1
|
Pál B. Recording of Age-Related Changes on Murine and Human Brain Slices. Methods Mol Biol 2025; 2857:147-158. [PMID: 39348063 DOI: 10.1007/978-1-0716-4128-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Preparation of brain slices for electrophysiological and imaging experiments has been developed several decades ago, and the method is still widely used due to its simplicity and advantages over other techniques. It can be easily combined with other well established and recently developed methods as immunohistochemistry and morphological analysis or opto- and chemogenetics. Several aspects of this technique are covered by a plethora of excellent and detailed review papers, in which one can gain a deep insight of variations in it. In this chapter, I briefly describe the solutions, equipment, and preparation techniques routinely used in our laboratory. I also aim to present how certain "old school" brain slice lab devices can be made in a cost-efficient way. These devices can be easily adapted for the special needs of the experiments. I also aim to present some differences in the preparatory techniques of acutely isolated human brain tissue.
Collapse
Affiliation(s)
- Balázs Pál
- Faculty of Medicine, Department of Physiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
2
|
Shinotsuka T, Tanaka YR, Terada SI, Hatano N, Matsuzaki M. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement. J Neurosci 2023; 43:7130-7148. [PMID: 37699714 PMCID: PMC10601372 DOI: 10.1523/jneurosci.0428-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
The primary motor cortex (M1) and the dorsal striatum play a critical role in motor learning and the retention of learned behaviors. Motor representations of corticostriatal ensembles emerge during motor learning. In the coordinated reorganization of M1 and the dorsal striatum for motor learning, layer 5a (L5a) which connects M1 to the ipsilateral and contralateral dorsal striatum, should be a key layer. Although M1 L5a neurons represent movement-related activity in the late stage of learning, it is unclear whether the activity is retained as a memory engram. Here, using Tlx3-Cre male transgenic mice, we conducted two-photon calcium imaging of striatum-projecting L5a intratelencephalic (IT) neurons in forelimb M1 during late sessions of a self-initiated lever-pull task and in sessions after 6 d of nontraining following the late sessions. We found that trained male animals exhibited stable motor performance before and after the nontraining days. At the same time, we found that M1 L5a IT neurons strongly represented the well-learned forelimb movement but not uninstructed orofacial movements. A subset of M1 L5a IT neurons consistently coded the well-learned forelimb movement before and after the nontraining days. Inactivation of M1 IT neurons after learning impaired task performance when the lever was made heavier or when the target range of the pull distance was narrowed. These results suggest that a subset of M1 L5a IT neurons continuously represent skilled movement after learning and serve to fine-tune the kinematics of well-learned movement.SIGNIFICANCE STATEMENT Motor memory persists even when it is not used for a while. IT neurons in L5a of the M1 gradually come to represent skilled forelimb movements during motor learning. However, it remains to be determined whether these changes persist over a long period and how these neurons contribute to skilled movements. Here, we show that a subset of M1 L5a IT neurons retain information for skilled forelimb movements even after nontraining days. Furthermore, suppressing the activity of these neurons during skilled forelimb movements impaired behavioral stability and adaptability. Our results suggest the importance of M1 L5a IT neurons for tuning skilled forelimb movements over a long period.
Collapse
Affiliation(s)
- Takanori Shinotsuka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhiro R Tanaka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Natsuki Hatano
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Pavón Arocas O, Branco T. Preparation of acute midbrain slices containing the superior colliculus and periaqueductal Gray for patch-clamp recordings. PLoS One 2022; 17:e0271832. [PMID: 35951507 PMCID: PMC9371254 DOI: 10.1371/journal.pone.0271832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
This protocol is a practical guide for preparing acute coronal slices from the midbrain of young adult mice for electrophysiology experiments. It describes two different sets of solutions with their respective incubation strategies and two alternative procedures for brain extraction: decapitation under terminal isoflurane anaesthesia and intracardial perfusion with artificial cerebrospinal fluid under terminal isoflurane anaesthesia. Slices can be prepared from wild-type mice as well as from mice that have been genetically modified or transfected with viral constructs to label subsets of cells. The preparation can be used to investigate the electrophysiological properties of midbrain neurons in combination with pharmacology, opto- and chemogenetic manipulations, and calcium imaging; which can be followed by morphological reconstruction, immunohistochemistry, or single-cell transcriptomics. The protocol also provides a detailed list of materials and reagents including the design for a low-cost and easy to assemble 3D printed slice recovery chamber, general advice for troubleshooting common issues leading to suboptimal slice quality, and some suggestions to ensure good maintenance of a patch-clamp rig.
Collapse
Affiliation(s)
- Oriol Pavón Arocas
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| |
Collapse
|
4
|
Lado WE, Xu X, Hablitz JJ. Modulation of Epileptiform Activity by Three Subgroups of GABAergic Interneurons in Mouse Somatosensory Cortex. Epilepsy Res 2022; 183:106937. [DOI: 10.1016/j.eplepsyres.2022.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
|
5
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
6
|
Hagihara KM, Bukalo O, Zeller M, Aksoy-Aksel A, Karalis N, Limoges A, Rigg T, Campbell T, Mendez A, Weinholtz C, Mahn M, Zweifel LS, Palmiter RD, Ehrlich I, Lüthi A, Holmes A. Intercalated amygdala clusters orchestrate a switch in fear state. Nature 2021; 594:403-407. [PMID: 34040259 DOI: 10.1038/s41586-021-03593-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Adaptive behaviour necessitates the formation of memories for fearful events, but also that these memories can be extinguished. Effective extinction prevents excessive and persistent reactions to perceived threat, as can occur in anxiety and 'trauma- and stressor-related' disorders1. However, although there is evidence that fear learning and extinction are mediated by distinct neural circuits, the nature of the interaction between these circuits remains poorly understood2-6. Here, through a combination of in vivo calcium imaging, functional manipulations, and slice physiology, we show that distinct inhibitory clusters of intercalated neurons (ITCs) in the mouse amygdala exert diametrically opposed roles during the acquisition and retrieval of fear extinction memory. Furthermore, we find that the ITC clusters antagonize one another through mutual synaptic inhibition and differentially access functionally distinct cortical- and midbrain-projecting amygdala output pathways. Our findings show that the balance of activity between ITC clusters represents a unique regulatory motif that orchestrates a distributed neural circuitry, which in turn regulates the switch between high- and low-fear states. These findings suggest that the ITCs have a broader role in a range of amygdala functions and associated brain states that underpins the capacity to adapt to salient environmental demands.
Collapse
Affiliation(s)
- Kenta M Hagihara
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Martin Zeller
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience, Tübingen, Germany
| | - Ayla Aksoy-Aksel
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience, Tübingen, Germany.,Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Tanner Rigg
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Tiffany Campbell
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Adriana Mendez
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Chase Weinholtz
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Mathias Mahn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Centre for Integrative Neuroscience, Tübingen, Germany.,Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Voss LJ, Garcia V. Electrophysiological field potential identification of an intact GABAergic system in mouse cortical slices. Brain Res 2021; 1756:147295. [PMID: 33516817 DOI: 10.1016/j.brainres.2021.147295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
In brain slice experiments there's currently no validated electrophysiological method for differentiating viability between GABAergic and glutamatergic cell populations. Here we investigated the neurophysiology of high frequency field potential activity - and its utility for probing the functional state of the GABAergic system in brain slices. Field potentials were recorded from mouse cortical slices exposed to 50 mM potassium ("elevated-K") and the induced high frequency (>20 Hz) response characterized pharmacologically. The elevated-K responses were also related to the high frequency activity imbedded in no-magnesium seizure-like events (SLE) from the same slices. The elevated-K response, comprising a transient burst of high frequency activity, was strongly GABAA-dependent. The size of the high frequency response was reduced by 71% (p = 0.001) by picrotoxin, but not significantly attenuated by either APV or CNQX. High frequency activity embedded in no-magnesium SLEs correlated with the elevated-K response. The success rate for generating an elevated-K response - and high frequency SLE activity - declined rapidly with increasing time since slicing. These findings support the hypothesis that in cortical slices, a functioning synaptic GABAergic system is evidenced by a strong high frequency component to no-magnesium SLE activity - and that the integrity of the GABAergic system degrades quicker than the excitatory glutamatergic system in this preparation.
