1
|
Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, Le Sourd AM, Coqueran S, Schmitt J, Rochefort C, Rondi-Reig L, Leboucher A, Boland A, Fin B, Deleuze JF, Boeckers TM, Ey E, Bourgeron T. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci 2023; 16:1139118. [PMID: 37008785 PMCID: PMC10061084 DOI: 10.3389/fnmol.2023.1139118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Allain-Thibeault Ferhat
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Elisabeth Verpy
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Forget
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Fabrice De Chaumont
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Florian Mueller
- Imagerie et Modélisation, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Anne-Marie Le Sourd
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Sabrina Coqueran
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Julien Schmitt
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Christelle Rochefort
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Laure Rondi-Reig
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Aziliz Leboucher
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Bertrand Fin
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
- Centre d’Étude du Polymorphisme Humain, Paris, France
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Elodie Ey
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm UMR-S 1258, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Arnaud K, Oliveira Moreira V, Vincent J, Dallerac G, Dubreuil C, Dupont E, Richter M, Müller UC, Rondi-Reig L, Prochiantz A, Di Nardo AA. Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Sci Alliance 2021; 4:4/11/e202000703. [PMID: 34544751 PMCID: PMC8473726 DOI: 10.26508/lsa.202000703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Adult mouse choroid plexus shows elevated APP expression. sAPPα secreted into the CSF modulates neurogenic niche proliferation, whereas choroid plexus expression of fAD APP mutants leads to reduced niche proliferation, deficits in hippocampus synaptic plasticity, and learning defects. Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aβ peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aβ in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.
Collapse
Affiliation(s)
- Karen Arnaud
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Jean Vincent
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Labex BioPsy, ENP Foundation, Sorbonne University, Paris, France
| | - Glenn Dallerac
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Chantal Dubreuil
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Edmond Dupont
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Max Richter
- Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg, Germany
| | - Ulrike C Müller
- Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg, Germany
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Labex BioPsy, ENP Foundation, Sorbonne University, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| |
Collapse
|
3
|
Julien S, Anne-Lise P, Mathieu B, Laurent A, Pascal B, Laure RR. Validation of memory assessment in the Starmaze task: Data from 14 month-old APPPS1 mice and controls. Data Brief 2021; 37:107266. [PMID: 34381853 PMCID: PMC8335621 DOI: 10.1016/j.dib.2021.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 11/03/2022] Open
Abstract
This article describes navigation data of 14 month-old APPPS1 and C57Bl6 in the Starmaze task. These data were acquired as positive controls of memory deficit in a model of the familial form of Alzheimers's disease (see Schmitt et al., Flexibility as a marker of early cognitive decline in humanized Apolipoprotein E ε4 (ApoE4) mice, Neurobiol Aging, 2021). They were acquired in a reduced version of the Starmaze environment and accompanied by a number of acquisitions in different control groups at 6 and 14 months to assess the robustness of the procedure and its associated memory scores. These data illustrate the extraction of a variety of navigation scores (including search strategy, spatial learning and memory) and provide a reference of navigation data in the Starmaze task for healthy 6-month-old controls, normal aging and a model of pathological memory deficit.
Collapse
Affiliation(s)
- Schmitt Julien
- CNRS, INSERM, Sorbonne Université,Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Cerebellum Navigation and Memory Team (CeZaMe), Paris F-75005, France.,Neurodegeneration Cluster, Rare & Neurologic Diseases Research, Sanofi R&D, Chilly-Mazarin F-91380, France
| | - Paradis Anne-Lise
- CNRS, INSERM, Sorbonne Université,Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Cerebellum Navigation and Memory Team (CeZaMe), Paris F-75005, France
| | | | - Andrieu Laurent
- Biostatistics & Programming Department, Non-Clinical Efficacy & Safety Team, Sanofi R&D, Vitry-Sur-Seine F-94400, France
| | - Barnéoud Pascal
- Neurodegeneration Cluster, Rare & Neurologic Diseases Research, Sanofi R&D, Chilly-Mazarin F-91380, France
| | - Rondi-Reig Laure
- CNRS, INSERM, Sorbonne Université,Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Cerebellum Navigation and Memory Team (CeZaMe), Paris F-75005, France
| |
Collapse
|
4
|
Schmitt J, Paradis AL, Boucher M, Andrieu L, Barnéoud P, Rondi-Reig L. Flexibility as a marker of early cognitive decline in humanized apolipoprotein E ε4 (ApoE4) mice. Neurobiol Aging 2021; 102:129-138. [PMID: 33765426 DOI: 10.1016/j.neurobiolaging.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
To test the hypothesis that ApoE4 may be involved in cognitive deficits associated with aging, we investigated the impact of APOE4 status and aging on the flexibility and memory components of spatial learning in mice. Young adult (6 months) and middle-aged (14 months) ApoE4, ApoE3 and C57BL/6 male mice were tested for flexibility in an aquatic Y-maze, and for spatio-temporal memory acquisition in the Starmaze. Our results revealed a flexibility deficit of the 6-month-old ApoE4 mice compared to controls. However, this deficit was not associated with spatio-temporal memory deficit at the same age. Importantly, the ApoE4 flexibility deficit did not increase with age, nor turn into memory deficit, or was able to predict individual variations of memory performance at 14 months. By contrast, control ApoE3 mice showed a decline of flexibility at 14 months resulting in performance similar to that of ApoE4. Overall, our results suggest that ApoE4 could be associated with an acceleration of the flexibility decrease otherwise observed in normal aging.
