1
|
Nas O, Albayrak D, Unal G. Of rats and robots: A mutual learning paradigm. J Exp Anal Behav 2025; 123:176-201. [PMID: 40072340 PMCID: PMC11954425 DOI: 10.1002/jeab.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/05/2025] [Indexed: 03/30/2025]
Abstract
Robots are increasingly used alongside Skinner boxes to train animals in operant conditioning tasks. Similarly, animals are being employed in artificial intelligence research to train various algorithms. However, both types of experiments rely on unidirectional learning, where one partner-the animal or the robot-acts as the teacher and the other as the student. Here, we present a novel animal-robot interaction paradigm that enables bidirectional, or mutual, learning between a Wistar rat and a robot. The two agents interacted with each other to achieve specific goals, dynamically adjusting their actions based on the positive (rewarding) or negative (punishing) signals provided by their partner. The paradigm was tested in silico with two artificial reinforcement learning agents and in vivo with different rat-robot pairs. In the virtual trials, both agents were able to adapt their behavior toward reward maximization, achieving mutual learning. The in vivo experiments revealed that rats rapidly acquired the behaviors necessary to receive the reward and exhibited passive avoidance learning for negative signals when the robot displayed a steep learning curve. The developed paradigm can be used in various animal-machine interactions to test the efficacy of different learning rules and reinforcement schedules.
Collapse
Affiliation(s)
- Oguzcan Nas
- Behavioral Neuroscience Laboratory, Department of PsychologyBoğaziçi UniversityIstanbulTurkey
| | - Defne Albayrak
- Behavioral Neuroscience Laboratory, Department of PsychologyBoğaziçi UniversityIstanbulTurkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of PsychologyBoğaziçi UniversityIstanbulTurkey
| |
Collapse
|
2
|
Salazar AL, Centanni SW. Sex Differences in Mouse Models of Voluntary Alcohol Drinking and Abstinence-Induced Negative Emotion. Alcohol 2024; 121:45-57. [PMID: 39053705 PMCID: PMC11637945 DOI: 10.1016/j.alcohol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Alcohol Use Disorder (AUD) is a growing problem worldwide, causing an incredible burden on health and the economy. Though AUD impacts people of all backgrounds and demographics, increasing evidence has suggested robust sex differences in alcohol drinking patterns and AUD-induced negative emotionality or hyperkatifeia. Rates of problematic drinking have significantly risen among women, and women face more severe negative emotional consequences in abstinence such as increased risk of comorbidity with an anxiety or mood disorder and more severe symptoms of depression. As such, a bevy of preclinical literature using contingent methods of alcohol (ethanol) consumption has amassed in recent years to better understand sex as a biological variable in alcohol drinking and abstinence-induced negative emotionality. Mice are widely used to model alcohol drinking, as they are conducive to genetic manipulation strategies, and many strains will voluntarily consume alcohol. Sex-specific results from these mouse studies, however, have been inconsistent. Therefore, this review aims to summarize the current knowledge on sex differences in AUD-related contingent ethanol drinking and abstinence-induced negative emotionality in mice. Various contingent mouse drinking models and negative emotional-based behavioral paradigms are introduced and subsequently discussed in the context of sex differences to show increasing indications of sex specificity in mouse preclinical studies of AUD. With this review, we hope to inform future research on potential sex differences in preclinical mouse models of AUD and provide mounting evidence supporting the need for more widespread inclusion of preclinical female subjects in future studies.
Collapse
Affiliation(s)
- Amanda L Salazar
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Samuel W Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
3
|
Yu YH, Kim GW, Lee YR, Park DK, Song B, Kim DS. Effects of Sildenafil on Cognitive Function Recovery and Neuronal Cell Death Protection after Transient Global Cerebral Ischemia in Gerbils. Biomedicines 2024; 12:2077. [PMID: 39335590 PMCID: PMC11429064 DOI: 10.3390/biomedicines12092077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Cerebral ischemic stroke is a major cause of death worldwide due to brain cell death resulting from ischemia-reperfusion injury. However, effective treatment approaches for patients with ischemic stroke are still lacking in clinical practice. This study investigated the potential neuroprotective effects of sildenafil, a phosphodiesterase-5 inhibitor, in a gerbil model of global brain ischemia. We investigated the effects of sildenafil on the expression of glial fibrillary acidic protein and aquaporin-4, which are markers related to astrocyte activation and water homeostasis, respectively. Immunofluorescence analysis showed that the number of cells co-expressing these markers, which was elevated in the ischemia-induced group, was significantly reduced in the sildenafil-treated groups. This suggests that sildenafil may have a potential mitigating effect on astrocyte activation induced by ischemia. Additionally, we performed various behavioral tests, including the open-field test, novel object recognition, Barnes maze, Y-maze, and passive avoidance tests, to evaluate sildenafil's effect on cognitive function impaired by ischemia. Overall, the results suggest that sildenafil may serve as a neuroprotective agent, potentially alleviating delayed neuronal cell death and improving cognitive function impaired by ischemia.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Gun Woo Kim
- Research Supporting Center for Medical Science, College of Medicine, Dong-A, Busan 49201, Republic of Korea
| | - Yu Ran Lee
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
4
|
Neville V, Finnegan E, Paul ES, Davidson M, Dayan P, Mendl M. You are How You Eat: Foraging Behavior as a Potential Novel Marker of Rat Affective State. AFFECTIVE SCIENCE 2024; 5:232-245. [PMID: 39391344 PMCID: PMC11461729 DOI: 10.1007/s42761-024-00242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
Effective and safe foraging requires animals to behave according to the expectations they have about the rewards, threats, and costs in their environment. Since these factors are thought to be reflected in the animals' affective states, we can use foraging behavior as a window into those states. In this study, rats completed a foraging task in which they had repeatedly to decide whether to continue to harvest a food source despite increasing time costs, or to forgo food to switch to a different food source. Rats completed this task across two experiments using manipulations designed to induce both positive and negative, and shorter- and longer- term changes in affective state: removal and return of enrichment (Experiment 1), implementation and reversal of an unpredictable housing treatment (Experiment 1), and delivery of rewards (tickling or sucrose) and punishers (air-puff or back-handling) immediately prior to testing (Experiment 2). In Experiment 1, rats completed fewer trials and were more prone to switching between troughs when housed in standard, compared to enriched, housing conditions. In Experiment 2, rats completed more trials following pre-test tickling compared to pre-test sucrose delivery. However, we also found that they were prone to disengaging from the task, suggesting they were really choosing between three options: 'harvest', 'switch', or 'not work'. This limits the straightforward interpretation of the results. At present, foraging behavior within the context of this task cannot reliably be used as an indicator of an affective state in animals. Supplementary Information The online version contains supplementary material available at 10.1007/s42761-024-00242-4.
