1
|
Suresh J, Saddler M, Bindokas V, Bhansali A, Pesce L, Wang J, Marks J, van Drongelen W. Emerging Activity Patterns and Synaptogenesis in Dissociated Hippocampal Cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541345. [PMID: 37292953 PMCID: PMC10245748 DOI: 10.1101/2023.05.18.541345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cultures of dissociated hippocampal neurons display a stereotypical development of network activity patterns within the first three weeks of maturation. During this process, network connections develop and the associated spiking patterns range from increasing levels of activity in the first two weeks to regular bursting activity in the third week of maturation. Characterization of network structure is important to examine the mechanisms underlying the emergent functional organization of neural circuits. To accomplish this, confocal microscopy techniques have been used and several automated synapse quantification algorithms based on (co)localization of synaptic structures have been proposed recently. However, these approaches suffer from the arbitrary nature of intensity thresholding and the lack of correction for random-chance colocalization. To address this problem, we developed and validated an automated synapse quantification algorithm that requires minimal operator intervention. Next, we applied our approach to quantify excitatory and inhibitory synaptogenesis using confocal images of dissociated hippocampal neuronal cultures captured at 5, 8, 14 and 20 days in vitro, the time period associated with the development of distinct neuronal activity patterns. As expected, we found that synaptic density increased with maturation, coinciding with increasing spiking activity in the network. Interestingly, the third week of the maturation exhibited a reduction in excitatory synaptic density suggestive of synaptic pruning that coincided with the emergence of regular bursting activity in the network.
Collapse
Affiliation(s)
- Jyothsna Suresh
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Saddler
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Vytas Bindokas
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Anita Bhansali
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Lorenzo Pesce
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Janice Wang
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Jeremy Marks
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Computational Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Fogarty MJ, Hammond LA, Kanjhan R, Bellingham MC, Noakes PG. A method for the three-dimensional reconstruction of Neurobiotin™-filled neurons and the location of their synaptic inputs. Front Neural Circuits 2013; 7:153. [PMID: 24101895 PMCID: PMC3787200 DOI: 10.3389/fncir.2013.00153] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/12/2013] [Indexed: 12/15/2022] Open
Abstract
Here, we describe a robust method for mapping the number and type of neuro-chemically distinct synaptic inputs that a single reconstructed neuron receives. We have used individual hypoglossal motor neurons filled with Neurobiotin by semi-loose seal electroporation in thick brainstem slices. These filled motor neurons were then processed for excitatory and inhibitory synaptic inputs, using immunohistochemical-labeling procedures. For excitatory synapses, we used anti-VGLUT2 to locate glutamatergic pre-synaptic terminals and anti-PSD-95 to locate post-synaptic specializations on and within the surface of these filled motor neurons. For inhibitory synapses, we used anti-VGAT to locate GABAergic pre-synaptic terminals and anti-GABA-A receptor subunit α1 to locate the post-synaptic domain. The Neurobiotin-filled and immuno-labeled motor neuron was then processed for optical sectioning using confocal microscopy. The morphology of the motor neuron including its dendritic tree and the distribution of excitatory and inhibitory synapses were then determined by three-dimensional reconstruction using IMARIS software (Bitplane). Using surface rendering, fluorescence thresholding, and masking of unwanted immuno-labeling, tools found in IMARIS, we were able to obtain an accurate 3D structure of an individual neuron including the number and location of its glutamatergic and GABAergic synaptic inputs. The power of this method allows for a rapid morphological confirmation of the post-synaptic responses recorded by patch-clamp prior to Neurobiotin filling. Finally, we show that this method can be adapted to super-resolution microscopy techniques, which will enhance its applicability to the study of neural circuits at the level of synapses.
Collapse
Affiliation(s)
- Matthew J Fogarty
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | | | | | | | | |
Collapse
|
3
|
Kuehn C, Duch C. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 2013; 37:860-75. [PMID: 23279094 PMCID: PMC3604049 DOI: 10.1111/ejn.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022]
Abstract
Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.