Collapse
Affiliation(s)
- Logan J Voss
- Anaesthesia Department, Waikato District Health Board, Hamilton, New Zealand.
| | | |
Collapse
|
8
|
Gupta A, Proddutur A, Chang YJ, Raturi V, Guevarra J, Shah Y, Elgammal FS, Santhakumar V. Dendritic morphology and inhibitory regulation distinguish dentate semilunar granule cells from granule cells through distinct stages of postnatal development. Brain Struct Funct 2020; 225:2841-2855. [PMID: 33124674 DOI: 10.1007/s00429-020-02162-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Semilunar granule cells (SGCs) have been proposed as a morpho-functionally distinct class of hippocampal dentate projection neurons contributing to feedback inhibition and memory processing in juvenile rats. However, the structural and physiological features that can reliably classify granule cells (GCs) from SGCs through postnatal development remain unresolved. Focusing on postnatal days 11-13, 28-42, and > 120, corresponding with human infancy, adolescence, and adulthood, we examined the somato-dendritic morphology and inhibitory regulation in SGCs and GCs to determine the cell-type specific features. Unsupervised cluster analysis confirmed that morphological features reliably distinguish SGCs from GCs irrespective of animal age. SGCs maintain higher spontaneous inhibitory postsynaptic current (sIPSC) frequency than GCs from infancy through adulthood. Although sIPSC frequency in SGCs was particularly enhanced during adolescence, sIPSC amplitude and cumulative charge transfer declined from infancy to adulthood and were not different between GCs and SGCs. Extrasynaptic GABA current amplitude peaked in adolescence in both cell types and was significantly greater in SGCs than in GCs only during adolescence. Although GC input resistance was higher than in SGCs during infancy and adolescence, input resistance decreased with developmental age in GCs, while it progressively increased in SGCs. Consequently, GCs' input resistance was significantly lower than SGCs in adults. The data delineate the structural features that can reliably distinguish GCs from SGCs through development. The results reveal developmental differences in passive membrane properties and steady-state inhibition between GCs and SGCs which could confound their use in classifying the cell types.
Collapse
Affiliation(s)
- Akshay Gupta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.,Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Archana Proddutur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.,Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Vidhatri Raturi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jenieve Guevarra
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yash Shah
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Fatima S Elgammal
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA. .,Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Liu L, Zhou X, Wu JY. Preparing Viable Hippocampal Slices from Adult Mice for the Study of Sharp Wave-ripples. Bio Protoc 2020; 10:e3771. [PMID: 33659429 DOI: 10.21769/bioprotoc.3771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/02/2022] Open
Abstract
We describe a protocol for preparing acute brain slices which can produce robust hippocampal sharp wave-ripples (SWRs) in vitro. The protocol is optimized for its simplicity and reliability for the preparation of solutions, slicing, and recovery incubation. Most slices in almost every mouse prepared though the protocol expressed vigorous spontaneous SWRs for ~24 h, compared to the 20-30% viability from "standard" low sodium slicing protocols. SWRs are spontaneous neuronal activity in the hippocampus and are essential for consolidation of episodic memory. Brain slices reliably expressing SWRs are useful for studying memory impairment and brain degeneration diseases in ex vivo experiments. Spontaneous expression of SWRs is sensitive to conditions of slicing and perfusion/oxygenation during recording. The amplitude and abundance of SWRs are often used as a biomarker for viable slices. Key improvements include fast circulation, a long recovery period (3-6 h) after slicing, and allowing tissue to recover at 32 °C in a well perfused incubation chamber. Slices in our custom-made apparatus can express spontaneous SWRs for many hours, suggesting a long period with balanced excitation and inhibition in the local networks. Slices from older mice (~postnatal 180 days) show similar viability to younger (postnatal 21-30) mice.
Collapse
Affiliation(s)
- Linhua Liu
- Department of Neuroscience, Georgetown University Medical center, Washington DC, 20007, USA.,Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, PR China
| | - Xiaojing Zhou
- Department of Neuroscience, Georgetown University Medical center, Washington DC, 20007, USA.,Biotechnology Program, Georgetown University Medical Center, USA
| | - Jian-Young Wu
- Department of Neuroscience, Georgetown University Medical center, Washington DC, 20007, USA
| |
Collapse
|
10
|
Avegno EM, Middleton JW, Gilpin NW. Synaptic GABAergic transmission in the central amygdala (CeA) of rats depends on slice preparation and recording conditions. Physiol Rep 2020; 7:e14245. [PMID: 31587506 PMCID: PMC6778595 DOI: 10.14814/phy2.14245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/24/2022] Open
Abstract
The central nucleus of the amygdala (CeA) is a primarily GABAergic brain region implicated in stress and addictive disorders. Using in vitro slice electrophysiology, many studies measure GABAergic neurotransmission to evaluate the impact of experimental manipulations on inhibitory tone in the CeA, as a measure of alterations in CeA activity and function. In a recent study, we reported spontaneous inhibitory postsynaptic current (sIPSC) frequencies higher than those typically reported in CeA neurons in the literature, despite utilizing similar recording protocols and internal recording solutions. The purpose of this study was to systematically evaluate two common methods of slice preparation, an NMDG-based aCSF perfusion method and an ice-cold sucrose solution, as well as the use of an in-line heater to control recording temperature, on measures of intrinsic excitability and spontaneous inhibitory neurotransmission in CeA neurons. We report that both slice preparation and recording conditions significantly impact spontaneous GABAergic transmission in CeA neurons, and that recording temperature, but not slicing solution, alters measures of intrinsic excitability in CeA neurons. Bath application of corticotropin-releasing factor (CRF) increased sIPSC frequency under all conditions, but the magnitude of this effect was significantly different across recording conditions that elicited different baseline GABAergic transmission. Furthermore, CRF effects on synaptic transmission differed according to data reporting methods (i.e., raw vs. normalized data), which is important to consider in relation to baseline synaptic transmission values. These studies highlight the impact of experimental conditions and data reporting methods on neuronal excitability and synaptic transmission in the CeA.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Jason W Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
11
|
McMeekin LJ, Bartley AF, Bohannon AS, Adlaf EW, van Groen T, Boas SM, Fox SN, Detloff PJ, Crossman DK, Overstreet-Wadiche LS, Hablitz JJ, Dobrunz LE, Cowell RM. A Role for PGC-1α in Transcription and Excitability of Neocortical and Hippocampal Excitatory Neurons. Neuroscience 2020; 435:73-94. [PMID: 32222555 DOI: 10.1016/j.neuroscience.2020.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a critical regulator of genes involved in neuronal metabolism, neurotransmission, and morphology. Reduced PGC-1α expression has been implicated in several neurological and psychiatric disorders. An understanding of PGC-1α's roles in different cell types will help determine the functional consequences of PGC-1α dysfunction and/or deficiency in disease. Reports from our laboratory and others suggest a critical role for PGC-1α in inhibitory neurons with high metabolic demand such as fast-spiking interneurons. Here, we document a previously unrecognized role for PGC-1α in maintenance of gene expression programs for synchronous neurotransmitter release, structure, and metabolism in neocortical and hippocampal excitatory neurons. Deletion of PGC-1α from these neurons caused ambulatory hyperactivity in response to a novel environment and enhanced glutamatergic transmission in neocortex and hippocampus, along with reductions in mRNA levels from several PGC-1α neuron-specific target genes. Given the potential role for a reduction in PGC-1α expression or activity in Huntington Disease (HD), we compared reductions in transcripts found in the neocortex and hippocampus of these mice to that of an HD knock-in model; few of these transcripts were reduced in this HD model. These data provide novel insight into the function of PGC-1α in glutamatergic neurons and suggest that it is required for the regulation of structural, neurosecretory, and metabolic genes in both glutamatergic neuron and fast-spiking interneuron populations in a region-specific manner. These findings should be considered when inferring the functional relevance of changes in PGC-1α gene expression in the context of disease.