Collapse
Affiliation(s)
- Vikki Neville
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Emily Finnegan
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | - Molly Davidson
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics & University of Tübingen, Tübingen, Germany
| | - Michael Mendl
- Bristol Veterinary School, University of Bristol, Langford, UK
| |
Collapse
|
5
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
6
|
Galindo-Paredes G, Flores G, Morales-Medina JC. Olfactory bulbectomy induces nociceptive alterations associated with gliosis in male rats. IBRO Neurosci Rep 2023; 14:494-506. [PMID: 37388490 PMCID: PMC10300455 DOI: 10.1016/j.ibneur.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023] Open
Abstract
Major depressive disorder (MDD) is a major health concern worldwide with a wide array of symptoms. Emerging evidence suggests a high comorbidity between MDD and chronic pain, however, the relationship between these two diseases is not completely understood. Growing evidence suggests that glial cells play a key role in both disorders. Hence, we examined the effect of olfactory bulbectomy (OBX), a well-known model of depression-related behavior, on nociceptive behaviors and the number and morphology of astrocytes and glial cells in brain regions involved in the control of nociceptive processes in male rats. The brain regions analyzed included the basolateral amygdala (BLA), central amygdala (CeA), prefrontal cortex (PFC), and CA1 subregion of the hippocampus. A battery of behavioral tests, mechanical allodynia, thermal cold allodynia and mechanical hyperalgesia, was evaluated before and four weeks after OBX. Quantitative morphological analysis, as well as assessment of the number of glial fibrillary acidic protein (GFAP) and ionizing calcium-binding adaptor molecule 1 (Iba1) positive astrocytes and microglia were carried out to characterize glial remodeling and density, respectively. OBX caused mechanical and cold allodynia in an asynchronous pattern. The cold allodynia was noticeable one week following surgery, while mechanical allodynia became apparent two weeks after surgery. In the BLA, CeA and CA1, OBX caused significant changes in glial cells, such as hypertrophy and hypotrophy in GFAP-positive astrocytes and Iba1-positive microglia, respectively. Iba1-positive microglia in the PFC underwent selective hypotrophy due to OBX and OBX enhanced both GFAP-positive astrocytes and Iba1-positive microglia in the BLA. In addition, OBX increased the number of GFAP-positive astrocytes in the CeA and CA1. The amount of Iba1-positive microglia in the PFC also increased as a result of OBX. Furthermore, we found that there was a strong link between the observed behaviors and glial activation in OBX rats. Overall, our work supports the neuroinflammatory hypothesis of MDD and the comorbidity between pain and depression by demonstrating nociceptive impairment and significant microglial and astrocytic activation in the brain.
Collapse
Affiliation(s)
- Gumaro Galindo-Paredes
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cinvestav del IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| |
Collapse
|
7
|
Yawata Y, Shikano Y, Ogasawara J, Makino K, Kashima T, Ihara K, Yoshimoto A, Morikawa S, Yagishita S, Tanaka KF, Ikegaya Y. Mesolimbic dopamine release precedes actively sought aversive stimuli in mice. Nat Commun 2023; 14:2433. [PMID: 37106002 PMCID: PMC10140067 DOI: 10.1038/s41467-023-38130-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In some models, animals approach aversive stimuli more than those housed in an enriched environment. Here, we found that male mice in an impoverished and unstimulating (i.e., boring) chamber without toys sought aversive air puffs more often than those in an enriched chamber. Using this animal model, we identified the insular cortex as a regulator of aversion-seeking behavior. Activation and inhibition of the insular cortex increased and decreased the frequencies of air-puff self-stimulation, respectively, and the firing patterns of insular neuron ensembles predicted the self-stimulation timing. Dopamine levels in the ventrolateral striatum decreased with passive air puffs but increased with actively sought puffs. Around 20% of mice developed intense self-stimulation despite being offered toys, which was prevented by administering opioid receptor antagonists. This study establishes a basis for comprehending the neural underpinnings of usually avoided stimulus-seeking behaviors.
Collapse
Affiliation(s)
- Yosuke Yawata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yu Shikano
- Division of Brain Science, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jun Ogasawara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kenichi Makino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Keiko Ihara
- Division of Brain Science, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sho Yagishita
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kenji F Tanaka
- Division of Brain Science, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Effinger DP, Quadir SG, Ramage MC, Cone MG, Herman MA. Sex-specific effects of psychedelic drug exposure on central amygdala reactivity and behavioral responding. Transl Psychiatry 2023; 13:119. [PMID: 37031219 PMCID: PMC10082812 DOI: 10.1038/s41398-023-02414-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Psilocybin and its active metabolite psilocin have been shown to elicit rapid and long-lasting symptom improvements in a variety of affective psychiatric illnesses. However, the region-specific alterations underlying these therapeutic effects remain relatively unknown. The central amygdala (CeA) is a primary output region within the extended amygdala that is dysregulated in affective psychiatric disorders. Here, we measured CeA activity using the activity marker c-Fos and CeA reactivity using fiber photometry paired with an aversive air-puff stimulus. We found that psilocin administration acutely increased CeA activity in both males and females and increased stimulus specific CeA reactivity in females, but not males. In contrast, psilocin produced time-dependent decreases in reactivity in males, but not in females, as early as 2 days and lasting to 28 days post administration. We also measured behavioral responses to the air-puff stimulus and found sex-dependent changes in threat responding but not exploratory behavior or general locomotion. Repeated presentations of the auditory component of the air-puff were also performed and sex-specific effects of psilocin on CeA reactivity to the auditory-alone stimulus were also observed. This study provides new evidence that a single dose of psilocin produces sex-specific, time-dependent, and enduring changes in CeA reactivity and behavioral responding to specific components of an aversive stimulus.