Collapse
Affiliation(s)
- Julien Schmitt
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Cerebellum Navigation and Memory Team (CeZaMe), Paris, France; Neurodegeneration Cluster, Rare & Neurologic Diseases Research, Sanofi R&D, Chilly-Mazarin, France
| | - Anne-Lise Paradis
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Cerebellum Navigation and Memory Team (CeZaMe), Paris, France
| | | | - Laurent Andrieu
- Biostatistics & Programming Department, Non-Clinical Efficacy & Safety team, Sanofi R&D, Vitry-Sur-Seine, Paris, France
| | - Pascal Barnéoud
- Neurodegeneration Cluster, Rare & Neurologic Diseases Research, Sanofi R&D, Chilly-Mazarin, France
| | - Laure Rondi-Reig
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine (IBPS), Neurosciences Paris Seine (NPS), Cerebellum Navigation and Memory Team (CeZaMe), Paris, France.
| |
Collapse
|
5
|
Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nat Commun 2019; 10:2251. [PMID: 31113954 PMCID: PMC6529420 DOI: 10.1038/s41467-019-09958-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Cerebellar activity supported by PKC-dependent long-term depression in Purkinje cells (PCs) is involved in the stabilization of self-motion based hippocampal representation, but the existence of cerebellar processes underlying integration of allocentric cues remains unclear. Using mutant-mice lacking PP2B in PCs (L7-PP2B mice) we here assess the role of PP2B-dependent PC potentiation in hippocampal representation and spatial navigation. L7-PP2B mice display higher susceptibility to spatial map instability relative to the allocentric cue and impaired allocentric as well as self-motion goal-directed navigation. These results indicate that PP2B-dependent potentiation in PCs contributes to maintain a stable hippocampal representation of a familiar environment in an allocentric reference frame as well as to support optimal trajectory toward a goal during navigation. It is known that Purkinje cell PKC-dependent depression is involved in the stabilization of self-motion based hippocampal representation. Here the authors describe decreased stability of hippocampal place cells based on allocentric cues in mice lacking Purkinje cell PP2B-dependent potentiation.
Collapse
|
6
|
Babayan BM, Watilliaux A, Viejo G, Paradis AL, Girard B, Rondi-Reig L. A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Sci Rep 2017; 7:17812. [PMID: 29259243 PMCID: PMC5736633 DOI: 10.1038/s41598-017-18004-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
How do we translate self-motion into goal-directed actions? Here we investigate the cognitive architecture underlying self-motion processing during exploration and goal-directed behaviour. The task, performed in an environment with limited and ambiguous external landmarks, constrained mice to use self-motion based information for sequence-based navigation. The post-behavioural analysis combined brain network characterization based on c-Fos imaging and graph theory analysis as well as computational modelling of the learning process. The study revealed a widespread network centred around the cerebral cortex and basal ganglia during the exploration phase, while a network dominated by hippocampal and cerebellar activity appeared to sustain sequence-based navigation. The learning process could be modelled by an algorithm combining memory of past actions and model-free reinforcement learning, which parameters pointed toward a central role of hippocampal and cerebellar structures for learning to translate self-motion into a sequence of goal-directed actions.
Collapse
Affiliation(s)
- Benedicte M Babayan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France
| | - Aurélie Watilliaux
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France
| | - Guillaume Viejo
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), F-75005, Paris, France
| | - Anne-Lise Paradis
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France
| | - Benoît Girard
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), F-75005, Paris, France
| | - Laure Rondi-Reig
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Cerebellum Navigation and Memory team (CeZaMe), 75005, Paris, France.
| |
Collapse
|
7
|
Kessel KA, Combs SE. Review of Developments in Electronic, Clinical Data Collection, and Documentation Systems over the Last Decade - Are We Ready for Big Data in Routine Health Care? Front Oncol 2016; 6:75. [PMID: 27066456 PMCID: PMC4812063 DOI: 10.3389/fonc.2016.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/18/2016] [Indexed: 11/24/2022] Open
Abstract
Recently, information availability has become more elaborate and widespread, and treatment decisions are based on a multitude of factors, including imaging, molecular or pathological markers, surgical results, and patient’s preference. In this context, the term “Big Data” evolved also in health care. The “hype” is heavily discussed in literature. In interdisciplinary medical specialties, such as radiation oncology, not only heterogeneous and voluminous amount of data must be evaluated but also spread in different styles across various information systems. Exactly this problem is also referred to in many ongoing discussions about Big Data – the “three V’s”: volume, velocity, and variety. We reviewed 895 articles extracted from the NCBI databases about current developments in electronic clinical data management systems and their further analysis or postprocessing procedures. Few articles show first ideas and ways to immediately make use of collected data, particularly imaging data. Many developments can be noticed in the field of clinical trial or analysis documentation, mobile devices for documentation, and genomics research. Using Big Data to advance medical research is definitely on the rise. Health care is perhaps the most comprehensive, important, and economically viable field of application.
Collapse
Affiliation(s)
- Kerstin A Kessel
- Department of Radiation Oncology, Technische Universität München, Munich, Germany; Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München, Munich, Germany; Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|