Collapse
Affiliation(s)
- L J McMeekin
- Department of Neuroscience, Drug Discovery Division at Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A F Bartley
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - E W Adlaf
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - T van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S M Boas
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S N Fox
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - P J Detloff
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - L S Overstreet-Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - L E Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R M Cowell
- Department of Neuroscience, Drug Discovery Division at Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
12
|
Bartley AF, Abiraman K, Stewart LT, Hossain MI, Gahan DM, Kamath AV, Burdette MK, Andrabe S, Foulger SH, McMahon LL, Dobrunz LE. LSO:Ce Inorganic Scintillators Are Biocompatible With Neuronal and Circuit Function. Front Synaptic Neurosci 2019; 11:24. [PMID: 31551750 PMCID: PMC6733890 DOI: 10.3389/fnsyn.2019.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is widely used in neuroscience to control neural circuits. However, non-invasive methods for light delivery in brain are needed to avoid physical damage caused by current methods. One potential strategy could employ x-ray activation of radioluminescent particles (RPLs), enabling localized light generation within the brain. RPLs composed of inorganic scintillators can emit light at various wavelengths depending upon composition. Cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light in response to x-ray or ultraviolet (UV) stimulation, could potentially be used to control neural circuits through activation of channelrhodopsin-2 (ChR2), a light-gated cation channel. Whether inorganic scintillators themselves negatively impact neuronal processes and synaptic function is unknown, and was investigated here using cellular, molecular, and electrophysiological approaches. As proof of principle, we applied UV stimulation to 4 μm LSO:Ce particles during whole-cell recording of CA1 pyramidal cells in acute hippocampal slices from mice that expressed ChR2 in glutamatergic neurons. We observed an increase in frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), indicating activation of ChR2 and excitation of neurons. Importantly, LSO:Ce particles did not affect survival of primary mouse cortical neurons, even after 24 h of exposure. In extracellular dendritic field potential recordings, no change in the strength of basal glutamatergic transmission was observed during exposure to LSO:Ce microparticles. However, the amplitude of the fiber volley was slightly reduced with high stimulation. Additionally, there was a slight decrease in the frequency of sEPSCs in whole-cell voltage-clamp recordings from CA1 pyramidal cells, with no change in current amplitudes. The amplitude and frequency of spontaneous inhibitory postsynaptic currents were unchanged. Finally, long term potentiation (LTP), a synaptic modification believed to underlie learning and memory and a robust measure of synaptic integrity, was successfully induced, although the magnitude was slightly reduced. Together, these results show LSO:Ce particles are biocompatible even though there are modest effects on baseline synaptic function and long-term synaptic plasticity. Importantly, we show that light emitted from LSO:Ce particles is able to activate ChR2 and modify synaptic function. Therefore, LSO:Ce inorganic scintillators are potentially viable for use as a new light delivery system for optogenetics.
Collapse
Affiliation(s)
- Aundrea F. Bartley
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kavitha Abiraman
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luke T. Stewart
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammed Iqbal Hossain
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David M. Gahan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abhishek V. Kamath
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary K. Burdette
- Department of Materials Science and Engineering, Clemson University, Anderson, SC, United States
| | - Shaida Andrabe
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen H. Foulger
- Department of Materials Science and Engineering, Clemson University, Anderson, SC, United States
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Lori L. McMahon
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lynn E. Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Hawrysh PJ, Buck LT. Oxygen-sensitive interneurons exhibit increased activity and GABA release during ROS scavenging in the cerebral cortex of the western painted turtle. J Neurophysiol 2019; 122:466-479. [PMID: 31141433 DOI: 10.1152/jn.00104.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The western painted turtle (Chrysemys picta bellii) has the unique ability of surviving several months in the absence of oxygen, which is termed anoxia. One major protective strategy that the turtle employs during anoxia is a reduction in neuronal electrical activity, which may result from a natural reduction in reactive oxygen species (ROS). We previously linked a reduction in ROS levels to an increase in γ-amino butyric acid (GABA) receptor currents. The purpose of this study is to understand how fast-spiking, GABA-releasing neurons respond to reductions in ROS and how this affects GABA release. Using a fluorescence-coupled enzymatic microplate assay for GABA, we found that anoxia, the ROS scavenger N-(2-mercaptopriopionyl)glycine (MPG), or the mitochondria-specific ROS scavenger MitoTEMPO resulted in a 2.5-, 2.0-, and 2.5-fold increase in extracellular GABA concentration, respectively. This phenomenon could be blocked with TTX, indicating that it is activity dependent. Using whole cell patch-clamping techniques, we found that fast-spiking, burst-firing GABAergic turtle neurons increase the duration and number of action potentials per burst by 26% and 42%, respectively, in response to ROS scavenging via MPG. These results suggest that the reduction in mitochondrially produced ROS that occurs during anoxia leads to increased GABA release, which promotes postsynaptic inhibitory activity through activation of GABA receptors.NEW & NOTEWORTHY This is a novel study examining the response of cerebral cortical stellate interneurons to anoxia and mitochondrial reactive oxygen species (ROS) scavenging with MitoTEMPO. Under both conditions burst firing increases in these cells, and we show that extracellular GABA release increases in the presence of the ROS scavenger. We conclude that in the anoxia-tolerant painted turtle brain, a decrease in ROS levels is an important low oxygen signal.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Wester JC, Mahadevan V, Rhodes CT, Calvigioni D, Venkatesh S, Maric D, Hunt S, Yuan X, Zhang Y, Petros TJ, McBain CJ. Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner. Neuron 2019; 102:960-975.e6. [PMID: 31027966 DOI: 10.1016/j.neuron.2019.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
Abstract
Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.
Collapse
Affiliation(s)
- Jason C Wester
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniela Calvigioni
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sanan Venkatesh
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Steven Hunt
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Monitoring Interneuron-Astrocyte Signaling and Its Consequences on Synaptic Transmission. Methods Mol Biol 2019; 1938:117-129. [PMID: 30617977 DOI: 10.1007/978-1-4939-9068-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Whole-cell patch clamp allows the characterization of synaptic transmission in neurons. It is possible to manipulate astrocytic activity and record how these glial cells affect neuronal networks. Here we describe the methodology to monitor the endogenously activation of astrocytes by inhibitory synaptic activity. Afterward, such glial activation will let us study the consequences of interneuron-astrocyte signaling on excitatory neurotransmission at hippocampal synapses.
Collapse
|
16
|
Bohannon AS, Hablitz JJ. Optogenetic dissection of roles of specific cortical interneuron subtypes in GABAergic network synchronization. J Physiol 2018; 596:901-919. [PMID: 29274075 PMCID: PMC5830415 DOI: 10.1113/jp275317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/13/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS An increase in the excitability of GABAergic cells has typically been assumed to decrease network activity, potentially producing overall anti-epileptic effects. Recent data suggest that inhibitory networks may actually play a role in initiating epileptiform activity. We show that activation of GABAergic interneurons can elicit synchronous long-lasting network activity. Specific interneuron subpopulations differentially contributed to GABA network synchrony, indicating cell type-specific contributions of interneurons to cortical network activity. Interneurons may critically contribute to the generation of aberrant network activity characteristic of epilepsy, warranting further investigation into the contribution of distinct cortical interneuron subpopulations to the propagation and rhythmicity of epileptiform activity. ABSTRACT In the presence of the A-type K+ channel blocker 4-aminopyrdine, spontaneous synchronous network activity develops in the neocortex of mice of either sex. This aberrant synchrony persists in the presence of excitatory amino acid receptor antagonists (EAA blockers) and is considered to arise from synchronous firing of cortical interneurons (INs). Although much attention has been given to the mechanisms underlying this GABAergic synchrony, the contribution of specific IN subtypes to the generation of these long-lasting discharges (LLDs) is incompletely understood. We employed genetically-encoded channelrhodopsin and archaerhodopsin opsins to investigate the sufficiency and necessity, respectively, of activation of parvalbumin (PV), somatostatin (SST) and vasointestinal peptide (VIP)-expressing INs for the generation of synchronous neocortical GABAergic discharges. We found light-induced activation of PV or SST INs to be equally sufficient for the generation of LLDs, whereas activation of VIP INs was not. By contrast, light-induced inhibition of PV INs strongly reduced LLD initiation, whereas suppression of SST or VIP IN activity only partially attenuated LLD magnitude. These results suggest neocortical INs perform cell type-specific roles in the generation of aberrant GABAergic cortical network activity.