Collapse
Affiliation(s)
- D P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - S G Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M C Ramage
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M G Cone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Ferdousi MI, Calcagno P, Sanchez C, Smith KL, Kelly JP, Roche M, Finn DP. Characterization of pain-, anxiety-, and cognition-related behaviors in the complete Freund's adjuvant model of chronic inflammatory pain in Wistar-Kyoto rats. FRONTIERS IN PAIN RESEARCH 2023; 4:1131069. [PMID: 37113211 PMCID: PMC10126329 DOI: 10.3389/fpain.2023.1131069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic pain is often associated with comorbid anxiety and cognitive dysfunction, negatively affecting therapeutic outcomes. The influence of genetic background on such interactions is poorly understood. The stress-hyperresponsive Wistar-Kyoto (WKY) rat strain, which models aspects of anxiety and depression, displays enhanced sensitivity to noxious stimuli and impaired cognitive function, compared with Sprague-Dawley (SD) counterparts. However, pain- and anxiety-related behaviors and cognitive impairment following induction of a persistent inflammatory state have not been investigated simultaneously in the WKY rats. Here we compared the effects of complete Freund's adjuvant (CFA)-induced persistent inflammation on pain-, negative affect- and cognition-related behaviors in WKY vs. SD rats. Methods Male WKY and SD rats received intra-plantar injection of CFA or needle insertion (control) and, over the subsequent 4 weeks, underwent behavioral tests to assess mechanical and heat hypersensitivity, the aversive component of pain, and anxiety- and cognition-related behaviors. Results The CFA-injected WKY rats exhibited greater mechanical but similar heat hypersensitivity compared to SD counterparts. Neither strain displayed CFA-induced pain avoidance or anxiety-related behavior. No CFA-induced impairment was observed in social interaction or spatial memory in WKY or SD rats in the three-chamber sociability and T-maze tests, respectively, although strain differences were apparent. Reduced novel object exploration time was observed in CFA-injected SD, but not WKY, rats. However, CFA injection did not affect object recognition memory in either strain. Conclusions These data indicate exacerbated baseline and CFA-induced mechanical hypersensitivity, and impairments in novel object exploration, and social and spatial memory in WKY vs. SD rats.
Collapse
Affiliation(s)
- Mehnaz I. Ferdousi
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Patricia Calcagno
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | | | | | - John P. Kelly
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Michelle Roche
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Correspondence: David P. Finn
| |
Collapse
|
10
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Koyuncuoğlu T, Sevim H, Çetrez N, Meral Z, Gönenç B, Kuntsal Dertsiz E, Akakın D, Yüksel M, Kasımay Çakır Ö. High intensity interval training protects from Post Traumatic Stress Disorder induced cognitive impairment. Behav Brain Res 2020; 397:112923. [PMID: 32976860 DOI: 10.1016/j.bbr.2020.112923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
This study aimed to show the possible protective effects of high intensity interval training (HIIT) in PTSD-induced rats and probable underlying mechanisms. Female rats (n = 44) were separated as; Sedentary (SED), moderate intensity continuous training (MICT), HIIT groups. Then the groups were divided into subgroups according to PTSD induction (n = 6-8/group). Exercise groups performed HIIT or MICT for 6 weeks. On the fifth week, PTSD was induced by single prolonged stress protocol. Cognitive functions were evaluated by object recognition, anxiety levels by hole-board and elevated plus maze, and fear conditioning by passive avoidance tests. Following decapitation, malondialdehyde (MDA), glutathione (GSH), luminol and lucigenin chemiluminescence levels, and myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) activities were measured, and histopathological damage was evaluated. The data was analyzed by one-way ANOVA. Cognitive decline and aggravated anxiety levels in SED + PTSD group were improved in both PTSD-induced exercise groups (p < 0.05-0.001). The increased chemiluminescence levels, MPO activity and histological damage were depressed in both PTSD-induced exercise groups (p < 0.05-0.001). The risen MDA levels in SED + PTSD group were suppressed only in HIIT + PTSD group (p < 0.01-0.001). The decreased GSH levels were increased by MICT (p < 0.05-0.001), and CAT and SOD activities were improved via HIIT (p < 0.05). Compared to SED group, latency was decreased in SED + PTSD (p < 0.05-0.01) group. Neuronal damage scores were alleviated in both PTSD-induced exercise groups (p < 0.001). PTSD-induced memory decline was protected by both of the exercise models however more effectively by HIIT via decreasing oxidative stress, anxiety levels and by improving antioxidant capacity as a protective system for neuronal damage.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Hacer Sevim
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Nurşen Çetrez
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Zeynep Meral
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Berfin Gönenç
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Ekin Kuntsal Dertsiz
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory Techniques, Marmara University Vocational School of Health Services, Istanbul, Turkey
| | - Özgür Kasımay Çakır
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
12
|
