1
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
2
|
Ismailani US, Buchler A, Farber G, Pekošak A, Farber E, MacMullin N, Suuronen EJ, Vasdev N, Beanlands RSB, de Kemp RA, Rotstein BH. Cardiac Sympathetic Positron Emission Tomography Imaging with Meta-[ 18F]Fluorobenzylguanidine is Sensitive to Uptake-1 in Rats. ACS Chem Neurosci 2021; 12:4350-4360. [PMID: 34714061 DOI: 10.1021/acschemneuro.1c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dysfunction of the cardiac sympathetic nervous system contributes to the development of cardiovascular diseases including ischemia, heart failure, and arrhythmias. Molecular imaging probes such as meta-[123I]iodobenzylguanidine have demonstrated the utility of assessing neuronal integrity by targeting norepinephrine transporter (NET, uptake-1). However, current radiotracers can report only on innervation due to suboptimal kinetics and lack sensitivity to NET in rodents, precluding mechanistic studies in these species. The objective of this work was to characterize myocardial sympathetic neuronal uptake mechanisms and kinetics of the positron emission tomography (PET) radiotracer meta-[18F]fluorobenzylguanidine ([18F]mFBG) in rats. Automated synthesis using spirocyclic iodonium(III) ylide radiofluorination produces [18F]mFBG in 24 ± 1% isolated radiochemical yield and 30-95 GBq/μmol molar activity. PET imaging in healthy rats delineated the left ventricle, with monoexponential washout kinetics (kmono = 0.027 ± 0.0026 min-1, Amono = 3.08 ± 0.33 SUV). Ex vivo biodistribution studies revealed tracer retention in the myocardium, while pharmacological treatment with selective NET inhibitor desipramine, nonselective neuronal and extraneuronal uptake-2 inhibitor phenoxybenzamine, and neuronal ablation with neurotoxin 6-hydroxydopamine reduced myocardial retention by 33, 76, and 36%, respectively. Clearance of [18F]mFBG from the myocardium was unaffected by treatment with uptake-1 and uptake-2 inhibitors following peak myocardial activity. These results suggest that myocardial distribution of [18F]mFBG in rats is dependent on both NET and extraneuronal transporters and that limited reuptake to the myocardium occurs. [18F]mFBG may therefore prove useful for imaging intraneuronal dysfunction in small animals.
Collapse
Affiliation(s)
- Uzair S. Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Ariel Buchler
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Gedaliah Farber
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | | | - Eadan Farber
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Nicole MacMullin
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik J. Suuronen
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Rob S. B. Beanlands
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Robert A. de Kemp
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex. Int J Neuropsychopharmacol 2011; 14:1219-32. [PMID: 21208501 PMCID: PMC3117082 DOI: 10.1017/s1461145710001525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabelling for NET and co-localization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 d, 15 mg/kg.d), NET-immunoreactive (ir) axons were significantly less likely to co-localize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI- and vehicle-treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labelling. Our findings encourage consideration of possible post-translational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance.
Collapse
|
4
|
Zhao Z, Baros AM, Zhang HT, Lapiz MDS, Bondi CO, Morilak DA, O’Donnell JM. Norepinephrine transporter regulation mediates the long-term behavioral effects of the antidepressant desipramine. Neuropsychopharmacology 2008; 33:3190-200. [PMID: 18418364 PMCID: PMC2727688 DOI: 10.1038/npp.2008.45] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The relationship between the ability of repeated desipramine treatment to cause downregulation of the norepinephrine transporter (NET) and produce antidepressant-like effects on behavior was determined. Treatment of rats with 15 mg/kg per day desipramine reduced NET expression, measured by (3)H-nisoxetine binding and SDS-PAGE/immunoblotting, in cerebral cortex and hippocampus and reduced the time of immobility in the forced-swim test. The antidepressant-like effect on forced-swim behavior was evident 2 days following discontinuation of desipramine treatment when plasma and brain levels of desipramine and its major metabolite desmethyldesipramine were not detectable. Reduced NET expression resulted in reduced norepinephrine uptake, measured in vitro, and increased noradrenergic neurotransmission, measured in vivo using microdialysis. Overall, the dose-response and time-of-recovery relationships for altered NET expression matched those for production of antidepressant-like effects on behavior. The importance of increased noradrenergic neurotransmission in the persistent antidepressant-like effect on behavior was confirmed by demonstrating that it was blocked by inhibition of catecholamine synthesis with alpha-methyl-p-tyrosine. The present results suggest an important role for NET regulation in the long-term behavioral effects of desipramine and are consistent with clinical data suggesting that enhanced noradrenergic neurotransmission is necessary, but not sufficient, for its antidepressant actions. Understanding the mechanisms underlying NET regulation in vivo may suggest novel targets for therapeutic intervention in the treatment of depression.