Collapse
Affiliation(s)
- Andrew S. Bohannon
- Department of NeurobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - John J. Hablitz
- Department of NeurobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
17
|
Bohannon AS, Hablitz JJ. Developmental Changes in HCN Channel Modulation of Neocortical Layer 1 Interneurons. Front Cell Neurosci 2018; 12:20. [PMID: 29440994 PMCID: PMC5797556 DOI: 10.3389/fncel.2018.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/15/2018] [Indexed: 01/31/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) play a key role in modulating the integration of inputs to pyramidal neurons (PNs) and controlling cortical network activity. Hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels are known to alter the intrinsic and synaptic excitability of principal components (PCs) as well as select populations of GABAergic INs. However, the developmental profile and functional role of HCN channels in diverse L1 IN populations is not completely understood. In the present study, we used electrophysiological characterization, in conjunction with unbiased hierarchical cluster analysis, to examine developmental modulation of L1 INs by HCN channels in the rat medial agranular cortex (AGm). We identified three physiologically discrete IN populations which were classified as regular spiking (RS), burst accommodating (BA) and non-accommodating (NA). A distinct developmental pattern of excitability modulation by HCN channels was observed for each group. RS and NA cells displayed distinct morphologies with modulation of EPSPs increasing in RS cells and decreasing in NA cells across development. The results indicate a possible role of HCN channels in the formation and maintenance of cortical circuits through alteration of the excitability of distinct AGm L1 INs.
Collapse
Affiliation(s)
- Andrew S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Raimondo JV, Heinemann U, de Curtis M, Goodkin HP, Dulla CG, Janigro D, Ikeda A, Lin CCK, Jiruska P, Galanopoulou AS, Bernard C. Methodological standards for in vitro models of epilepsy and epileptic seizures. A TASK1-WG4 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017; 58 Suppl 4:40-52. [PMID: 29105075 DOI: 10.1111/epi.13901] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
In vitro preparations are a powerful tool to explore the mechanisms and processes underlying epileptogenesis and ictogenesis. In this review, we critically review the numerous in vitro methodologies utilized in epilepsy research. We provide support for the inclusion of detailed descriptions of techniques, including often ignored parameters with unpredictable yet significant effects on study reproducibility and outcomes. In addition, we explore how recent developments in brain slice preparation relate to their use as models of epileptic activity.
Collapse
Affiliation(s)
- Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Uwe Heinemann
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco de Curtis
- Epilepsy and Experimental Neurophysiology Unit, The Foundation of the Carlo Besta Neurological Institute, Milan, Italy
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia, Charlottesville, Virginia, U.S.A
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, U.S.A
| | - Damir Janigro
- Flocel Inc., Cleveland, Ohio, U.S.A.,Case Western Reserve University, Cleveland, Ohio, U.S.A
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Chou-Ching K Lin
- Department of Neurology, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | - Christophe Bernard
- Inserm, Institut de Neurosciences des Systemes UMRS 1106, Aix Marseille University, Marseille, France
| |
Collapse
|
19
|
Cilz NI, Porter JE, Lei S. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings. MethodsX 2017; 4:360-371. [PMID: 29071214 PMCID: PMC5651549 DOI: 10.1016/j.mex.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023] Open
Abstract
Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC) is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG)-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of "bullets" carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.
Collapse
Affiliation(s)
| | | | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
20
|
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord. J Neurosci 2017; 36:11634-11645. [PMID: 27852772 DOI: 10.1523/jneurosci.2301-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.
Collapse
|
21
|
Albertson AJ, Bohannon AS, Hablitz JJ. HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat Neocortex. Front Cell Neurosci 2017; 11:109. [PMID: 28469560 PMCID: PMC5396479 DOI: 10.3389/fncel.2017.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 12/02/2022] Open
Abstract
Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels and Ih current amplitudes are reduced in layer (L) 5 pyramidal neurons of rats with freeze lesion induced malformations. These changes were associated with an increased EPSP temporal summation. Here, we examine the effects of HCN channel inhibition on synaptic responses in fast spiking, presumptive basket cells and accommodating, presumptive Martinotti, GABAergic interneurons in slices from freeze lesioned animals. In control animals, fast spiking cells showed small sag responses which were reduced by the HCN channel antagonist ZD7288. Fast spiking cells in lesioned animals showed absent or reduced sag responses. The amplitude of single evoked EPSPs in fast spiking cells in the control group was not affected by HCN channel inhibition with ZD7288. EPSP ratios during short stimulus trains at 25 Hz were not significantly different between control and lesion groups. ZD7288 produced an increase in EPSP ratios in the control but not lesion groups. Under voltage clamp conditions, ZD7288 did not affect EPSC ratios. In the control group, accommodating interneurons showed robust sag responses which were significantly reduced by ZD7288. HCN channel inhibition increased EPSP ratios and area in controls but not the lesioned group. The results indicate that HCN channels differentially modulate EPSPs in different classes of GABAergic interneurons and that this control is reduced in malformed rat neocortex.
Collapse
Affiliation(s)
- Asher J Albertson
- Department of Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Andrew S Bohannon
- Department of Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
22
|
Adrenergic receptor-mediated modulation of striatal firing patterns. Neurosci Res 2016; 112:47-56. [DOI: 10.1016/j.neures.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
|
23
|
Segev A, Garcia-Oscos F, Kourrich S. Whole-cell Patch-clamp Recordings in Brain Slices. J Vis Exp 2016. [PMID: 27341060 DOI: 10.3791/54024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals.
Collapse
Affiliation(s)
- Amir Segev
- Department of Psychiatry, University of Texas Southwestern Medical Center
| | | | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center;
| |
Collapse
|
24
|
Tamura R, Ohta H, Satoh Y, Nonoyama S, Nishida Y, Nibuya M. Neuroprotective effects of adenosine deaminase in the striatum. J Cereb Blood Flow Metab 2016; 36:709-20. [PMID: 26746865 PMCID: PMC4821026 DOI: 10.1177/0271678x15625077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum.
Collapse
Affiliation(s)
- Risa Tamura
- Department of Physiology, National Defense Medical College, Saitama, Japan Department of Physical Medicine and Rehabilitation, National Defense Medical College, Saitama, Japan
| | - Hiroyuki Ohta
- Department of Physiology, National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Anesthesiology, National Defense Medical College, Saitama, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Yasuhiro Nishida
- Department of Physiology, National Defense Medical College, Saitama, Japan
| | - Masashi Nibuya
- Department of Psychiatry, National Defense Medical College, Saitama, Japan
| |
Collapse
|
25
|
Abstract
Pathological high-frequency oscillations (HFOs) (80-800 Hz) are considered biomarkers of epileptogenic tissue, but the underlying complex neuronal events are not well understood. Here, we identify and discuss several outstanding issues or conundrums in regards to the recording, analysis, and interpretation of HFOs in the epileptic brain to critically highlight what is known and what is not about these enigmatic events. High-frequency oscillations reflect a range of neuronal processes contributing to overlapping frequencies from the lower 80 Hz to the very fast spectral frequency bands. Given their complex neuronal nature, HFOs are extremely sensitive to recording conditions and analytical approaches. We provide a list of recommendations that could help to obtain comparable HFO signals in clinical and basic epilepsy research. Adopting basic standards will facilitate data sharing and interpretation that collectively will aid in understanding the role of HFOs in health and disease for translational purpose.