Zhu YF, Linher-Melville K, Niazmand MJ, Sharma M, Shahid A, Zhu KL, Parzei N, Sidhu J, Haj C, Mechoulam R, Singh G. An evaluation of the anti-hyperalgesic effects of cannabidiolic acid-methyl ester in a preclinical model of peripheral neuropathic pain. Br J Pharmacol 2020; 177:2712-2725. [PMID: 31981216 DOI: 10.1111/bph.14997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NEP) is associated with growing therapeutic cannabis use. To promote quality of life without psychotropic effects, cannabinoids other than Δ9-tetrahydrocannabidiol, including cannabidiol and its precursor cannabidiolic acid (CBDA), are being evaluated. Due to its instability, CBDA has been understudied, particularly as an anti-nociceptive agent. Adding a methyl ester group (CBDA-ME) significantly enhances its stability, facilitating analyses of its analgesic effects in vivo. This study examines early treatment efficacy of CBDA-ME in a rat model of peripherally induced NEP and evaluates sex as a biological variable. EXPERIMENTAL APPROACH After 14 consecutive days of intraperitoneal CBDA-ME administration at 0.01, 0.1 and 1 μg·kg-1 , commencing 1 day after surgically implanting a sciatic nerve-constricting cuff to induce NEP, the anti-nociceptive efficacy of this cannabinoid was assessed in male and female Sprague-Dawley rats relative to vehicle-treated counterparts. In females, 2 and 4 μg·kg-1 daily doses of CBDA-ME were also evaluated. Behavioural tests were performed for hind paw mechanical and thermal withdrawal thresholds once a week for 8 weeks. At endpoint, in vivo electrophysiological recordings were obtained to characterize soma threshold changes in primary sensory neurons. KEY RESULTS In males, CBDA-ME elicited a significant concentration-dependent chronic anti-hyperalgesic effect, also influencing both nociceptive and non-nociceptive mechanoreceptors, which were not observed in females at any of the concentrations tested. CONCLUSION AND IMPLICATIONS Initiating treatment of a peripheral nerve injury with CBDA-ME at an early stage post-surgery provides anti-nociception in males, warranting further investigation into potential sexual dimorphisms underlying this response.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mohammad Javad Niazmand
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Shahid
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christeene Haj
- Institute for Cannabinoid Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Raphael Mechoulam
- Institute for Cannabinoid Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Azogu I, Cossette I, Mukunzi J, Ibeke O, Plamondon H. Sex-specific differences in adult cognition and neuroplasticity following repeated combinatory stress and TrkB receptor antagonism in adolescence. Horm Behav 2019; 113:21-37. [PMID: 30995444 DOI: 10.1016/j.yhbeh.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Evidence supports brain-derived neurotrophic factor (BDNF) and its primary receptor tyrosine-related kinase B (TrkB) as targets in the treatment of mood disorders. This study characterized the impact of a 10-day combinatory stress paradigm (alternating days of restraint stress and forced swim) and administration of the selective TrkB antagonist ANA-12 (0.5 mg/kg, i.p.) during adolescence in male and female Wistar rats on adulthood behavioral and neurochemical responses. The social interaction/preference (SIT/SP), and Y maze conditioned place preference (YMCPP) and passive avoidance tests (YMPAT), initiated on PND 62, served to determine sex-related behavioral responses. Results support reduced sociability in females in the SIT/SP, but no impact of ANA-12 to regulate sociability or social memory. Blockade of TrkB during adolescence facilitated YMCPP-related reward behavior in both sexes, and reduced YMPAT fear conditioning in females. Following behavioral testing, rats were exposed to 5-min acute forced swim and brains collected 2 h post swim to determine effects of adolescent TrkB blockade and stress exposure on neurochemical regulators of stress and plasticity. Findings show elevated glucocorticoid receptor (GR-) and TrkB-immunoreactivity (ir) in the amygdalar central nucleus, and GR-ir in the hypothalamic paraventricular nucleus of females compared to males. In the hippocampal CA1, BDNF-ir was lower in females versus males, and GR-ir was elevated in stress versus non-stress males. Together, we demonstrate that inherent sex-specific differences, which may modulate impact of adolescence stress exposure and TrkB inhibition, differentially affect male and female adulthood behavior and biochemical response profiles, suggesting that these responses are in part conditioned by prior experience.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Isabelle Cossette
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Joana Mukunzi
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Ogechi Ibeke
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Llorca-Torralba M, Suárez-Pereira I, Bravo L, Camarena-Delgado C, Garcia-Partida JA, Mico JA, Berrocoso E. Chemogenetic Silencing of the Locus Coeruleus-Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biol Psychiatry 2019; 85:1021-1035. [PMID: 30987747 DOI: 10.1016/j.biopsych.2019.02.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pain affects both sensory and emotional aversive responses, often provoking anxiety-related diseases when chronic. However, the neural mechanisms underlying the interactions between anxiety and chronic pain remain unclear. METHODS We characterized the sensory, emotional, and cognitive consequences of neuropathic pain (chronic constriction injury) in a rat model. Moreover, we determined the role of the locus coeruleus (LC) neurons that project to the basolateral amygdala (BLA) using a DREADD (designer receptor exclusively activated by designer drugs). RESULTS Chronic constriction injury led to sensorial hypersensitivity in both the short term and long term. Otherwise, long-term pain led to an anxiety-like profile (in the elevated zero maze and open field tests), as well as increased responses to learn aversive situations (in the passive avoidance and fear conditioning tests) and an impairment of nonemotional cognitive tasks (in the novel object recognition and object pattern of separation tests). Chemogenetic blockade of the LC-BLA pathway and intra-BLA or systemic antagonism of beta-adrenergic receptors abolished both long-term pain-induced anxiety and enhanced fear learning. By contrast, chemogenetic activation of this pathway induced anxiety-like behaviors and enhanced the aversive learning and memory index in sham animals, although it had little effect on short- and long-term chronic constriction injury animals. Interestingly, modulation of LC-BLA activity did not modify sensorial perception or episodic memory. CONCLUSIONS Our results indicate that dimensions associated with pain are processed by independent pathways and that there is an overactivation of the LC-BLA pathway when anxiety and chronic pain are comorbid, which involves the activity of beta-adrenergic receptors.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Carmen Camarena-Delgado
