1
|
Hao G, Zhang Q, Chen W, Mo J. A novel method for repeated cerebrospinal fluid sampling and long-term monitoring of intracranial pressure in rats. Front Neurosci 2023; 17:1110537. [PMID: 36875649 PMCID: PMC9981959 DOI: 10.3389/fnins.2023.1110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Cannulation implantation into the cisterna magna is an important procedure in cerebrospinal fluid (CSF) sampling and intracranial pressure (ICP) monitoring. The disadvantages of existing techniques include the risk of brain damage, compromised muscle mobility, and the complexity of the procedures. In the present study, the authors describe a modified, simple, and reliable procedure for long-term cannulation implantation into the cisterna magna in rats. The device consists of four parts: the puncture segment, the connection segment, the fixing segment, and the external segment. Intraoperative ICP monitoring and post-operative computed tomography (CT) scans were performed, which confirmed the accuracy and safety of this method. There were no limitations on the daily activities of the rats when long-term drainage was carried out for 1 week. This new technique offers an improved method of cannulation and will be a potentially useful method for CSF sampling and ICP monitoring in neuroscience research.
Collapse
Affiliation(s)
- Guangshan Hao
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China.,Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Qia Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Weiyu Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jun Mo
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China.,International Institutes of Medicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
2
|
Eftekhari S, Westgate CSJ, Uldall MS, Jensen RH. Preclinical update on regulation of intracranial pressure in relation to idiopathic intracranial hypertension. Fluids Barriers CNS 2019; 16:35. [PMID: 31767019 PMCID: PMC6878629 DOI: 10.1186/s12987-019-0155-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Elevated intracranial pressure (ICP) is observed in association with a range of brain disorders. One of these challenging disorders is idiopathic intracranial hypertension (IIH), characterized by raised ICP of unknown cause with significant morbidity and limited therapeutic options. In this review, special focus is put on the preclinical research performed in order to understand the pathophysiology behind ICP regulation and IIH. This includes cerebrospinal fluid dynamics, molecular mechanisms underlying disturbances in brain fluids leading to elevated ICP, role of obesity in IIH, development of an IIH model and ICP measurements in rodents. The review also discusses existing and new drug targets for IIH that have been evaluated in vivo. CONCLUSIONS ICP monitoring in rodents is challenging and different methods have been applied. Some of these methods are invasive, depend on use of anesthesia and only allow short-term monitoring. Long-term ICP recordings are needed to study IIH but existing methods are hampered by several limitations. As obesity is one of the most common risk factors for IIH, a rodent obese model has been developed that mimics some key aspects of IIH. The most commonly used drugs for IIH have been evaluated in vivo for their efficacy at lowering ICP in the existing animal models. These studies suggest these drugs, including acetazolamide, might have limited or no reducing effect on ICP. Two drug targets that can impact ICP in healthy rodents are topiramate and a glucagon-like peptide-1 receptor (GLP-1R) agonist. However, it remains to evaluate their effect in an IIH model with more precise and valid ICP monitoring system. Therefore, continued evaluation in the preclinical research with refined tools is of great importance to further understand the pathophysiology behind disorders with raised ICP and to explore new drug targets.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Maria Schmidt Uldall
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Rigmor Hoejland Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| |
Collapse
|
3
|
Shamsi Meymandi M, Soltani Z, Sepehri G, Amiresmaili S, Farahani F, Moeini Aghtaei M. Effects of pregabalin on brain edema, neurologic and histologic outcomes in experimental traumatic brain injury. Brain Res Bull 2018; 140:169-175. [PMID: 29730418 DOI: 10.1016/j.brainresbull.2018.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brain edema and increased intracranial pressure (ICP) are among the main causes of neurological disturbance and mortality following traumatic brain injury (TBI). Since pregabalin neuroprotective effects have been shown, this study was performed to evaluate the possible neuroprotective effects of pregabalin in experimental TBI of male rats. Adult male Wistar rats were divided into 4 groups: sham, vehicle, pregabalin 30 mg/kg and pregabalin 60 mg/kg. TBI was induced in vehicle and pregabalin groups by Marmarou method. Pregabalin was administered 30 min after TBI. Sham and vehicle groups received saline. Brain water and Evans blue content and histopathological changes were evaluated 24, 5 and 24 h after TBI, respectively. The ICP and neurological outcomes (veterinary coma scale, VCS) were recorded before, 1 h and 24 h post TBI. The results showed a significant reduction in brain water content and ICP, and a significant increase in VCS of pregabalin group (60 mg/kg) as compared to vehicle group (P < 0.05). Also, pregabalin reduced brain edema and apoptosis score as compared to vehicle group. Post TBI pregabalin administration revealed a delayed but significant improvement in ICP and neurological outcomes in experimental TBI. The underlying mechanism(s) was not determined and needs further investigation.