Collapse
|
26
|
Yufune S, Satoh Y, Takamatsu I, Ohta H, Kobayashi Y, Takaenoki Y, Pagès G, Pouysségur J, Endo S, Kazama T. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice. Sci Rep 2015; 5:10252. [PMID: 25993696 PMCID: PMC4438718 DOI: 10.1038/srep10252] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/08/2015] [Indexed: 12/02/2022] Open
Abstract
The critical period is a distinct time-window during the neonatal stage when animals display elevated sensitivity to certain environmental stimuli, and particular experiences can have profound and long-lasting effects on behaviors. Increasing evidence suggests that disruption of neuronal activity during the critical period contributes to autistic phenotype, although the pathogenic mechanism is largely unknown. Herein we show that extracellular signal-regulated protein kinases (ERKs) play important roles in proper formation of neural circuits during the critical period. Transient blockade of ERKs phosphorylation at postnatal day 6 (P6) by intraperitoneal injection of blood-brain barrier-penetrating MEK inhibitor, α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327) caused significant increase of apoptosis in the forebrain. Furthermore, this induced long-term deleterious effects on brain functioning later in adulthood, resulting in social deficits, impaired memory and reduced long-term potentiation (LTP). Conversely, blockade of ERK phosphorylation at P14 no longer induced apoptosis, nor behavioral deficits, nor the reduced LTP. Thus, surprisingly, these effects of ERKs are strongly age-dependent, indicating that phosphorylation of ERKs during the critical period is absolutely required for proper development of brain functioning. This study provides novel insight into the mechanistic basis for neurodevelopment disorders: various neurodevelopment disorders might be generally linked to defects in ERKs signaling during the critical period.
Collapse
Affiliation(s)
- Shinya Yufune
- Department of Anesthesiology National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan,
| | - Yasushi Satoh
- Department of Anesthesiology National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan,
| | - Isao Takamatsu
- Department of Anesthesiology National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan,
| | - Hiroyuki Ohta
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Yumiko Takaenoki
- Department of Anesthesiology National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan,
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, 33 Avenue de Valombrose, Nice 06189, France
| | - Jacques Pouysségur
- 1] Institute for Research on Cancer and Aging (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, 33 Avenue de Valombrose, Nice 06189, France [2] Centre Scientifique de Monaco (CSM) Biochemical Department, 8 Quai Antoine Ier, MC 98000, Monaco
| | - Shogo Endo
- Aging Regulation Research Team, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tomiei Kazama
- Department of Anesthesiology National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan,
| |
Collapse
|
27
|
Williams SB, Hablitz JJ. Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K(+) channels and Ih. Front Cell Neurosci 2015; 9:89. [PMID: 25852481 PMCID: PMC4364302 DOI: 10.3389/fncel.2015.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/26/2015] [Indexed: 12/04/2022] Open
Abstract
GABAergic interneurons provide the main source of inhibition in the neocortex and are important in regulating neocortical network activity. In the presence 4-aminopyridine (4-AP), CNQX, and D-APV, large amplitude GABAA-receptor mediated depolarizing responses were observed in the neocortex. GABAergic networks are comprised of several types of interneurons, each with its own protein expression pattern, firing properties, and inhibitory role in network activity. Voltage-gated ion channels, especially A-type K(+) channels, differentially regulate passive membrane properties, action potential (AP) waveform, and repetitive firing properties in interneurons depending on their composition and localization. HCN channels are known modulators of pyramidal cell intrinsic excitability and excitatory network activity. Little information is available regarding how HCN channels functionally modulate excitability of individual interneurons and inhibitory networks. In this study, we examined the effect of 4-AP on intrinsic excitability of fast-spiking basket cells (FS-BCs) and Martinotti cells (MCs). 4-AP increased the duration of APs in both FS-BCs and MCs. The repetitive firing properties of MCs were differentially affected compared to FS-BCs. We also examined the effect of Ih inhibition on synchronous GABAergic depolarizations and synaptic integration of depolarizing IPSPs. ZD 7288 enhanced the amplitude and area of evoked GABAergic responses in both cell types. Similarly, the frequency and area of spontaneous GABAergic depolarizations in both FS-BCs and MCs were increased in presence of ZD 7288. Synaptic integration of IPSPs in MCs was significantly enhanced, but remained unaltered in FS-BCs. These results indicate that 4-AP differentially alters the firing properties of interneurons, suggesting MCs and FS-BCs may have unique roles in GABAergic network synchronization. Enhancement of GABAergic network synchronization by ZD 7288 suggests that HCN channels attenuate inhibitory network activity.
Collapse
Affiliation(s)
| | - John J. Hablitz
- Department of Neurobiology, Civitan International Research Center and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
28
|
Ankri L, Yarom Y, Uusisaari MY. Slice it hot: acute adult brain slicing in physiological temperature. J Vis Exp 2014:e52068. [PMID: 25406663 DOI: 10.3791/52068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Here we present a protocol for preparation of acute brain slices. This procedure is a critical element for electrophysiological patch-clamp experiments that largely determines the quality of results. It has been shown that omitting the cooling step during cutting procedure is beneficial in obtaining healthy slices and cells, especially when dealing with highly myelinated brain structures from mature animals. Even though the precise mechanism whereby elevated temperature supports neural health can only be speculated upon, it stands to reason that, whenever possible, the temperature in which the slicing is performed should be close to physiological conditions to prevent temperature related artifacts. Another important advantage of this method is the simplicity of the procedure and therefore the short preparation time. In the demonstrated method adult mice are used but the same procedure can be applied with younger mice as well as rats. Also, the following patch clamp experiment is performed on horizontal cerebellar slices, but the same procedure can also be used in other planes as well as other posterior areas of the brain.
Collapse
Affiliation(s)
- Lea Ankri
- Department of Neurobiology, Hebrew University of Jerusalem
| | - Yosef Yarom
- Department of Neurobiology, Hebrew University of Jerusalem
| | | |
Collapse
|
29
|
Masamizu Y, Tanaka YR, Tanaka YH, Hira R, Ohkubo F, Kitamura K, Isomura Y, Okada T, Matsuzaki M. Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task. Nat Neurosci 2014; 17:987-94. [PMID: 24880217 DOI: 10.1038/nn.3739] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022]
Abstract
The primary motor cortex (M1) possesses two intermediate layers upstream of the motor-output layer: layer 2/3 (L2/3) and layer 5a (L5a). Although repetitive training often improves motor performance and movement coding by M1 neuronal ensembles, it is unclear how neuronal activities in L2/3 and L5a are reorganized during motor task learning. We conducted two-photon calcium imaging in mouse M1 during 14 training sessions of a self-initiated lever-pull task. In L2/3, the accuracy of neuronal ensemble prediction of lever trajectory remained unchanged globally, with a subset of individual neurons retaining high prediction accuracy throughout the training period. However, in L5a, the ensemble prediction accuracy steadily improved, and one-third of neurons, including subcortical projection neurons, evolved to contribute substantially to ensemble prediction in the late stage of learning. The L2/3 network may represent coordination of signals from other areas throughout learning, whereas L5a may participate in the evolving network representing well-learned movements.
Collapse
Affiliation(s)
- Yoshito Masamizu
- 1] Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, Japan. [2] CREST, Japan Science and Technology Agency, Saitama, Japan. [3]
| | - Yasuhiro R Tanaka
- 1] Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, Japan. [2] CREST, Japan Science and Technology Agency, Saitama, Japan. [3]
| | - Yasuyo H Tanaka
- 1] Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, Japan. [2] CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Riichiro Hira
- 1] Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, Japan. [2] CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Fuki Ohkubo
- 1] Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, Japan. [2] CREST, Japan Science and Technology Agency, Saitama, Japan. [3] The Graduate University of Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| | - Kazuo Kitamura
- 1] CREST, Japan Science and Technology Agency, Saitama, Japan. [2] Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [3] PREST, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshikazu Isomura
- 1] CREST, Japan Science and Technology Agency, Saitama, Japan. [2] Brain Science Institute, Tamagawa University, Tokyo, Japan
| | - Takashi Okada
- 1] Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan. [2] Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanori Matsuzaki
- 1] Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Aichi, Japan. [2] CREST, Japan Science and Technology Agency, Saitama, Japan. [3] The Graduate University of Advanced Studies (Sokendai), Okazaki, Aichi, Japan
| |
Collapse
|
30
|
Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations. J Neurosci 2014; 34:2989-3004. [PMID: 24553939 DOI: 10.1523/jneurosci.2826-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.
