validated by analyzing the spontaneous activity of mice from post-natal day 30-90. Daily motor activity increased up to 70days in correspondence with maturational changes in locomotor performance. The recorded actigrams also permitted analysis of circadian and ultradian rhythms in cohort sleep/wake behavior. COMPARISON WITH EXISTING METHOD(S) In contrast to traditional session-based experimental approaches, our technique allows locomotor activity to be recorded with minimal experimenter manipulation, thereby minimizing animal stress. CONCLUSIONS Our method enables the continuous long-term (up to several months) monitoring of tens of animals, generating manageable amounts of data at minimal costs without requiring individual dedicated devices. The actigraphic data collected allows circadian and ultradian analysis of sleep/wake behaviors to be performed.
Collapse
Affiliation(s)
| | | | | | | | | | - Lea Milan
- Université de Bordeaux, CNRS, Bordeaux, France
| | - Willy Mayo
- Université de Bordeaux, CNRS, Bordeaux, France
| | | | | |
Collapse
|
10
|
Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/ electromyogram recordings in mouse sleep studies. Sleep 2014; 37:1383-92. [PMID: 25083019 DOI: 10.5665/sleep.3936] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings. The piezoelectric films detect the animal's movements with high sensitivity and the regularity of the piezo output signal, related to the regular breathing movements characteristic of sleep, serves to automatically determine sleep. Although the system is commercially available (Signal Solutions LLC, Lexington, KY), this is the first statistical validation of various aspects of sleep. DESIGN EEG/EMG and piezo signals were recorded simultaneously during 48 h. SETTING Mouse sleep laboratory. PARTICIPANTS Nine male and nine female CFW outbred mice. INTERVENTIONS EEG/EMG surgery. MEASUREMENTS AND RESULTS The results showed a high correspondence between EEG/EMG-determined and piezo-determined total sleep time and the distribution of sleep over a 48-h baseline recording with 18 mice. Moreover, the piezo system was capable of assessing sleep quality (i.e., sleep consolidation) and interesting observations at transitions to and from rapid eye movement sleep were made that could be exploited in the future to also distinguish the two sleep states. CONCLUSIONS The piezo system proved to be a reliable alternative to electroencephalogram/electromyogram recording in the mouse and will be useful for first-pass, large-scale sleep screens for genetic or pharmacological studies. CITATION Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/electromyogram recordings in mouse sleep studies.
Collapse
Affiliation(s)
- Géraldine M Mang
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Nicod
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Kevin D Donohue
- Electrical and Computer Engineering Department, University of Kentucky, Lexington, KY ; Signal Solutions, LLC, Lexington, KY
| | - Bruce F O'Hara
- Signal Solutions, LLC, Lexington, KY ; Department of Biology, University of Kentucky, Lexington, KY
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, Shigyo T, Oishi K. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci 2014; 111:47-52. [PMID: 25058921 DOI: 10.1016/j.lfs.2014.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 01/03/2023]
Abstract
AIMS We previously reported that heat-killed Lactobacillus brevis SBC8803 enhances appetite via changes in autonomic neurotransmission. Here we assessed whether a diet supplemented with heat-killed SBC8803 affects circadian locomotor rhythmicity and sleep architecture. MAIN METHODS AND KEY FINDINGS Daily total activity gradually increased in mice over 4 weeks and supplementation with heat-killed SBC8803 significantly intensified the increase, which reached saturation at 25 days. Electroencephalography revealed that SBC8803 supplementation significantly reduced the total amount of time spent in non-rapid eye movement (NREM) sleep and increased the amount of time spent being awake during the latter half of the nighttime, but tended to increase the total amount of time spent in NREM sleep during the daytime. Dietary supplementation with SBC8803 can extend the duration of activity during the nighttime and of sleep during the daytime. Daily voluntary wheel-running and sleep rhythmicity become intensified when heat-killed SBC8803 is added to the diet. SIGNIFICANCE Dietary heat-killed SBC8803 can modulate circadian locomotion and sleep rhythms, which might benefit individuals with circadian rhythms that have been disrupted by stress or ageing.
Collapse
Affiliation(s)
- Koyomi Miyazaki
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | - Nanako Itoh
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Saori Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yasukazu Nakakita
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu 325-0013, Japan
| | - Hirotaka Kaneda
- Corporate Planning Department, Sapporo Holdings Ltd., Tokyo 150-8522, Japan
| | - Tatsuro Shigyo
- Frontier Laboratories of Value Creation, Sapporo Breweries Ltd., Yaizu 325-0013, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
12
|
Miyazaki K, Itoh N, Ohyama S, Kadota K, Oishi K. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice. PLoS One 2013; 8:e55452. [PMID: 23383193 PMCID: PMC3559439 DOI: 10.1371/journal.pone.0055452] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/29/2012] [Indexed: 11/21/2022] Open
Abstract
Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact.