Collapse
Affiliation(s)
- Manzumeh Shamsi Meymandi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Stem Cell Research Center, Kerman School of Medical, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran,; Physiology and Pharmacology Department, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran,.
| | - Gholamreza Sepehri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Farahani
- Physiology and Pharmacology Department, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
4
|
Shen G, Link S, Kumar S, Nusbaum DM, Tse DY, Fu Y, Wu SM, Frankfort BJ. Characterization of Retinal Ganglion Cell and Optic Nerve Phenotypes Caused by Sustained Intracranial Pressure Elevation in Mice. Sci Rep 2018; 8:2856. [PMID: 29434244 PMCID: PMC5809383 DOI: 10.1038/s41598-018-21254-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
Elevated intracranial pressure (ICP) can result in multiple neurologic sequelae including vision loss. Inducible models of ICP elevation are lacking in model organisms, which limits our understanding of the mechanism by which increased ICP impacts the visual system. We adapted a mouse model for the sustained elevation of ICP and tested the hypothesis that elevated ICP impacts the optic nerve and retinal ganglion cells (RGCs). ICP was elevated and maintained for 2 weeks, and resulted in multiple anatomic changes that are consistent with human disease including papilledema, loss of physiologic cupping, and engorgement of the optic nerve head. Elevated ICP caused a loss of RGC somas in the retina and RGC axons within the optic nerve, as well as a reduction in both RGC electrical function and contrast sensitivity. Elevated ICP also caused increased hypoxia-inducible factor (HIF)-1 alpha expression in the ganglion cell layer. These experiments confirm that sustained ICP elevation can be achieved in mice and causes phenotypes that preferentially impact RGCs and are similar to those seen in human disease. With this model, it is possible to model human diseases of elevated ICP such as Idiopathic Intracranial Hypertension and Spaceflight Associated Neuro-ocular Syndrome.
Collapse
Affiliation(s)
- Guofu Shen
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Schuyler Link
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sandeep Kumar
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Derek M Nusbaum
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dennis Y Tse
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Yingbin Fu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Abstract
Traumatic brain injury (TBI) is one of the most common causes of death and disability, and cerebral hypoxia is a frequently occurring harmful secondary event in TBI patients. The hypoxic conditions that occur on the scene of accident, where the airways are often obstructed or breathing is in other ways impaired, could be reproduced using animal TBI models where oxygen delivery is strictly controlled throughout the entire experimental procedure. Monitoring physiological parameters of the animal is of utmost importance in order to maintain an adequate quality of the experiment. Peripheral oxygen saturation, O2 pressure (pO2) in the blood, or fraction of inhaled O2 (FiO2) could be used as goals to validate the hypoxic conditions. Different models of traumatic brain injury could be used to inflict desired injury type, whereas effects then could be studied using radiological, physiological and functional tests. In order to confirm that the brain has been affected by a hypoxic injury, appropriate substances in the affected cerebral tissue, cerebrospinal fluid, or serum should be analyzed.
Collapse
|
6
|
Nusbaum DM, Wu SM, Frankfort BJ. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice. Exp Eye Res 2015; 136:38-44. [PMID: 25912998 DOI: 10.1016/j.exer.2015.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to develop a novel experimental system for the modulation and measurement of intracranial pressure (ICP), and to use this system to assess the impact of elevated ICP on the optic nerve and retinal ganglion cells (RGCs) in CD1 mice. This system involved surgical implantation of an infusion cannula and a radiowave based pressure monitoring probe through the skull and into the subarachnoid space. The infusion cannula was used to increase ICP, which was measured by the probe and transmitted to a nearby receiver. The system provided robust and consistent ICP waveforms, was well tolerated, and was stable over time. ICP was elevated to approximately 30 mmHg for one week, after which we assessed changes in optic nerve structure with transmission electron microscopy in cross section and RGC numbers with antibody staining in retinal flat mounts. ICP elevation resulted in optic nerve axonal loss and disorganization, as well as RGC soma loss. We conclude that the controlled manipulation of ICP in active, awake mice is possible, despite their small size. Furthermore, ICP elevation results in visual system phenotypes of optic nerve and RGC degeneration, suggesting that this model can be used to study the impact of ICP on the visual system. Potentially, this model can also be used to study the relationship between ICP and IOP, as well diseases impacted by ICP variation such as glaucoma, idiopathic intracranial hypertension, and the spaceflight-related visual impairment intracranial pressure syndrome.