Collapse
Affiliation(s)
- Zaorui Zhao
- Graduate Program in Pharmaceutical and Pharmacological Sciences, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| | - Alicia M Baros
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, WV, USA,Department of Neurobiology and Anatomy, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - M Danet S Lapiz
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Corina O Bondi
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James M O’Donnell
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, WV, USA,Department of Neurobiology and Anatomy, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
5
|
In vivo effect of antidepressants on [3H]paroxetine binding to serotonin transporters in rat brain. Neurochem Res 2008; 33:2250-6. [PMID: 18437564 DOI: 10.1007/s11064-008-9703-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Amine transporters are major target for development of various pharmacological agents to treat behavioral disorders. Serotonin transporters (SERT) have been implicated in the etiology of depression and drugs acting on SERT can be effective in treating depression. The aim of the present study was to study the in vivo effect of various antidepressants on [(3)H]paroxetine binding to SERT in regions of rat brain. Rats were treated with tricyclic antidepressant (TCAs) such as amitriptyline (AMI), serotonin/norepinephrine reuptake inhibitor (SNRIs) such as clomipramine (CMI), and selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLX) and citalopram (CIT) (10 mg/kg body wt.) for 30 days. Density of SERT was measured in cortex and hippocampus using [(3)H]paroxetine (0.03-1.0 nM) in presence and absence of 10 muM fluoxetine as displacer. It was observed that the density of cortical SERT was significantly decreased with CMI (68%, P < 0.0001), FLX (67%, P < 0.0001), CIT (54%, P < 0.0001), and AMI (52%, P < 0.0001) treatment, when compared to the density of 120.7 +/- 4.0 fmol/mg protein in control rats, without altering the affinity (Kd) of [(3)H]paroxetine to the transporters. The density of SERT in hippocampus was also significantly decreased with FLX (65%, P < 0.0001), CMI (54%, P < 0.0001), CIT (52%, P < 0.0001) and AMI (46%, P < 0.0001) treatment, when compared to the density of 74.0 +/- 2.6 fmol/mg protein in control rats, without altering the affinity of [(3)H]paroxetine to the transporters. Displacement study showed high affinity for CMI > CIT > FLX. The results suggest that chronic antidepressant treatment significantly down-regulates both cortical and hippocampal SERT in rat brain and SSRIs have high affinity for SERT than TCAs.
Collapse
|
6
|
Gould GG, Javors MA, Frazer A. Effect of chronic administration of duloxetine on serotonin and norepinephrine transporter binding sites in rat brain. Biol Psychiatry 2007; 61:210-5. [PMID: 16650830 DOI: 10.1016/j.biopsych.2006.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 02/28/2006] [Accepted: 03/06/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic treatment of rats with certain selective serotonin or norepinephrine reuptake inhibitors produces significant decreases, respectively, in serotonin and norepinephrine transporter binding sites in brain. Duloxetine may be a dual serotonin/norepinephrine reuptake inhibitor, as it is only a slightly more potent inhibitor of serotonin than norepinephrine uptake in vitro. Consequently, we hypothesized that chronic duloxetine treatment, at doses producing serum levels within its therapeutic range, would affect both monoamine transporters dose-dependently, with a higher dose causing greater reductions of binding sites for both transporters. METHODS Rats were treated with either 4 or 8 mg/kg/d of duloxetine, paroxetine, desipramine, or vehicle via subcutaneous osmotic minipumps for 21 days. Binding sites for serotonin and norepinephrine transporters were measured in amygdala and hippocampus using quantitative autoradiography. RESULTS Both doses of duloxetine and paroxetine produced equivalent and significant decreases in [3H] cyanoimipramine binding to serotonin transporters, but only desipramine treatment significantly reduced [3H] nisoxetine binding to norepinephrine transporters. CONCLUSIONS At doses producing rat serum concentrations in the range achieved in patients at recommended daily doses of the drug, duloxetine behaves in vivo more as a selective serotonin reuptake inhibitor than a dual reuptake inhibitor in its capacity to selectively reduce serotonin transporter density.