Collapse
|
31
|
Abstract
The cochlear nuclei are the first central processors of auditory information and provide inputs to all the major brainstem and midbrain auditory nuclei. Although the local circuits within the cochlear nuclei are understood at a cellular level, the spatial patterns of connectivity and the connection strengths in these circuits have been less well characterized. We have applied a novel, quantitative approach to mapping local circuits projecting to cells in the mouse anteroventral cochlear nucleus (AVCN) using laser-scanning photostimulation and glutamate uncaging. The amplitude and kinetics of individual evoked synaptic events were measured to reveal the patterns and strengths of synaptic connections. We found that the two major excitatory projection cell classes, the bushy and T-stellate cells, receive a spatially broad inhibition from D-stellate cells in the AVCN, and a spatially confined inhibition from the tuberculoventral cells of the dorsal cochlear nucleus. Furthermore, T-stellate cells integrate D-stellate inhibition from an area that spans twice the frequency range of that integrated by bushy cells. A subset of both bushy and T-stellate cells receives inhibition from an unidentified cell population at the dorsal-medial boundary of the AVCN. A smaller subset of cells receives local excitation from within the AVCN. Our results show that inhibitory circuits can have target-specific patterns of spatial convergence, synaptic strength, and receptor kinetics, resulting in different spectral and temporal processing capabilities.
Collapse
|
32
|
Eickhoff M, Kovac S, Shahabi P, Khaleghi Ghadiri M, Dreier JP, Stummer W, Speckmann EJ, Pape HC, Gorji A. Spreading depression triggers ictaform activity in partially disinhibited neuronal tissues. Exp Neurol 2014; 253:1-15. [DOI: 10.1016/j.expneurol.2013.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/17/2022]
|
33
|
West PJ, Saunders GW, Remigio GJ, Wilcox KS, White HS. Antiseizure drugs differentially modulate θ-burst induced long-term potentiation in C57BL/6 mice. Epilepsia 2014; 55:214-23. [PMID: 24447124 DOI: 10.1111/epi.12524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cognitive comorbidities are increasingly recognized as an equal (or even more disabling) aspect of epilepsy. In addition, the actions of some antiseizure drugs (ASDs) can impact learning and memory. Accordingly, the National Institute of Neurological Disorders and Stroke (NINDS) epilepsy research benchmarks call for the implementation of standardized protocols for screening ASDs for their amelioration or exacerbation of cognitive comorbidities. Long-term potentiation (LTP) is a widely used model for investigating synaptic plasticity and its relationship to learning and memory. Although the effects of some ASDs on LTP have been examined, none of these studies employed physiologically relevant induction stimuli such as theta-burst stimulation (TBS). To systematically evaluate the effects of multiple ASDs in the same preparation using physiologically relevant stimulation protocols, we examined the effects of a broad panel of existing ASDs on TBS-induced LTP in area CA1 of in vitro brain slices, prepared in either normal or sucrose-based artificial cerebrospinal fluid (ACSF), from C57BL/6 mice. METHODS Coronal brain slices containing the dorsal hippocampus were made using either standard or sucrose-based ACSF. Recordings were obtained from four slices at a time using the Scientifica Slicemaster high throughput recording system. Slices exposed to ASDs were paired with slices from the opposite hemisphere that served as controls. Field excitatory postsynaptic potentials (fEPSPs) were recorded, and all ASDs were applied to slices by bath perfusion for 20 min prior to the induction stimulus. LTP was induced by TBS or by high-frequency stimulation (HFS). The following ASDs were examined: 100 μM phenobarbital (PB), 80 μM phenytoin (PHT), 50 μM carbamazepine (CBZ), 600 μM valproate (VPA), 60 μM topiramate (TPM), 60 μM lamotrigine (LTG), 100 μM levetiracetam (LEV), 10 μM ezogabine (EZG), and 30 μM tiagabine (TGB). RESULTS Among voltage-gated sodium channel inhibitors, CBZ significantly attenuated TBS-induced LTP, PHT attenuated both TBS-induced LTP and post-tetanic potentiation (PTP), and LTG failed to affect LTP but did attenuate PTP. ASDs that modulate γ-aminobutyric acid (GABA)ergic synaptic transmission, such as PB and TGB, significantly attenuated LTP in brain slices prepared in sucrose-based ACSF but not standard ACSF. Third generation ASDs, such as LEV and TPM, did not affect LTP in ACSF- or sucrose-prepared brain slices. Although EZG failed to affect LTP, it did significantly attenuate PTP under both slicing conditions. VPA failed to affect LTP in area CA1, both in C57BL/6 mice and Sprague-Dawley rats, using TBS or HFS. However, VPA did attenuate TBS-induced LTP in the dentate gyrus (DG). SIGNIFICANCE The results of experiments describe herein provide a comprehensive summary of the effects of many commonly used ASDs on short- and long-term synaptic plasticity while, for the first time, using physiologically relevant LTP induction protocols and slice preparations from mice. Furthermore, methodologic variables, such as brain slice preparation protocols, were explored. These results provide comparative knowledge of ASD effects on synaptic plasticity in the mouse hippocampus and may ultimately contribute to an understanding of the differences in the cognitive side effect profiles of ASDs and the prediction of cognitive dysfunction associated with novel investigational ASDs.
Collapse
Affiliation(s)
- Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A; Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah, U.S.A; Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, Utah, U.S.A
| | | | | | | | | |
Collapse
|
34
|
Ting JT, Daigle TL, Chen Q, Feng G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol 2014; 1183:221-42. [PMID: 25023312 DOI: 10.1007/978-1-4939-1096-0_14] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically defined neuronal subtypes.
Collapse
Affiliation(s)
- Jonathan T Ting
- Human Cell Types Department, Allen Institute for Brain Science, 551 N 34th Street, Seattle, WA, 98103, USA,
| | | | | | | |
Collapse
|
35
|
Albertson AJ, Williams SB, Hablitz JJ. Regulation of epileptiform discharges in rat neocortex by HCN channels. J Neurophysiol 2013; 110:1733-43. [PMID: 23864381 PMCID: PMC3798942 DOI: 10.1152/jn.00955.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 07/17/2013] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated, nonspecific cation (HCN) channels have a well-characterized role in regulation of cellular excitability and network activity. The role of these channels in control of epileptiform discharges is less thoroughly understood. This is especially pertinent given the altered HCN channel expression in epilepsy. We hypothesized that inhibition of HCN channels would enhance bicuculline-induced epileptiform discharges. Whole cell recordings were obtained from layer (L)2/3 and L5 pyramidal neurons and L1 and L5 GABAergic interneurons. In the presence of bicuculline (10 μM), HCN channel inhibition with ZD 7288 (20 μM) significantly increased the magnitude (defined as area) of evoked epileptiform events in both L2/3 and L5 neurons. We recorded activity associated with epileptiform discharges in L1 and L5 interneurons to test the hypothesis that HCN channels regulate excitatory synaptic inputs differently in interneurons versus pyramidal neurons. HCN channel inhibition increased the magnitude of epileptiform events in both L1 and L5 interneurons. The increased magnitude of epileptiform events in both pyramidal cells and interneurons was due to an increase in network activity, since holding cells at depolarized potentials under voltage-clamp conditions to minimize HCN channel opening did not prevent enhancement in the presence of ZD 7288. In neurons recorded with ZD 7288-containing pipettes, bath application of the noninactivating inward cationic current (Ih) antagonist still produced increases in epileptiform responses. These results show that epileptiform discharges in disinhibited rat neocortex are modulated by HCN channels.