Collapse
Affiliation(s)
- Derek M Nusbaum
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin J Frankfort
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Uldall M, Juhler M, Skjolding AD, Kruuse C, Jansen-Olesen I, Jensen R. A novel method for long-term monitoring of intracranial pressure in rats. J Neurosci Methods 2014; 227:1-9. [PMID: 24521617 DOI: 10.1016/j.jneumeth.2014.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In preclinical neurological studies, monitoring intracranial pressure (ICP) in animal models especially in rodents is challenging. Further, the lack of methods for long-term ICP monitoring has limited the possibilities to conduct prolonged studies on ICP fluctuations in parallel to disease progression or therapeutic interventions. For these reasons we aimed to set up a simple and valid method for long-term ICP recordings in rats. NEW METHOD A novel ICP method employing epidural probes was developed and validated by simultaneously ICP recordings in the lateral ventricle and in the epidural space. The two pressures were recorded twice a week for 59 days and the correlation was studied. RESULTS The two pressure recordings correlated exceptionally well and the R(2) values on each recording day ranged between 0.99 and 1.00. However, the ventricular probes caused a number of complications including loss of patency and tissue damage probably due to cerebral infection, whereas the epidural probes were safe and reliable throughout the entire study. COMPARISON WITH EXISTING METHODS Epidural probes are much easier to implant than ventricular probes. In addition, these new probes are far less invasive and induce no apparent mechanical tissue damage and highly decrease the infection risk associated with ICP recordings. CONCLUSION Epidural ICP recorded with this new method is identical to the ventricular ICP for at least 59 days but is far less complicated and safer for the animals. The long-term method described is reliable, valid, inexpensive, and may be used in multiple disease models to study ICP.
Collapse
Affiliation(s)
- Maria Uldall
- Danish Headache Center, Building 24, Department of Neurology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark; Research Institute, Danish Headache Center, Glostrup, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, The National Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Anders Daehli Skjolding
- Department of Neurosurgery, The National Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Christina Kruuse
- Research Institute, Danish Headache Center, Glostrup, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark; Department of Neurology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Building 24, Department of Neurology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark; Research Institute, Danish Headache Center, Glostrup, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Rigmor Jensen
- Danish Headache Center, Building 24, Department of Neurology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark.
| |
Collapse
|
8
|
Lackner P, Vahmjanin A, Hu Q, Krafft PR, Rolland W, Zhang JH. Chronic hydrocephalus after experimental subarachnoid hemorrhage. PLoS One 2013; 8:e69571. [PMID: 23936048 PMCID: PMC3720671 DOI: 10.1371/journal.pone.0069571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
Chronic communicating hydrocephalus is a significant health problem affecting up to 20% of survivors of spontaneous subarachnoid hemorrhage (SAH). The development of new treatment strategies is hampered by the lack of well characterized disease models. This study investigated the incidence of chronic hydrocephalus by evaluating the temporal profile of intracranial pressure (ICP) elevation after SAH, induced by endovascular perforation in rats. Twenty-five adult male Sprague-Dawley rats (260-320 g) were subjected to either endovascular perforation or sham surgery. Five animals died after SAH induction. At 7, 14 and 21 days after surgery ICP was measured by stereotaxic puncture of the cisterna magna in SAH (n=10) and SHAM (n=10) animals. On day 21 T-maze test was performed and the number of alterations and latency to decision was recorded. On day 23, samples were processed for histological analyses. The relative ventricle area was evaluated in coronal Nissl stained sections. On day 7 after surgery all animals showed normal ICP. The absolute ICP values were significantly higher in SAH compared to SHAM animals on day 21 (8.26±4.53 mmHg versus 4.38±0.95 mmHg) but not on day 14. Observing an ICP of 10 mmHg as cut-off, 3 animals showed elevated ICP on day 14 and another animal on day 21. The overall incidence of ICP elevation was 40% in SAH animals. On day 21, results of T-maze testing were significantly correlated with ICP values, i.e. animals with elevated ICP showed a lower number of alterations and a delayed decision. Histology yielded a significantly higher (3.59 fold increased) relative ventricle area in SAH animals with ICP elevation compared to SAH animals without ICP elevation. In conclusion, the current study shows that experimental SAH leads to chronic hydrocephalus, which is associated with ICP elevation, behavioral alterations and ventricular dilation in about 40% of SAH animals.