Collapse
Affiliation(s)
- Koyomi Miyazaki
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology-AIST, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
13
|
Fisher SP, Godinho SI, Pothecary CA, Hankins MW, Foster RG, Peirson SN. Rapid assessment of sleep-wake behavior in mice. J Biol Rhythms 2012; 27:48-58. [PMID: 22306973 PMCID: PMC4650254 DOI: 10.1177/0748730411431550] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are time-intensive and involve invasive surgery. As such, the dissection of sleep mechanisms and the discovery of novel drugs that modulate sleep would benefit greatly from further development of rapid behavioral assays to assess sleep in animal models. Here is described an automated noninvasive approach to evaluate sleep duration, latency, and fragmentation using video tracking of mice in their home cage. This approach provides a high correlation with EEG/EMG measures under both baseline conditions and following administration of pharmacological agents. Moreover, the dose-dependent effects of sedatives, stimulants, and light can be readily detected. This approach is robust yet relatively inexpensive to implement and can be easily incorporated into ongoing screening programs to provide a powerful first-pass screen for assessing sleep and allied behaviors.
Collapse
Affiliation(s)
| | - Sofia I.H. Godinho
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom
| | - Carina A. Pothecary
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
14
|
Is sleep in animals affected by prior waking experiences? Anim Welf 2010. [DOI: 10.1017/s0962728600001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractMethods to assess changes in the mental state of animals in response to their environment can be used to provide information to enhance animal welfare. One of the most profound changes of mental state observable in mammals is the change between wakefulness and sleep. Sleeping mammals have characteristics that are similar to one another and are measurable, such as specific behaviours, changes in responsiveness to external stimuli and changes in electrophysiology and neurochemistry. Although sleep is a ubiquitous behaviour in the life of mammals, there has been relatively little research on this topic in domesticated animals. All animals are motivated to sleep and this motivation increases after a prolonged period of wakefulness. In humans, sleep can be affected by what has occurred in the prior period of wakefulness and this has also been demonstrated in some non-human mammals. An important aspect of human sleep medicine is the association between stress and subsequent sleep disturbances. Studying changes in amount, bout length, distribution or type of sleep after exposure to potentially stressful events, could help us understand how animals respond to changes in their environment. It is possible that different types of stressors could affect sleep characteristics in different ways and that monitoring and identifying these changes could be useful in providing an additional way of identifying management procedures that have the potential to affect welfare. Sleep measurement is a potentially valuable tool in studies to assess animal welfare.
Collapse
|
15
|
Assessing sleep state in calves through electrophysiological and behavioural recordings: A preliminary study. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2007.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Ganea K, Liebl C, Sterlemann V, Müller MB, Schmidt MV. Pharmacological validation of a novel home cage activity counter in mice. J Neurosci Methods 2007; 162:180-6. [PMID: 17320190 DOI: 10.1016/j.jneumeth.2007.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 11/26/2022]
Abstract
Many behavioural tests in rodents are based on the premise that basal locomotor activity of the animals is similar between the tested groups. The measurement of basal home cage activity is therefore an essential parameter, that should be included in all studies which employ tests of anxiety or cognition. Currently available systems for the assessment of home cage locomotion are often complex and expensive. Here we describe and validate a novel, simple and cost-efficient apparatus for the assessment of basic home cage locomotor activity in rodents. Circadian dark-light activity patterns can be reliably obtained with the home cage activity counter. Furthermore, changes in locomotion induced by novelty or pharmacological treatment were reliably and sensitively detected by the apparatus. Thus, the here presented home cage activity counter can be used for the measurement of basal home cage locomotor activity.
Collapse
Affiliation(s)
- K Ganea
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
Baier PC, Branisa P, Koch R, Schindehütte J, Paulus W, Trenkwalder C. Circadian distribution of motor-activity in unilaterally 6-hydroxy-dopamine lesioned rats. Exp Brain Res 2006; 169:283-8. [PMID: 16432693 DOI: 10.1007/s00221-005-0343-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Sleep abnormalities in idiopathic Parkinson's disease (PD) frequently consist in a reduction of total sleep time and efficacy and subsequent excessive daytime sleepiness. As it remains unclear whether these phenomena are part of the disease itself or result from pharmacological treatment, animal models for investigating the pathophysiology of sleep alterations in PD may add knowledge to this research area. In the present study, we investigate whether changes in circadian motor activity occur in 6-OHDA-lesioning model for PD, and allow a screening for disturbed sleep-waking behaviour. Activity measurements of six male Wistar rats with 6-OHDA-lesions in the medial forebrain bundle and six controls were carried out in two consecutive 12:12 h light-dark (LD) cycles. A computer-based video-analysis system, recording the animals' movement tracks was used. Distance travelled and number of transitions between movement periods and resting periods were determined. Although 6-OHDA-lesioned animals show a reduced locomotor activity compared to non-lesioned rats, the circadian distribution basically remained intact. However, some lesioning effects were more pronounced in the resting phase than in the activity phase, possibly paralleling nocturnal akinesia in PD. In order to further elucidate the described phenomena, it will be necessary to perform studies combining sleep recordings with locomotor activity measurements.
Collapse
Affiliation(s)
- Paul Christian Baier
- Department of Clinical Neurophysiology, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|