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research Foundation of Cadiz, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Juan Antonio Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Esther Berrocoso
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research Foundation of Cadiz, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
15
|
Azogu I, Plamondon H. Inhibition of TrkB at the nucleus accumbens, using ANA-12, regulates basal and stress-induced orexin A expression within the mesolimbic system and affects anxiety, sociability and motivation. Neuropharmacology 2017; 125:129-145. [PMID: 28705440 DOI: 10.1016/j.neuropharm.2017.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/05/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Repeated stress exposure can lead to the development of anxiety and mood disorders. An emerging biological substrate of depression and associated pathology is the nucleus accumbens (NAc), which through interactions with limbic, cognitive and motor circuits can regulate a variety of stress responses. Within these circuits, orexin neurons are involved in arousal and stress adaptability, effects proposed mediated via brain-derived neurotrophic factor signaling. This study tested the hypotheses that 1) repeated exposure to heterotypic stress alters social ability and preference and passive avoidant behaviors, 2) TrkB receptors at the NAc shell regulates stress-induced behavioral responses and orexin expression within the mesocorticolimbic system. Our findings indicate that ANA-12 (0.25 μg/0.5 μl) enhanced sociability during the social interaction test, although treatment had no effect on social preference. The development of conditioned place preference, and fear retention in the passive avoidance test were also facilitated by ANA-12. Biochemical assessments on brain tissues collected within 2 h of a forced swim exposure revealed that ANA-12 increased orexin A immunoreactivity (ir) in the hypothalamic perifornical area, while expression was reduced in the ventral portion of the hippocampal CA1 layer, irrespective of the stress condition. This contrasts changes at the VTA characterized by elevated versus reduced orexin A-ir in ANA-12-treated stress and non-stress rats, respectively. Colocalized orexin A- and tyrosine hydroxylase (TH)-ir at the VTA supports a different temporal expression post stress, TH-ir being unaffected 9 days post stress. These findings support a role for TrkB receptors in regulating basal and stress-induced social, cognitive and motivational behavior, and modulatory actions of BDNF, via TrkB signaling, on orexin A signaling upon stress exposure.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Abstract
The exact mechanism underlying fibromyalgia is unknown, but increased facilitatory modulation and/or dysfunctional descending inhibitory pathway activity are posited as possible mechanisms contributing to sensitization of the central nervous system. The primary goal of this study is to identify a fibromyalgia neural circuit that can account for these abnormalities in central pain. The second goal is to gain a better understanding of the functional connectivity between the default and the executive attention network (salience network plus dorsal lateral prefrontal cortex) in fibromyalgia. We examine neural activity associated with fibromyalgia (N = 44) and compare these with healthy controls (N = 44) using resting state source localized EEG. Our data support an important role of the pregenual anterior cingulate cortex but also suggest that the degree of activation and the degree of integration between different brain areas is important. The inhibition of the connectivity between the dorsal lateral prefrontal cortex and the posterior cingulate cortex on the pain inhibitory pathway seems to be limited by decreased functional connectivity with the pregenual anterior cingulate cortex. Our data highlight the functional dynamics of brain regions integrated in brain networks in fibromyalgia patients.
Collapse
Affiliation(s)
- Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, United States of America
- * E-mail:
| | - Jan Ost
- BRAIN, Sint Augustinus Hospital Antwerp, Antwerp, Belgium
| | | | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Moriarty O, Lang Y, Idrees Z, McGuire BE, Finn DP. Impaired cued and spatial learning performance and altered cannabinoid CB₁ receptor functionality in the substantia nigra in a rat model of diabetic neuropathy. Behav Brain Res 2016; 303:61-70. [PMID: 26774979 DOI: 10.1016/j.bbr.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 12/25/2022]
Abstract
Diabetes, and associated diabetic neuropathic pain, impact negatively on cognitive function. However, the underlying mechanisms remain poorly understood. This study investigated neuropathic pain-related behaviour and cognitive function in the rat streptozotocin (STZ) model of diabetes, and assessed cannabinoid1 (CB1) receptor functionality in discrete brain regions. Male Lister-Hooded rats received STZ (60 mg/kgs.c.) or vehicle. Sensory responses were assessed in von Frey and Hargreaves tests. Cognitive, motor and sensorimotor functions were assessed using novel object recognition and Morris water maze tasks. CB1 receptor functionality was assessed by [(35)S]GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) autoradiography. STZ treatment was associated with mechanical allodynia and thermal hypoalgesia. Novel object recognition was unaltered in diabetic rats. STZ treatment was associated with impaired performance in the Morris water maze acquisition phase, but there were no differences in memory retrieval in the probe trial. Stimulus-response learning in the water maze cued trial was also disrupted in STZ-treated rats, possibly indicating sensorimotor deficits. CB1 receptor agonist-stimulated [(35)S]GTPγS binding was attenuated in the substantia nigra of STZ-treated rats but unaltered in the hippocampus. In conclusion, STZ treatment as a model of diabetic neuropathy was associated with specific functional deficits in the Morris water maze, effects which may be related to altered CB1 receptor functionality in the substantia nigra.