Collapse
Affiliation(s)
- Peter Lackner
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, United States of America.
| | | | | | | | | | | |
Collapse
|
9
|
Soubeyrand M, Laemmel E, Court C, Dubory A, Vicaut E, Duranteau J. Rat model of spinal cord injury preserving dura mater integrity and allowing measurements of cerebrospinal fluid pressure and spinal cord blood flow. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:1810-9. [PMID: 23508337 DOI: 10.1007/s00586-013-2744-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 01/14/2023]
Abstract
PURPOSES Cerebrospinal fluid (CSF) pressure elevation may worsen spinal cord ischaemia after spinal cord injury (SCI). We developed a rat model to investigate relationships between CSF pressure and spinal cord blood flow (SCBF). METHODS Male Wistar rats had SCI induced at Th10 (n = 7) or a sham operation (n = 10). SCBF was measured using laser-Doppler and CSF pressure via a sacral catheter. Dural integrity was assessed using subdural methylene-blue injection (n = 5) and myelography (n = 5). RESULTS The SCI group had significantly lower SCBF (p < 0.0001) and higher CSF pressure (p < 0.0001) values compared to the sham-operated group. Sixty minutes after SCI or sham operation, CSF pressure was 8.6 ± 0.4 mmHg in the SCI group versus 5.5 ± 0.5 mmHg in the sham-operated group. No dural tears were found after SCI. CONCLUSION Our rat model allows SCBF and CSF pressure measurements after induced SCI. After SCI, CSF pressure significantly increases.
Collapse
Affiliation(s)
- Marc Soubeyrand
- Equipe universitaire 3509 Paris VII-Paris XI-Paris XIII, Microcirculation, Bioénergétique, Inflammation et Insuffisance circulatoire aiguë, Paris Diderot-Paris VII University, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Allingham RR. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci 2012; 53:7328-35. [PMID: 23033392 PMCID: PMC3487489 DOI: 10.1167/iovs.12-10632] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/14/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Intraocular pressure (IOP) fluctuation has recently been identified as a risk factor for glaucoma progression. Further, decreases in intracranial pressure (ICP), with postulated increases in the translaminar pressure gradient across the lamina cribrosa, has been reported in glaucoma patients. We hypothesized that circadian fluctuations in IOP and the translaminar pressure gradient are influenced, at least in part, by central autonomic regulatory neurons within the dorsomedial and perifornical hypothalamus (DMH/PeF). This study examined whether site-directed chemical stimulation of DMH/PeF neurons evoked changes in IOP, ICP, and the translaminar pressure gradient. METHODS The GABA(A) receptor antagonist bicuculline methiodide (BMI) was stereotaxically microinjected into the DMH/PeF region of isoflurane-anesthetized male Sprague-Dawley rats (n = 19). The resulting peripheral cardiovascular (heart rate [HR] and mean arterial pressure [MAP]), IOP, and ICP effects were recorded and alterations in the translaminar pressure gradient calculated. RESULTS Chemical stimulation of DMH/PeF neurons evoked significant increases in HR (+69.3 ± 8.5 beats per minute); MAP (+22.9 ± 1.6 mm Hg); IOP (+7.1 ± 1.9 mm Hg); and ICP (+3.6 ± 0.7 mm Hg) compared with baseline values. However, the peak IOP increase was significantly delayed compared with ICP (28 vs. 4 minutes postinjection), resulting in a dramatic translaminar pressure gradient fluctuation. CONCLUSIONS Chemical stimulation of DMH/PeF neurons evokes substantial increases in IOP, ICP, and the translaminar pressure gradient in the rat model. Given that the DMH/PeF neurons may be a key effector pathway for circadian regulation of autonomic tone by the suprachiasmatic nucleus, these findings will help elucidate novel mechanisms modulating circadian fluctuations in IOP and the translaminar pressure gradient.