Collapse
Affiliation(s)
- Asher J Albertson
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
36
|
Kameda H, Hioki H, Tanaka YH, Tanaka T, Sohn J, Sonomura T, Furuta T, Fujiyama F, Kaneko T. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 2012; 35:838-54. [PMID: 22429243 DOI: 10.1111/j.1460-9568.2012.08027.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs.
Collapse
Affiliation(s)
- Hiroshi Kameda
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kao C, Forbes JA, Jermakowicz WJ, Sun DA, Davis B, Zhu J, Lagrange AH, Konrad PE. Suppression of thalamocortical oscillations following traumatic brain injury in rats. J Neurosurg 2012; 117:316-23. [PMID: 22631688 DOI: 10.3171/2012.4.jns111170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Traumatic brain injury (TBI) often causes an encephalopathic state, corresponding amplitude suppression, and disorganization of electroencephalographic activity. Clinical recovery in patients who have suffered TBI varies, and identification of patients with a poor likelihood of functional recovery is not always straightforward. The authors sought to investigate temporal patterns of electrophysiological recovery of neuronal networks in an animal model of TBI. Because thalamocortical circuit function is a critical determinant of arousal state, as well as electroencephalography organization, these studies were performed using a thalamocortical brain slice preparation. METHODS Adult rats received a moderate parietal fluid-percussion injury and were allowed to survive for 1 hour, 2 days, 7 days, or 15 days prior to in vitro electrophysiological recording. Thalamocortical brain slices, 450-μm thick, were prepared using a cutting angle that preserved reciprocal connections between the somatosensory cortex and the ventrobasal thalamic complex. RESULTS Extracellular recordings in the cortex of uninjured control brain slices revealed spontaneous slow cortical oscillations (SCOs) that are blocked by (2R)-amino-5-phosphonovaleric acid (50 μM) and augmented in low [Mg2+]o. These oscillations have been shown to involve simultaneous bursts of activity in both the cortex and thalamus and are used here as a metric of thalamocortical circuit integrity. They were absent in 84% of slices recorded at 1 hour postinjury, and activity slowly recovered to approximate control levels by Day 15. The authors next used electrically evoked SCO-like potentials to determine neuronal excitability and found that the maximum depression occurred slightly later, on Day 2 following TBI, with only 28% of slices showing evoked activity. In addition, stimulus intensities needed to create evoked SCO activity were elevated at 1 hour, 2 days, and 7 days following TBI, and eventually returned to control levels by Day 15. The SCO frequency remained low throughout the 15 days following TBI (40% of control by Day 15). CONCLUSIONS The suppression of cortical oscillatory activity following TBI observed in the rat model suggests an injury-induced functional disruption of thalamocortical networks that gradually recovers to baseline at approximately 15 days postinjury. The authors speculate that understanding the processes underlying disrupted thalamocortical circuit function may provide important insights into the biological basis of altered consciousness following severe head injury. Moreover, understanding the physiological basis for this process may allow us to develop new therapies to enhance the rate and extent of neurological recovery following TBI.
Collapse
Affiliation(s)
- Chris Kao
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hirata E, Yukinaga H, Kamioka Y, Arakawa Y, Miyamoto S, Okada T, Sahai E, Matsuda M. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J Cell Sci 2012; 125:858-68. [PMID: 22399802 DOI: 10.1242/jcs.089995] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Two-photon excitation microscopy was used to visualized two different modes of invasion at perivascular and intraparenchymal regions of rat C6 glioblastoma cells that were orthotopically implanted into rat brains. Probes based on the principle of Förster resonance energy transfer (FRET) further revealed that glioblastoma cells penetrating the brain parenchyma showed higher Rac1 and Cdc42 activities and lower RhoA activity than those advancing in the perivascular regions. This spatial regulation of Rho-family GTPase activities was recapitulated in three-dimensional spheroid invasion assays with rat and human glioblastoma cells, in which multipod glioblastoma cells that invaded the gels and led the other glioblastoma cells exhibited higher Rac1 and Cdc42 activities than the trailing glioblastoma cells. We also studied the Cdc42-specific guanine nucleotide exchange factor Zizimin1 (also known as DOCK9) as a possible contributor to this spatially controlled activation of Rho-family GTPases, because it is known to play an essential role in the extension of neurites. We found that shRNA-mediated knockdown of Zizimin1 inhibited formation of pseudopodia and concomitant invasion of glioblastoma cells both under a 3D culture condition and in vivo. Our results suggest that the difference in the activity balance of Rac1 and Cdc42 versus RhoA determines the mode of glioblastoma invasion and that Zizimin1 contributes to the invasiveness of glioblastoma cells with high Rac1 and Cdc42 activities.
Collapse
Affiliation(s)
- Eishu Hirata
- Department of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci 2012; 31:18223-36. [PMID: 22171028 DOI: 10.1523/jneurosci.3139-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retrogradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic neurons, we intracellularly stained single pyramidal/spiny neurons of L2-6. We examined the spatial distribution of contact sites between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corticothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of local excitatory inputs in shaping the cortical modulation of thalamic activity.
Collapse
|
40
|
Mitra P, Brownstone RM. An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse. J Neurophysiol 2011; 107:728-41. [PMID: 22031766 DOI: 10.1152/jn.00558.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of central nervous system slice preparations for electrophysiological studies has led to an explosion of knowledge of neuronal properties in health and disease. Studies of spinal motoneurons in these preparations, however, have been largely limited to the early postnatal period, as adult motoneurons are vulnerable to the insults sustained by the preparation. We therefore sought to develop an adult spinal cord slice preparation that permits recording from lumbar motoneurons. To accomplish this, we empirically optimized the composition of solutions used during preparation in order to limit energy failure, reduce harmful ionic fluxes, mitigate oxidative stress, and prevent excitotoxic cell death. In addition to other additives, this involved the use of ethyl pyruvate, which serves as an effective nutrient and antioxidant. We also optimized and incorporated a host of previously published modifications used for other in vitro preparations, such as the use of polyethylene glycol. We provide an in-depth description of the preparation protocol and discuss the rationale underlying each modification. By using this protocol, we obtained stable whole cell patch-clamp recordings from identified fluorescent protein-labeled motoneurons in adult slices; here, we describe the firing properties of these adult motoneurons. We propose that this preparation will allow further studies of how motoneurons integrate activity to produce adult motor behaviors and how pathological processes such as amyotrophic lateral sclerosis affect these neurons.
Collapse
Affiliation(s)
- Pratip Mitra
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
41
|
Tanaka YH, Tanaka YR, Fujiyama F, Furuta T, Yanagawa Y, Kaneko T. Local connections of layer 5 GABAergic interneurons to corticospinal neurons. Front Neural Circuits 2011; 5:12. [PMID: 21994491 PMCID: PMC3182329 DOI: 10.3389/fncir.2011.00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/07/2011] [Indexed: 01/11/2023] Open
Abstract
In the local circuit of the cerebral cortex, GABAergic inhibitory interneurons are considered to work in collaboration with excitatory neurons. Although many interneuron subgroups have been described in the cortex, local inhibitory connections of each interneuron subgroup are only partially understood with respect to the functional neuron groups that receive these inhibitory connections. In the present study, we morphologically examined local inhibitory inputs to corticospinal neurons (CSNs) in motor areas using transgenic rats in which GABAergic neurons expressed fluorescent protein Venus. By analysis of biocytin-filled axons obtained with whole-cell recording/staining in cortical slices, we classified fast-spiking (FS) neurons in layer (L) 5 into two types, FS1 and FS2, by their high and low densities of axonal arborization, respectively. We then investigated the connections of FS1, FS2, somatostatin (SOM)-immunopositive, and other (non-FS/non-SOM) interneurons to CSNs that were retrogradely labeled in motor areas. When close appositions between the axon boutons of the intracellularly labeled interneurons and the somata/dendrites of the retrogradely labeled CSNs were examined electron-microscopically, 74% of these appositions made symmetric synaptic contacts. The axon boutons of single FS1 neurons were two- to fourfold more frequent in appositions to the somata/dendrites of CSNs than those of FS2, SOM, and non-FS/non-SOM neurons. Axosomatic appositions were most frequently formed with axon boutons of FS1 and FS2 neurons (approximately 30%) and least frequently formed with those of SOM neurons (7%). In contrast, SOM neurons most extensively sent axon boutons to the apical dendrites of CSNs. These results might suggest that motor outputs are controlled differentially by the subgroups of L5 GABAergic interneurons in cortical motor areas.