Collapse
Affiliation(s)
- Claudia Kuehn
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
4
|
Andrew DR, Brown SM, Strausfeld NJ. The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems. J Comp Neurol 2012; 520:3446-70. [DOI: 10.1002/cne.23099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 2011; 31:9683-95. [PMID: 21715634 DOI: 10.1523/jneurosci.6040-10.2011] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A network of interconnected limbic forebrain cell groups, including the medial prefrontal cortex (mPFC) and hippocampal formation (HF), is known to shape adaptive responses to emotionally stressful experiences, including output of the hypothalamo-pituitary-adrenal (HPA) axis. While disruption of limbic HPA-inhibitory systems is implicated in stress-related psychiatric and systemic illnesses, progress in the field has been hampered by a lack of a systems-level understanding of the organization that provides for this regulation. Using rats, we first localized cell groups afferent to the paraventricular hypothalamic nucleus (PVH) (the initiator of HPA responses to stress) whose engagement following acute (30 min) restraint was diminished by excitotoxin lesions of the ventral subiculum, a component of the HF. This identified a candidate relay for imparting HF influences in a circumscribed portion of the anterior bed nucleus of the stria terminalis (aBST), which we previously identified as a GABAergic relay subserving mPFC inhibition of the stress axis. Anatomical tracing experiments then indicated that extrinsic projections from HF and mPFC converge onto regions of aBST that contain neurons that are both stress sensitive and PVH projecting. Two final experiments provided evidence that (1) HPA-inhibitory influences of mPFC and HF are additive and (2) aBST plays a more prominent inhibitory role than ventral subiculum over stress-induced HPA endpoints. These findings support the view that stress-inhibitory influences of mPFC and HF are exerted principally via convergence onto a common relay, as opposed to a serial, parallel, or more complex multisynaptic network.
Collapse
|
6
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
7
|
Laramée ME, Kurotani T, Rockland KS, Bronchti G, Boire D. Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation. Eur J Neurosci 2011; 34:65-78. [PMID: 21676038 DOI: 10.1111/j.1460-9568.2011.07732.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Visual cortical areas are activated by auditory stimuli in blind mice. Direct heteromodal cortical connections have been shown between the primary auditory cortex (A1) and primary visual cortex (V1), and between A1 and secondary visual cortex (V2). Auditory afferents to V2 terminate in close proximity to neurons that project to V1, and potentially constitute an effective indirect pathway between A1 and V1. In this study, we injected a retrograde adenoviral vector that expresses enhanced green fluorescent protein under a synapsin promotor in V1 and biotinylated dextran amine as an anterograde tracer in A1 to determine: (i) whether A1 axon terminals establish synaptic contacts onto the lateral part of V2 (V2L) neurons that project to V1; and (ii) if this indirect cortical pathway is altered by a neonatal enucleation in mice. Complete dendritic arbors of layer V pyramidal neurons were reconstructed in 3D, and putative contacts between pre-synaptic auditory inputs and postsynaptic visual neurons were analysed using a laser-scanning confocal microscope. Putative synaptic contacts were classified as high-confidence and low-confidence contacts, and charted onto dendritic trees. As all reconstructed layer V pyramidal neurons received auditory inputs by these criteria, we conclude that V2L acts as an important relay between A1 and V1. Auditory inputs are preferentially located onto lower branch order dendrites in enucleated mice. Also, V2L neurons are subject to morphological reorganizations in both apical and basal dendrites after the loss of vision. The A1-V2L-V1 pathway could be involved in multisensory processing and contribute to the auditory activation of the occipital cortex in the blind rodent.
Collapse
Affiliation(s)
- M E Laramée
- Groupe de Recherche en Neurosciences, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | | | | |
Collapse
|
8
|
Rybak J, Kuß A, Lamecker H, Zachow S, Hege HC, Lienhard M, Singer J, Neubert K, Menzel R. The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System. Front Syst Neurosci 2010; 4:30. [PMID: 20827403 PMCID: PMC2935790 DOI: 10.3389/fnsys.2010.00030] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 06/16/2010] [Indexed: 11/13/2022] Open
Abstract
The honeybee standard brain (HSB) serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/). The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1) The reconstruction of the neuron, facilitated by an automatic extraction of the neuron's skeleton based on threshold segmentation, and (2) the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2) to the reconstructed neurons of step (1). The most critical issue of this protocol in terms of user interaction time - the segmentation process - is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM) allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology). Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations.