Collapse
Affiliation(s)
- Brian C. Samuels
- From the Eugene and Marilyn Glick Eye Institute, the
- Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; the
| | | | | | - Anantha Shekhar
- Stark Neuroscience Research Institute, and the Departments of
- Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; the
- Indiana Clinical Translational Sciences Institute, Indianapolis, Indiana; and the
| | | | | |
Collapse
|
11
|
Jones CF, Lee JHT, Kwon BK, Cripton PA. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury. J Neurosurg Spine 2012; 16:624-35. [DOI: 10.3171/2012.3.spine11970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Spinal cord injury (SCI) often results in considerable permanent neurological impairment, and unfortunately, the successful translation of effective treatments from laboratory models to human patients is lacking. This may be partially attributed to differences in anatomy, physiology, and scale between humans and rodent models. One potentially important difference between the rodent and human spinal cord is the presence of a significant CSF volume within the intrathecal space around the human cord. While the CSF may “cushion” the spinal cord, pressure waves within the CSF at the time of injury may contribute to the extent and severity of the primary injury. The objective of this study was to develop a model of contusion SCI in a miniature pig and establish the feasibility of measuring spinal CSF pressure during injury.
Methods
A custom weight-drop device was used to apply thoracic contusion SCI to 17 Yucatan miniature pigs. Impact load and velocity were measured. Using fiber optic pressure transducers implanted in the thecal sac, CSF pressures resulting from 2 injury severities (caused by 50-g and 100-g weights released from a 50-cm height) were measured.
Results
The median peak impact loads were 54 N and 132 N for the 50-g and 100-g injuries, respectively. At a nominal 100 mm from the injury epicenter, the authors observed a small negative pressure peak (median −4.6 mm Hg [cranial] and −5.8 mm Hg [caudal] for 50 g; −27.6 mm Hg [cranial] and −27.2 mm Hg [caudal] for 100 g) followed by a larger positive pressure peak (median 110.5 mm Hg [cranial] and 77.1 mm Hg [caudal] for 50 g; 88.4 mm Hg [cranial] and 67.2 mm Hg [caudal] for 100 g) relative to the preinjury pressure. There were no significant differences in peak pressure between the 2 injury severities or the caudal and cranial transducer locations.
Conclusions
A new model of contusion SCI was developed to measure spinal CSF pressures during the SCI event. The results suggest that the Yucatan miniature pig is an appropriate model for studying CSF, spinal cord, and dura interactions during injury. With further development and characterization it may be an appropriate in vivo largeanimal model of SCI to answer questions regarding pathological changes, therapeutic safety, or treatment efficacy, particularly where humanlike dimensions and physiology are important.
Collapse
Affiliation(s)
- Claire F. Jones
- 1Orthopaedic and Injury Biomechanics Laboratory, Departments of Mechanical Engineering and Orthopaedics,
- 2International Collaboration on Repair Discoveries, and
| | - Jae H. T. Lee
- 2International Collaboration on Repair Discoveries, and
| | - Brian K. Kwon
- 2International Collaboration on Repair Discoveries, and
- 3Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter A. Cripton
- 1Orthopaedic and Injury Biomechanics Laboratory, Departments of Mechanical Engineering and Orthopaedics,
- 2International Collaboration on Repair Discoveries, and
| |
Collapse
|
12
|
Shahrokhi N, Khaksari M, Soltani Z, Mahmoodi M, Nakhaee N. Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol 2010; 88:414-21. [PMID: 20555409 DOI: 10.1139/y09-126] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have reported that estrogen and progesterone have a neuroprotective effect after traumatic brain injury (TBI); however, the mechanism(s) for this effect have not yet been elucidated. The aim of the present study was to investigate the role of sex steroid hormones on changes in brain edema, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) after TBI in ovariectomized (OVX) rats. In this study, 50 female rats were divided into 5 groups: control (intact), sham, and 3 TBI groups consisting of vehicle, estrogen (1 mg/kg), and progesterone (8 mg/kg). TBI was induced by the Marmarou method, and the hormones were injected i.p. 30 min after TBI. ICP was measured in the spinal cord, and CPP was calculated by subtracting the mean arterial pressure (MAP) from ICP. The results revealed that brain water content after TBI was lower (p < 0.001) in the estrogen and progesterone groups than in the vehicle group. After trauma, ICP was significantly higher in TBI rats (p < 0.001). The ICP in the estrogen and progesterone groups decreased at 4 and 24 h after TBI compared with vehicle (p < 0.001 and p < 0.05, respectively). The CPP in the estrogen and progesterone groups increased after 24 h compared with vehicle (p < 0.001). Also after TBI, the neurological score (veterinary coma scale) was significantly higher than vehicle at 1 h (p < 0.01) and 24 h (p < 0.001) in the group treated with estrogen. In conclusion, pharmacological doses of estrogen and progesterone improved ICP, CPP, and neurological scores after TBI in OVX rats, which implies that these hormones play a neuroprotective role in TBI.