Collapse
Affiliation(s)
- Yasuyo H Tanaka
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Albertson AJ, Yang J, Hablitz JJ. Decreased hyperpolarization-activated currents in layer 5 pyramidal neurons enhances excitability in focal cortical dysplasia. J Neurophysiol 2011; 106:2189-200. [PMID: 21795624 DOI: 10.1152/jn.00164.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Focal cortical dysplasia is associated with the development of seizures in children and is present in up to 40% of intractable childhood epilepsies. Transcortical freeze lesions in newborn rats reproduce many of the anatomical and physiological characteristics of human cortical dysplasia. Rats with freeze lesions have increased seizure susceptibility and a region of hyperexcitable cortex adjacent to the lesion. Since alterations in hyperpolarization-activated nonspecific cation (HCN) channels are often associated with epilepsy, we used whole cell patch-clamp recording and voltage-sensitive dye imaging to examine alterations in HCN channels and inwardly rectifying hyperpolarization-activated currents (I(h)) in cortical dysplasia. (L5) pyramidal neurons in lesioned animals had hyperpolarized resting membrane potentials, increased input resistances and reduced voltage "sag" associated with I(h) activation. These differences became nonsignificant after application of the I(h) blocker ZD7288. Temporal excitatory postsynaptic potential (EPSP) summation and intrinsic excitability were increased in neurons near the freeze lesion. Using voltage-sensitive dye imaging of neocortical slices, we found that inhibiting I(h) with ZD7288 increased the half-width of dye signals. The anticonvulsant lamotrigine produced a significant decrease in spread of activity. The ability of lamotrigine to decrease network activity was reduced in the hyperexcitable cortex near the freeze lesion. These results suggest that I(h) serves to constrain network activity in addition to its role in regulating cellular excitability. Reduced I(h) may contribute to increased network excitability in cortical dysplasia.
Collapse
Affiliation(s)
- Asher J Albertson
- Dept. of Neurobiology, Univ. of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
43
|
Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 2010; 468:305-9. [PMID: 21048709 PMCID: PMC3058798 DOI: 10.1038/nature09511] [Citation(s) in RCA: 678] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 09/16/2010] [Indexed: 01/08/2023]
Abstract
Stroke is a leading cause of disability, but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage-the peri-infarct zone-is critical for rehabilitation, as it shows heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas. Thus, understanding the neuronal properties constraining this plasticity is important for the development of new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABA(A) receptors and is caused by an impairment in GABA (γ-aminobutyric acid) transporter (GAT-3/GAT-4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for α5-subunit-containing extrasynaptic GABA(A) receptors at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of α5- or δ-subunit-containing GABA(A) receptors responsible for tonic inhibition also proved beneficial for recovery after stroke, consistent with the therapeutic potential of diminishing extrasynaptic GABA(A) receptor function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
44
|
Kasumacic N, Glover JC, Perreault MC. Segmental patterns of vestibular-mediated synaptic inputs to axial and limb motoneurons in the neonatal mouse assessed by optical recording. J Physiol 2010; 588:4905-25. [PMID: 20962007 DOI: 10.1113/jphysiol.2010.195644] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proper control of movement and posture occurs partly via descending projections from the vestibular nuclei to spinal motor circuits. Days before birth in rodents, vestibulospinal neurons develop axonal projections that extend to the spinal cord. How functional these projections are just after birth is unknown. Our goal was to assess the overall functional organization of vestibulospinal inputs to spinal motoneurons in a brainstem-spinal cord preparation of the neonatal mouse (postnatal day (P) 0-5). Using calcium imaging, we recorded responses evoked by electrical stimulation of the VIIIth nerve, in many motoneurons simultaneously throughout the spinal cord (C2, C6, T7, L2 and L5 segments), in the medial and lateral motor columns. Selective lesions in the brainstem and/or spinal cord distinguished which tracts contributed to the responses: those in the cervical cord originated primarily from the medial vestibulospinal tracts but with a substantial contribution from the lateral vestibulospinal tract; those in the thoracolumbar cord originated exclusively from the lateral vestibulospinal tract. In the thoracolumbar but not the cervical cord, excitatory commissural connections mediated vestibular responses in contralateral motoneurons. Pharmacological blockade of GABA(A) receptors showed that responses involved a convergence of excitatory and inhibitory inputs which in combination produced temporal response patterns specific for different segmental levels. Our results show that by birth vestibulospinal projections in rodents have already established functional synapses and are organized to differentially regulate activity in neck and limb motoneurons in a tract- and segment-specific pattern similar to that in adult mammals. Thus, this particular set of descending projections develops several key features of connectivity appropriately at prenatal stages. We also present novel information about vestibulospinal inputs to axial motoneurons in mammals, providing a more comprehensive platform for future studies into the overall organization of vestibulospinal inputs and their role in regulating postural stability.
Collapse
Affiliation(s)
- Nedim Kasumacic
- Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Sognsvannsveien 9, PB 1103 Blindern, N-0317 Oslo, Norway
| | | | | |
Collapse
|
45
|
Rao D, Basura GJ, Roche J, Daniels S, Mancilla JG, Manis PB. Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex. J Neurophysiol 2010; 104:2693-703. [PMID: 20884760 DOI: 10.1152/jn.01092.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 μM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that early sensorineural hearing loss affects the ability of 5-HT receptor activation to modulate A1 pyramidal cell excitability.
Collapse
Affiliation(s)
- Deepti Rao
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
46
|
SANTHAKUMAR V, JONES RT, MODY I. Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience 2010; 167:644-55. [PMID: 20206233 PMCID: PMC2907073 DOI: 10.1016/j.neuroscience.2010.02.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 11/24/2022]
Abstract
Striatal neurons are known to express GABA(A) receptor subunits that underlie both phasic and tonic inhibition. Striatal projection neurons, or medium spiny neurons (MSNs), are divided into two classes: MSNs containing the dopamine D1 receptor (D1-MSNs) form the direct pathway to the substantia nigra and facilitate movement while MSNs expressing the dopamine D2 receptor (D2-MSNs) form the pallidal pathway that inhibits movement. Consequently, modulating inhibition in distinct classes of MSNs will differentially impact downstream network activity and motor behavior. Given the powerful role of extrasynaptic inhibition in controlling neuronal excitability, we examined the nature of striatal tonic inhibition and its potential role in preventing excitotoxicity. Consistent with earlier studies in young (P16-P25) mice, tonic GABA currents in D2-MSNs were larger than in D1-MSNs. However, with age (>P30 mice) the tonic GABA currents increased in D1-MSNs but decreased in D2-MSNs. These data demonstrate a developmental switch in the MSN subtype expressing larger tonic GABA currents. Compared to wild-type, MSNs from adult mice lacking the GABA(A)R delta subunit (Gabrd(-/-) mice) had both decreased tonic GABA currents and reduced survival following an in vitro excitotoxic challenge with quinolinic acid. Furthermore, muscimol-induced tonic GABA currents were accompanied by reduced acute swelling of striatal neurons after exposure to NMDA in WT mice but not in Gabrd(-/-) mice. Our data are consistent with a role for tonic inhibition mediated by GABA(A)R delta subunits in neuroprotection against excitotoxic insults in the adult striatum.
Collapse
Affiliation(s)
- V. SANTHAKUMAR
- Departments of Neurology and Physiology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - R. T. JONES
- Departments of Neurology and Physiology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
- Neurobiology Graduate Program, University of California, Los Angeles, CA 90095, USA
| | - I. MODY
- Departments of Neurology and Physiology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|