Collapse
Affiliation(s)
- Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland
| | - Yvonne Lang
- Pharmacology and Therapeutics, School of Medicine, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland
| | - Zubair Idrees
- Department of Opthalmology, Galway University Hospital, Ireland
| | - Brian E McGuire
- School of Psychology, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland; Galway Diabetes Research Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Ireland; NCBES Neuroscience Centre, Ireland; Centre for Pain Research, Ireland; Galway Diabetes Research Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Moriarty O, Gorman CL, McGowan F, Ford GK, Roche M, Thompson K, Dockery P, McGuire BE, Finn DP. Impaired recognition memory and cognitive flexibility in the rat L5-L6 spinal nerve ligation model of neuropathic pain. Scand J Pain 2016; 10:61-73. [PMID: 28361775 DOI: 10.1016/j.sjpain.2015.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Although neuropathic pain is known to negatively affect cognition, the neural mechanisms involved are poorly understood. Chronic pain is associated with changes in synaptic plasticity in the brain which may impact on cognitive functioning. The aim of this study was to model neuropathic pain in mid-aged rats using spinal nerve ligation (SNL). Following establishment of allodynia and hyperalgesia, behaviour was assessed in a battery of cognitive tests. Expression of the presynaptic protein, synaptophysin, and its colocalisation with the vesicular GABA and glutamate transporters (vGAT and vGLUT, respectively), was investigated in the medial prefrontal cortex (mPFC) and hippocampus. METHODS Nine month old male Sprague Dawley rats underwent L5-L6 spinal nerve ligation or a sham procedure. Mechanical and cold allodynia and thermal hyperalgesia were assessed using von Frey, acetone and Hargreaves tests, respectively. Cognition was assessed in the novel-object recognition, air-puff passive avoidance and Morris water maze behavioural tasks. Immunohistochemistry was used to examine the expression of synaptophysin in the mPFC and CA1 region of the hippocampus and double labelling of synaptophysin and the vesicular transporters vGAT and vGlut was used to investigate the distribution of synaptophysin on GABAergic and glutamatergic neurons. RESULTS SNL rats displayed impaired performance in the novel-object recognition task. Passive-avoidance responding, and spatial learning and memory in the Morris water maze, were unaffected by SNL surgery. However, in the water maze reversal task, pain-related impairments were evident during training and probe trials. SNL surgery was not associated with any differences in the expression of synaptophysin or its colocalisation with vGAT or vGLUT in the mPFC or the hippocampal CA1 region. CONCLUSIONS These results suggest that the SNL model of neuropathic pain is associated with deficits in recognition memory and cognitive flexibility, but these deficits are not associated with altered synaptophysin expression or distribution in the mPFC and CA1. IMPLICATIONS Cognitive complaints are common amongst chronic pain patients. Here we modelled cognitive impairment in a well-established animal model of neuropathic pain and investigated the neural mechanisms involved. A better understanding of this phenomenon is an important prerequisite for the development of improved treatment of patients affected.
Collapse
Affiliation(s)
- Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Claire L Gorman
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Fiona McGowan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Gemma K Ford
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Kerry Thompson
- Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Brian E McGuire
- School of Psychology, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
19
|
Jayarajan P, Nirogi R, Shinde A, Goura V, Babu VA, Yathavakilla S, Bhyrapuneni G. 5-HT6 receptor antagonist attenuates the memory deficits associated with neuropathic pain and improves the efficacy of gabapentinoids. Pharmacol Rep 2015; 67:934-42. [PMID: 26398388 DOI: 10.1016/j.pharep.2015.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/09/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Memory deficit is a co-morbid disorder in patients suffering from neuropathic pain. Gabapentin and pregabalin (gabapentinoids) are among the widely prescribed medications for the treatment of neuropathic pain. Memory loss and sedation are the commonly reported side effects with gabapentinoids. Improving the cognitive functions and attenuating drug-induced side effects may play a crucial role in the management of pain. METHODS We evaluated the effects of 5-HT6 receptor antagonists on the memory deficits associated with neuropathy. We also studied the effects of 5-HT6 receptor antagonists on the side effects, and the analgesic effects of gabapentinoids. RESULTS 5-HT6 receptor antagonists attenuated the cognitive deficits in neuropathic rats. Neuropathic rats co-treated with 5-HT6 receptor antagonist and gabapentinoids showed improvement in memory. 5-HT6 receptor antagonists enhanced the analgesic effects of gabapentinoids but had no effect on the motor side effects. The observed effects may not be due to pharmacokinetic interactions. CONCLUSIONS 5-HT6 receptor antagonist attenuate the cognitive deficits associated with neuropathy, and this effect is also seen when co-treated with gabapentinoids. Since, 5-HT6 antagonists improved the effectiveness of gabapentinoids, reduction in the dosage and frequency of gabapentinoids treatment may reduce the side effects. Combining 5-HT6 receptor antagonist with gabapentinoids may offer a novel treatment strategy for neuropathic pain.
Collapse
Affiliation(s)
- Pradeep Jayarajan
- Discovery Research, Suven Life Sciences Ltd., Hyderabad - 500 055, India; Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, India
| | - Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd., Hyderabad - 500 055, India.
| | - Anil Shinde
- Discovery Research, Suven Life Sciences Ltd., Hyderabad - 500 055, India
| | - Venkatesh Goura
- Discovery Research, Suven Life Sciences Ltd., Hyderabad - 500 055, India
| | - Vuyyuru Arun Babu
- Discovery Research, Suven Life Sciences Ltd., Hyderabad - 500 055, India
| | | | | |
Collapse
|
20
|
Nuseir KQ, Alzoubi KH, Alabwaini J, Khabour OF, Kassab MI. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation. Physiol Behav 2015; 145:84-90. [PMID: 25846434 DOI: 10.1016/j.physbeh.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 12/25/2022]
Abstract
This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous opioids.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Jehad Alabwaini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Biology, Faculty of Science, Tibah University, Al Madinah, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Manal I Kassab
- Department of Maternal and Child Health Nursing, Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
21
|
Bree D, Moriarty O, O'Mahony CM, Morris B, Bannerton K, Broom DC, Kelly JP, Roche M, Finn DP. Development and characterization of a novel, anatomically relevant rat model of acute postoperative pain. THE JOURNAL OF PAIN 2015; 16:421-35.e1-6. [PMID: 25640291 DOI: 10.1016/j.jpain.2015.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Acute postoperative pain remains a significant health care issue. Development of anatomically relevant animal models of postoperative pain, with improved predictive validity, would advance understanding of postoperative pain mechanisms and improve treatment outcomes. This study aimed to develop, characterize, and validate a rat model of acute postoperative pain associated with inguinal hernia repair based on the Lichtenstein inguinal hernia repair procedure (without hernia induction). We hypothesized that the surgery would result in reduced spontaneous locomotor activity, which would represent a pain-related phenotype. Postsurgical characterization involved extensive monitoring of home cage and open field locomotor activity, as well as mechanical hypersensitivity and assessment of c-Fos expression in the dorsal horn of the spinal cord. In pharmacologic validation studies, rats received morphine, carprofen, or paracetamol 1 hour before, and/or immediately after, surgery. Rats that underwent hernia repair surgery exhibited significantly lower horizontal and vertical activities in the home cage and open field in the early postsurgical period, compared with sham rats or rats that underwent skin incision only. Morphine, carprofen, and paracetamol attenuated the surgery-induced reductions in locomotor activity, to varying degrees. Surgery was associated with significantly increased c-Fos expression in the ipsilateral dorsal horn of the spinal cord, an effect attenuated by carprofen treatment. These results support the development and characterization of a novel, anatomically relevant animal model of acute postoperative pain that may facilitate development of improved treatment regimens. PERSPECTIVE Acute pain following inguinal hernia repair can be difficult to treat. Here we report, for the first time, the development of a novel, anatomically relevant rat model to facilitate improved understanding and treatment of acute postoperative pain following inguinal hernia repair.