Collapse
Affiliation(s)
- Nader Shahrokhi
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | | | | | | | | |
Collapse
|
13
|
Budgell BS, Bolton PS. Cerebrospinal Fluid Pressure Response to Upper Cervical Vertebral Motion and Displacement in the Anesthetized Rat. J Manipulative Physiol Ther 2010; 33:355-61. [DOI: 10.1016/j.jmpt.2010.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/26/2010] [Accepted: 04/06/2010] [Indexed: 11/27/2022]
|
14
|
Yang X, Chen C, Hu Q, Yan J, Zhou C. Gamma-secretase inhibitor (GSI1) attenuates morphological cerebral vasospasm in 24h after experimental subarachnoid hemorrhage in rats. Neurosci Lett 2009; 469:385-90. [PMID: 20026381 DOI: 10.1016/j.neulet.2009.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/26/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Notch signaling plays an important role in the arteriogenesis. We hypothesized that the Notch inhibitor--gamma-secretase inhibitor (GSI1) exerted its effects on the vasospasm via regulation of NF-kappaB and MMP-9. In this study, 160 male Sprague-Dawley (SD) rats were randomly assigned into four groups: Sham, subarachnoid hemorrhage (SAH), SAH treated with dimethyl sulfoxide (DMSO) and SAH treated with GSI1. After 24h SAH, the mortality, neurological scores, blood-brain barrier permeability and brain water content were examined. The mRNA and protein level of Notch1, the expression and activity of NF-kappaB and MMP-9 were evaluated. Severe morphological vasospasm in the basilar artery was observed in SAH and DMSO treated rats. GSI1 significantly effected on neurological deficits, but not on mortality; significantly reduced morphological vasospasm, blood-brain barrier permeability, brain water content; significantly decreased the protein level of Notch1, NF-kappaB p50 and MMP-9, as well as the DNA-binding activity of NF-kappaB (EMSA) and the activity of MMP-9 (Zymography). These findings suggest that GSI1 plays a critical role in the attenuation of acute cerebral vasospasm, which may provide a novel therapeutic target for cerebral vasospasm after SAH insult.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anatomy and Embryology, Peking University Health Science Center, 38 Xueyuan Rd, Hai Dian Qu, Beijing, 100191, China
| | | | | | | | | |
Collapse
|
15
|
Simultaneous determination of mechanical properties and physiologic parameters in living rat brain. Biomech Model Mechanobiol 2008; 8:415-25. [PMID: 19112584 DOI: 10.1007/s10237-008-0147-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Mechanical properties were determined in living adult rat brain. Reconstructed magnetic resonance images of the rat brain before and after 2 mm compression with a 4.06 mm diameter vinyl screw showed the total volumetric strain was maximal at the site of indentation. The pressure response to stepwise brain compression showed a linear relationship to the point of respiratory compromise. Instrumented indentation was performed on live brain with intact dura using a 4-mm-diameter flat punch indenter to a maximum depth 1.2 mm at loading-unloading rates not exceeding 0.34 N/min and 1.2 mm/min. The calculated elastic modulus showed no consistent change after death. Creep deformation over 15 s was 7.86+/-1.6% in live brain and 27.0+/-0.24% after death. In constant multicycle indentation, displacement from 1st to 10th cycle increased 8.0+/-1.7% in life and 12.9+/-2.8% after death. The results suggest that elastic properties of rat intracranial contents do not change immediately after death, while changes in the viscous properties are substantial. The process of measuring these properties can alter physiological parameters.