Collapse
Affiliation(s)
- Jürgen Rybak
- Institute for Biology – Neurobiology, Free University BerlinBerlin, Germany
- Max Planck Institute for Chemical EcologyJena, Germany
| | - Anja Kuß
- Zuse Institute BerlinBerlin, Germany
| | | | | | | | | | - Jochen Singer
- Institute for Biology – Neurobiology, Free University BerlinBerlin, Germany
| | | | - Randolf Menzel
- Institute for Biology – Neurobiology, Free University BerlinBerlin, Germany
| |
Collapse
|
9
|
Warner CE, Goldshmit Y, Bourne JA. Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei. Front Neuroanat 2010; 4:8. [PMID: 20179789 PMCID: PMC2826187 DOI: 10.3389/neuro.05.008.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/25/2010] [Indexed: 11/13/2022] Open
Abstract
Considerable debate continues regarding thalamic inputs to the middle temporal area (MT) of the visual cortex that bypass the primary visual cortex (V1) and the role they might have in the residual visual capability following a lesion of V1. Two specific retinothalamic projections to area MT have been speculated to relay through the medial portion of the inferior pulvinar nucleus (PIm) and the koniocellular layers of the dorsal lateral geniculate nucleus (LGN). Although a number of studies have demonstrated retinal inputs to regions of the thalamus where relays to area MT have been observed, the relationship between the retinal terminals and area MT relay cells has not been established. Here we examined direct retino-recipient regions of the marmoset monkey (Callithrix jacchus) pulvinar nucleus and the LGN following binocular injections of anterograde tracer, as well as area MT relay cells in these nuclei by injection of retrograde tracer into area MT. Retinal afferents were shown to synapse with area MT relay cells as demonstrated by colocalization with the presynaptic vesicle membrane protein synaptophysin. We also established the presence of direct synapes of retinal afferents on area MT relay cells within the PIm, as well as the koniocellular K1 and K3 layers of the LGN, thereby corroborating the existence of two disynaptic pathways from the retina to area MT that bypass V1.
Collapse
Affiliation(s)
- Claire E Warner
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Clayton, Victoria, Australia
| | | | | |
Collapse
|
10
|
Meseke M, Evers JF, Duch C. Developmental changes in dendritic shape and synapse location tune single-neuron computations to changing behavioral functions. J Neurophysiol 2009; 102:41-58. [PMID: 19386754 DOI: 10.1152/jn.90899.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During nervous system development, different classes of neurons obtain different dendritic architectures, each of which receives a large number of input synapses. However, it is not clear whether synaptic inputs are targeted to specific regions within a dendritic tree and whether dendritic tree geometry and subdendritic synapse distributions might be optimized to support proper neuronal input-output computations. This study uses an insect model where structure and function of an individually identifiable neuron, motoneuron 5 (MN5), are changed while it develops from a slow larval crawling into a fast adult flight motoneuron during metamorphosis. This allows for relating postembryonic dendritic remodeling of an individual motoneuron to developmental changes in behavioral function. Dendritic architecture of MN5 is analyzed by three-dimensional geometric reconstructions and quantitative co-localization analysis to address the distribution of synaptic terminals. Postembryonic development of MN5 comprises distinct changes in dendritic shape and in the subdendritic distribution of GABAergic input synapses onto MN5. Subdendritic synapse targeting is not a consequence of neuropil structure but must rely on specific subdendritic recognition mechanisms. Passive multicompartment simulations indicate that postembryonic changes in dendritic architecture and in subdendritic input synapse distributions may tune the passive computational properties of MN5 toward stage-specific behavioral requirements.
Collapse
Affiliation(s)
- Maurice Meseke
- School of Life Sciences, Arizona State University, Tempe AZ 85287, USA
| | | | | |
Collapse
|
11
|
Meseke M, Evers JF, Duch C. PTX-induced hyperexcitability affects dendritic shape and GABAergic synapse density but not synapse distribution during Manduca postembryonic motoneuron development. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:473-89. [PMID: 19252912 DOI: 10.1007/s00359-009-0425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 02/02/2023]
Abstract
During the metamorphosis of the holometabolous insect, Manduca sexta, the postembryonic acquisition of adult specific motor behaviors is accompanied by changes in dendritic architecture, membrane currents, and input synapses of identified motoneurons. This study aims to test whether increased activity affects dendritic architecture and sub-dendritic input synapse distribution of the identified flight motoneuron 5 (MN5). Systemic injections of the chloride channel blocker, picrotoxin (PTX), during early pupal stages increase pupal reflex responsiveness, but overall development is not impaired. MN5 input resistance, resting membrane potential, and spiking threshold are not affected. Bath application of PTX to isolated ventral nerve cords evokes spiking in pupal and adult flight motoneurons. Quantitative three-dimensional reconstructions of the dendritic tree of the adult MN5 show that systemic PTX injections into early pupae cause dendritic overgrowth and reduce the density of GABAergic inputs. In contrast, the distribution patterns of GABAergic terminals throughout the dendritic tree remain unaltered. This indicates that increased overall excitability might cause dendritic overgrowth and decreased inhibitory input during postembryonic motoneuron remodeling, whereas sub-dendritic synapse targeting might be controlled by activity-independent signals. Behavioral testing reveals that these neuronal changes do not impede the animal's ability to fly, but impair maximum flight performance.
Collapse
Affiliation(s)
- Maurice Meseke
- Institute of Biology, Free University of Berlin, Berlin, 14195, Germany
| | | | | |
Collapse
|