Collapse
Affiliation(s)
- Dara Bree
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Discipline of Physiology, School of Medicine, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Orla Moriarty
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Discipline of Physiology, School of Medicine, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Research and Development, Covidien, North Haven, Connecticut
| | - Cliona M O'Mahony
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Discipline of Physiology, School of Medicine, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Research and Development, Covidien, North Haven, Connecticut
| | - Bradley Morris
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Discipline of Physiology, School of Medicine, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Karen Bannerton
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Daniel C Broom
- Research and Development, Covidien, North Haven, Connecticut
| | - John P Kelly
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Discipline of Physiology, School of Medicine, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - David P Finn
- Discipline of Pharmacology and Therapeutics, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| |
Collapse
|
22
|
The maternal deprivation animal model revisited. Neurosci Biobehav Rev 2015; 51:151-63. [PMID: 25616179 DOI: 10.1016/j.neubiorev.2015.01.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Abstract
Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry.
Collapse
|
23
|
Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H. Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2014; 279:177-90. [PMID: 25433096 DOI: 10.1016/j.bbr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The current study investigated the effects of acute versus repeated periods of sleep deprivation on avoidance learning and spatial memory and on the expression of discrete biochemical brain signals involved in stress regulation, motivation and brain plasticity. Male Long-Evans rats were sleep deprived using the platform-over-water method for a single 4 h period (ASD) or for daily 4h RSD period on five consecutive days (CSD). The Y maze passive avoidance task (YM-PAT) and the Morris water maze (MWM) were used to determine learning and memory 1h following the last SD period. Region-specific changes in glucocorticoid receptors (GR), tyrosine hydroxylase (TH), dopamine 1 receptors (DRD1), phospho-CREB (pCREB) and Ki-67 expression were assessed in the hippocampal formation, hypothalamus and mesolimbic regions 72 h following RSD. Behaviorally, our findings revealed increased latency to re-enter the aversive arm in the YM-PAT and reduced distance traveled and latency to reach the platform in the MWM in ASD rats compared to all other groups, indicative of improved avoidance learning and spatial memory, respectively. Acute SD enhanced TH expression in the ventral tegmental area, nucleus accumbens and A11 neurons of the hypothalamus and DRD1 expression in the lateral hypothalamus. Cell proliferation in the subventricular zone and pCREB expression in the dentate gyrus and CA3 regions was also enhanced following acute SD. In contrast, repeated SD significantly elevated GR-ir at the hypothalamic paraventricular nucleus and CA1 and CA3 layers of the hippocampus compared to all other groups. Our study supports that a brief 4h sleep deprivation period is sufficient to induce delayed neurochemical changes.
Collapse
Affiliation(s)
- Idu Azogu
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Patricia Barra de la Tremblaye
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Megan Dunbar
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Marianne Lebreton
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie LeMarec
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Hélène Plamondon
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
24
|
Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun 2014; 42:147-56. [PMID: 24994592 DOI: 10.1016/j.bbi.2014.06.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/26/2022] Open
Abstract
There is a paucity of data on the role of microglia and neuroinflammatory processes in the association between chronic pain and depression. The current study examined the effect of the microglial inhibitor minocycline on depressive-like behaviour, spinal nerve ligation (SNL)-induced mechanical and cold allodynia and associated changes in the expression of genes encoding microglial markers (M1 vs. M2 polarisation) and inflammatory mediators in the prefrontal cortex in the olfactory bulbectomised (OB) rat model of depression. Acute minocycline administration did not alter OB-induced depressive-like behaviour but prevented SNL-induced mechanical allodynia in both OB and sham rats. In comparison, chronic minocycline attenuated OB-induced depressive-like behaviour and prevented the development of SNL-induced mechanical allodynia in OB, but not sham, rats. Further analysis revealed that SNL-induced mechanical allodynia in OB rats was attenuated by chronic minocycline at almost all time-points over a 2week testing period, an effect observed only from day 10 post-SNL in sham rats. Chronic administration of minocycline reduced the expression of CD11b, a marker of microglial activation, and the M1 pro-inflammatory cytokine IL-1β, in the prefrontal cortex of sham-SNL animals. In comparison, the expression of the M2 microglia marker (MRC2) and anti-inflammatory cytokine IL-10 was increased, as were IL-1β, IL-6 and SOCS3, in the prefrontal cortex of OB-SNL animals following chronic minocycline. Thus, chronic minocycline attenuates neuropathic pain behaviour and modulates microglial activation and the central expression of inflammatory mediators in a manner dependent on the presence or absence of a depressive-like phenotype.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
25
|
Burke NN, Finn DP, Roche M. Chronic administration of amitriptyline differentially alters neuropathic pain-related behaviour in the presence and absence of a depressive-like phenotype. Behav Brain Res 2014; 278:193-201. [PMID: 25300472 DOI: 10.1016/j.bbr.2014.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023]
Abstract