Collapse
|
16
|
Li Z, Wang R, Li S, Wei J, Zhang Z, Li G, Dou W, Wei Y, Feng M. Intraventricular pre-treatment with rAAV-VEGF induces intracranial hypertension and aggravates ischemic injury at the early stage of transient focal cerebral ischemia in rats. Neurol Res 2008; 30:868-75. [PMID: 18534058 DOI: 10.1179/174313208x309720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To examine the effects of intraventricular pre-treatment with recombinant adeno-associated virus vectors encoding VEGF (rAAV-VEGF) on early stroke in a rat model of transient middle cerebral artery occlusion (tMCAO). METHODS rAAV-VEGF, rAAV-null or physiologic saline was delivered into the lateral ventricle of 93 Wistar rats, respectively. Eight weeks later, the rats were subjected to tMCAO for 2 hours. During the early stage following ischemic reperfusion, intracranial pressure (ICP) and brain water content were measured to make a correlation analysis, T2-weighted MRI was performed to observe cerebral edema volume, and TTC-derived cerebral infarct volume and modified neurological severity scores (NSS) were determined to evaluate the therapeutic efficacy of rAAV-VEGF in tMCAO. RESULTS Twenty-four hours following tMCAO, the rAAV-VEGF group, with VEGF overexpression in the rats brain, showed a significantly increase in ICP, brain water content and cerebral edema volume compared with two control groups (p<0.05). The ICP significantly correlated with the brain water content in the infarct hemisphere in all three groups during 24 hours following tMCAO (r=0.93, p<0.05). Forty-eight hours following tMCAO, a 1.3-fold larger infarct volume and 1.3-fold higher NSS were observed in the rAAV-VEGF group than both control groups (p<0.05). CONCLUSION Our results indicate that intraventricular rAAV-VEGF pre-treatment can result in deleterious intracranial hypertension and augment secondary ischemic insults at the early stage of tMCAO, and pre-ischemic VEGF gene transfer via intraventricular approach may not be a favorable therapeutic strategy for tMCAO which should be adopted with caution or avoided in experimental stroke.
Collapse
Affiliation(s)
- Zhaojian Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamaguchi M, Jadhav V, Obenaus A, Colohan A, Zhang JH. Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery 2008; 61:1067-75; discussion 1075-6. [PMID: 18091283 DOI: 10.1227/01.neu.0000303203.07866.18] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Neurosurgical procedures can result in brain injury by various means, including direct trauma, hemorrhage, retractor stretch, and electrocautery. This surgically-induced brain injury (SBI) can cause postoperative complications such as brain edema after blood-brain barrier (BBB) disruption. The present study seeks to test a matrix metalloproteinase (MMP) inhibitor for preventing postoperative brain edema and BBB disruption in an in vivo model of surgically-induced brain injury. METHODS A rodent model of SBI was used which involves resection of a part of the right frontal lobe. A total of 89 Sprague-Dawley male rats (weight, 300-350 g) were randomly divided into four groups: 1) SBI with vehicle treatment (0.1% dimethyl sulfoxide), 2) SBI with single treatment of MMP inhibitor-1 (an inhibitor of MMP-9 and MMP-2), 3) SBI treated daily (total 3 times) with MMP inhibitor-1, and 4) sham surgical group. Postoperative assessment at different time periods included evaluation of BBB permeability, brain water content (brain edema), neurological scoring, histology, immunohistochemistry, and zymography for MMP enzymatic activity. Temporal magnetic resonance imaging studies were also performed to assess postoperative edema. RESULTS The results indicate that SBI caused increased brain water content (ipsilateral frontal lobe) and BBB permeability compared with sham animals. Treatment with MMP inhibitor-1 attenuated MMP-9 and MMP-2 activity and decreased brain water content with preservation of the BBB. CONCLUSION Inhibition of MMP-9 and MMP-2 attenuates brain edema and BBB disruption after SBI. The study suggests a potential role for MMP inhibition as preoperative therapy before neurosurgical procedures.