Collapse
Affiliation(s)
- Georgianna G Gould
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
7
|
Abstract
Pheochromocytomas are rare neuroendocrine tumors of chromaffin cell origin that synthesize and secrete excess quantities of catecholamines and other vasoactive peptides. Pheochromocytomas also express the norepinephrine transporter (NET), a molecule that is used clinically as a means of incorporating radiolabelled substrates such as 131I-MIBG (iodo-metaiodobenzylguanidine) into pheochromocytoma tumor cells. This allows the diagnostic localization of these tumors and, more recently, 131I-MIBG has been used in trials in the treatment of pheochromocytoma, potentially giving rise to NET as a therapeutic target. However, because of varying levels or activities of the transporter, the ability of 131I-MIBG to be consistently incorporated into tumor cells is limited, and therefore various strategies to increase NET functional activity are being investigated, including the use of traditional chemotherapeutic agents such as cisplatin or doxorubicin. Other aspects of NET discussed in this short review include the regulation of the transporter and how novel protein-protein interactions between NET and structures such as syntaxin 1A may hold the key to innovative ways to increase the therapeutic value of 131I-MIBG.
Collapse
Affiliation(s)
- Susannah Cleary
- Division of Health Sciences, Murdoch University, South Street, MURDOCH, 6150, Perth, Western Australia, Australia
| | | |
Collapse
|
8
|
Dziedzicka-Wasylewska M, Faron-Górecka A, Kuśmider M, Drozdowska E, Rogóz Z, Siwanowicz J, Caron MG, Bönisch H. Effect of antidepressant drugs in mice lacking the norepinephrine transporter. Neuropsychopharmacology 2006; 31:2424-32. [PMID: 16554743 DOI: 10.1038/sj.npp.1301064] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the main theories concerning the mechanism of action of antidepressant drugs (ADs) is based on the notion that the neurochemical background of depression involves an impairment of central noradrenergic transmission with a concomitant decrease of the norepinephrine (NE) in the synaptic gap. Many ADs increase synaptic NE availability by inhibition of the reuptake of NE. Using mice lacking NE transporter (NET-/-) we examined their baseline phenotype as well as the response in the forced swim test (FST) and in the tail suspension test (TST) upon treatment with ADs that display different pharmacological profiles. In both tests, the NET-/- mice behaved like wild-type (WT) mice acutely treated with ADs. Autoradiographic studies showed decreased binding of the beta-adrenergic ligand [3H]CGP12177 in the cerebral cortex of NET-/- mice, indicating the changes at the level of beta-adrenergic receptors similar to those obtained with ADs treatment. The binding of [3H]prazosin to alpha1-adrenergic receptors in the cerebral cortex of NET-/- mice was also decreased, most probably as an adaptive response to the sustained elevation of extracellular NE levels observed in these mice. A pronounced NET knockout-induced shortening of the immobility time in the TST (by ca 50%) compared to WT mice was not reduced any further by NET-inhibiting ADs such as reboxetine, desipramine, and imipramine. Citalopram, which is devoid of affinity for the NET, exerted a significant reduction of immobility time in the NET-/- mice. In the FST, reboxetine, desipramine, imipramine, and citalopram administered acutely did not reduce any further the immobility time shortened by NET knockout itself (ca 25%); however, antidepressant-like action of repeatedly (7 days) administered desipramine was observed in NET-/- mice, indicating that the chronic presence of this drug may also affect other neurochemical targets involved in the behavioral reactions monitored by this test. From the present study, it may be concluded that mice lacking the NET may represent a good model of some aspects of depression-resistant behavior, paralleled with alterations in the expression of adrenergic receptors, which result as an adaptation to elevated levels of extracellular NE.
Collapse
|
9
|
Abstract
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.
Collapse
Affiliation(s)
- H Bönisch
- Department of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, 53115 Bonn, Germany.
| | | |
Collapse
|
10
|
Abstract
For many years, the norepinephrine transporter (NET) was considered a 'static' protein that contributed to the termination of the action of norepinephrine in the synapse of noradrenergic neurons. The concept that the NET is dynamically regulated, adjusting noradrenergic transmission by changing its function and/or expression, was considered initially in the mid 1980s. Since that time, a plethora of studies demonstrate that the NET is regulated by several intracellular and extracellular signaling molecules, and that phosphorylation of the NET is a major pathway regulating its cell surface expression and thereby its function. The NET is a target of action of a number of drugs that are used long-term therapeutically or abused chronically. This has driven numerous investigations of how the NET and its function are regulated by long-term exposure to drugs. While repeated exposure to many drugs has been shown to affect NET function and expression, the intracellular mechanisms for these effects remains elusive.
Collapse
Affiliation(s)
- Prashant Mandela
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, USA
| | | |
Collapse
|