Chronic pain and depression share a complex, reciprocal relationship. Furthermore, in addition to treating depression, antidepressants such as amitriptyline are a first-line treatment for chronic pain conditions, indicating possible common neural substrates underlying both depression and pain. However, there is a paucity of studies examining the effect of antidepressant treatment on nociceptive and neuropathic pain responding in the presence of a depressive phenotype. The current study aimed to examine the effect of chronic amitriptyline administration on neuropathic pain-related behaviour and associated neuroinflammatory processes in the olfactory bulbectomised (OB) rat model of depression. Nociceptive responding to mechanical, innocuous cold or noxious heat stimuli in sham or OB rats was not altered by chronic amitriptyline administration. The induction of neuropathic pain following L5-L6 spinal nerve ligation (SNL) resulted in robust mechanical and cold allodynia and heat hyperalgesia in both sham and OB vehicle-treated animals. Chronic amitriptyline administration attenuated SNL-induced mechanical allodynia in both sham and OB rats at day 7 post-SNL, an effect which was enhanced and prolonged in OB rats. In comparison, chronic amitriptyline administration attenuated SNL-induced cold allodynia and heat hyperalgesia in sham, but not OB, rats. Evaluating the affective/motivational aspect of pain using the place escape avoidance paradigm revealed that OB-SNL rats exhibit reduced noxious avoidance behaviour when compared with sham counterparts, an effect not altered by chronic amitriptyline administration. Chronic amitriptyline administration prevented the increased expression of GFAP, IL-10 and CCL5, and enhanced the expression of TNFα, in the prefrontal cortex of OB-SNL rats. In conclusion, these data demonstrate that chronic amitriptyline differentially alters somatic nociceptive responding following peripheral nerve-injury, depending on stimulus modality and the presence or absence of a depressive-like phenotype, an effect which may involve modulation of neuroinflammatory processes.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
26
|
Kloke V, Schreiber RS, Bodden C, Möllers J, Ruhmann H, Kaiser S, Lesch KP, Sachser N, Lewejohann L. Hope for the best or prepare for the worst? Towards a spatial cognitive bias test for mice. PLoS One 2014; 9:e105431. [PMID: 25137069 PMCID: PMC4138164 DOI: 10.1371/journal.pone.0105431] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
Abstract
Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested--comparable to human conditions--in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research.
Collapse
Affiliation(s)
- Vanessa Kloke
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Rebecca S. Schreiber
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Carina Bodden
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Julian Möllers
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Hanna Ruhmann
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lars Lewejohann
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Behavioral Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
27
|
Liu MG, Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog Neurobiol 2014; 116:13-32. [DOI: 10.1016/j.pneurobio.2014.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/12/2022]
|
28
|
Low LA. The impact of pain upon cognition: what have rodent studies told us? Pain 2013; 154:2603-2605. [PMID: 23774574 PMCID: PMC3808511 DOI: 10.1016/j.pain.2013.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Affiliation(s)
- Lucie A Low
- National Center for Complementary and Alternative Medicine, National Institutes of Health, 35 Convent Dr, Room 1C-1012, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Burke NN, Geoghegan E, Kerr DM, Moriarty O, Finn DP, Roche M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. GENES BRAIN AND BEHAVIOR 2013; 12:705-13. [PMID: 23957449 DOI: 10.1111/gbb.12080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5-L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham-operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)-6 and IL-10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL-6 and increased IL-10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL-1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain-related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala.
Collapse
|
30
|
Burke NN, Llorente R, Marco EM, Tong K, Finn DP, Viveros MP, Roche M. Maternal deprivation is associated with sex-dependent alterations in nociceptive behavior and neuroinflammatory mediators in the rat following peripheral nerve injury. THE JOURNAL OF PAIN 2013; 14:1173-84. [PMID: 23850096 DOI: 10.1016/j.jpain.2013.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Early-life stress is associated with an increased risk of developing affective disorders and chronic pain conditions. This study examined the effect of maternal deprivation (MD) on nociceptive responding prior to and following peripheral nerve injury (L5-L6 spinal nerve ligation [SNL]). Because neuroimmune signaling plays an important role in pain and affective disorders, associated alterations in glial and cytokine expression were assessed in key brain regions associated with emotional and nociceptive responding, the hippocampus and prefrontal cortex. MD female, but not male, rats exhibited thermal hypoalgesia and mechanical allodynia compared with control (non-MD) counterparts. SNL resulted in mechanical and cold allodynia in MD and control rats of both sexes. However, MD females exhibited enhanced SNL-induced allodynic responding compared with non-MD counterparts. Interleukin 6 (IL-6) expression was reduced in the prefrontal cortex of MD-SNL males when compared with non-SNL counterparts. Glial fibrillary acidic protein and IL-1β expression in the hippocampus of MD-SNL males was increased compared with non-MD controls. MD-SNL females exhibited reduced tumor necrosis factor alpha in the prefrontal cortex with a concomitant increase in IL-6 and tumor necrosis factor alpha expression in the hippocampus, compared with either MD or SNL alone. In conclusion, MD female, but not male, rats exhibit enhanced nociceptive responding following peripheral nerve injury, effects that may relate to the distinct neuroinflammatory profile observed in female versus male rats. PERSPECTIVE This study demonstrates that females rats exposed to early-life stress exhibit enhanced neuropathic pain responding, effects that are associated with alterations in neuroinflammatory mediators. Increased understanding of the interactions among early-life stress, gender, and pain may lead to the identification of novel therapeutic targets for the treatment of chronic pain disorders.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|