Collapse
Affiliation(s)
- Mitsuo Yamaguchi
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
18
|
Budgell BS, Bolton PS. Cerebrospinal Fluid Pressure in the Anesthetized Rat. J Manipulative Physiol Ther 2007; 30:351-6. [PMID: 17574952 DOI: 10.1016/j.jmpt.2007.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/20/2007] [Accepted: 03/27/2007] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The primary aims of this study were to determine the major frequencies and powers of oscillations in cerebrospinal fluid (CSF) pressure in the anesthetized rat, and determine whether the CSF pressure oscillations correlated with the major oscillation frequencies in the cardiovascular and respiratory systems as proposed by some chiropractic theories. METHODS The cardiac and ventilatory cycles, and CSF pressure were simultaneously recorded during spontaneous and positive-pressure mechanical ventilation in the anesthetized rat. Power spectra were generated from the raw data to identify the major oscillation frequencies in cardiorespiratory and CSF data sets. Entrainment of CSF pressure with ventilation was tested by mechanically pacing the ventilation over a range of frequencies. RESULTS The most powerful oscillation in CSF pressure was coincident with ventilatory chest movement during both spontaneous and mechanically paced ventilation. In 22 of 26 trials, there was also a very weak oscillation in CSF pressure that was entrained to heart rate. In addition, in 21 of 26 trials, it was possible to identify a low-frequency oscillation (<0.25 Hz) in CSF pressure that was coincident with a low-frequency oscillation in the power spectrum of the cardiac cycle. CONCLUSIONS This study suggests oscillations in CSF pressure in the anesthetized rat are entrained to and driven by ventilation. The arterial pulse pressure makes little contribution to oscillations in CSF pressure in the immobile, anesthetized rat. This study provides normative, quantitative data on which to develop studies concerning the effects of vertebral movements and spinal posture on CSF dynamics.
Collapse
Affiliation(s)
- Brian S Budgell
- School of Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
19
|
Jadhav V, Solaroglu I, Obenaus A, Zhang JH. Neuroprotection against surgically induced brain injury. ACTA ACUST UNITED AC 2007; 67:15-20; discussion 20. [PMID: 17210286 PMCID: PMC1852449 DOI: 10.1016/j.surneu.2006.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 07/22/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself because of the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means, including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. METHODS/RESULTS In the present review, we will elaborate upon this surgically induced brain injury and also present a novel animal model to study it. In addition, we will summarize preliminary results obtained by pretreatment with PP1, an Src tyrosine kinase inhibitor reported to have neuroprotective properties in in vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on patient recovery. CONCLUSION This brief review is intended to raise the question of 'neuroprotection against surgically induced brain injury' in the neurosurgical scientific community and stimulate discussions.
Collapse
Affiliation(s)
- Vikram Jadhav
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Ihsan Solaroglu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | | | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
- Division of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
20
|
Ostrowski RP, Colohan ART, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 2005; 25:554-71. [PMID: 15703702 DOI: 10.1038/sj.jcbfm.9600048] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute cerebral ischemia occurs after subarachnoid hemorrhage (SAH) because of increased intracranial pressure (ICP) and decreased cerebral perfusion pressure (CPP). The effect of hyperbaric oxygen (HBO) on physiological and clinical outcomes after SAH, as well as the expressions of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, such as BNIP3 and VEGF was evaluated. Eighty-five male SD rats (300 to 350 g) were randomly assigned to sham, SAH, and SAH+HBO groups. Subarachnoid hemorrhage was induced by endovascular perforation. Cortical cerebral blood flow (CBF), ICP, brain water content, brain swelling, neurologic function, and mortality were assessed. HBO (100% O2, 2.8 ATA for 2 h) was initiated at 1 h after SAH. Rats were sacrificed at 24 h to harvest tissues for Western blot or for histology. Apoptotic morphology accompanied by strong immunostaining of HIF-1alpha, VEGF, and BNIP3 were observed in the hippocampus and the cortex after SAH. Increased expressions of HIF-1alpha, VEGF, and BNIP3 were quantified by Western blot. HBO reduced the expressions of HIF-1alpha, VEGF, and BNIP3, diminished neuronal damage and improved CBF and neurologic function. HBO reduced early brain injury after SAH, probably by inhibition of HIF-1alpha and its target genes, which led to the decrease of apoptosis and preservation of the blood-brain barrier function.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology, Loma Linda University, Loma Linda, California, USA
| | | | | |
Collapse
|