1
|
Aquilina K, Chakrapani A, Carr L, Kurian MA, Hargrave D. Convection-Enhanced Delivery in Children: Techniques and Applications. Adv Tech Stand Neurosurg 2022; 45:199-228. [PMID: 35976451 DOI: 10.1007/978-3-030-99166-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since its first description in 1994, convection-enhanced delivery (CED) has become a reliable method of administering drugs directly into the brain parenchyma. More predictable and effective than simple diffusion, CED bypasses the challenging boundary of the blood brain barrier, which has frustrated many attempts at delivering large molecules or polymers into the brain parenchyma. Although most of the clinical work with CED has been carried out on adults with incurable neoplasms, principally glioblastoma multiforme, an increasing number of studies have recognized its potential for paediatric applications, which now include treatment of currently incurable brain tumours such as diffuse intrinsic pontine glioma (DIPG), as well as metabolic and neurotransmitter diseases. The roadmap for the development of hardware and use of pharmacological agents in CED has been well-established, and some neurosurgical centres throughout the world have successfully undertaken clinical trials, admittedly mostly early phase, on the basis of in vitro, small animal and large animal pre-clinical foundations. However, the clinical efficacy of CED, although theoretically logical, has yet to be unequivocally demonstrated in a clinical trial; this applies particularly to neuro-oncology.This review aims to provide a broad description of the current knowledge of CED as applied to children. It reviews published studies of paediatric CED in the context of its wider history and developments and underlines the challenges related to the development of hardware, the selection of pharmacological agents, and gene therapy. It also reviews the difficulties related to the development of clinical trials involving CED and looks towards its potential disease-modifying opportunities in the future.
Collapse
Affiliation(s)
- K Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
| | - A Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital, London, UK
| | - L Carr
- Department of Neurology and Neurodisability, Great Ormond Street Hospital, London, UK
| | - M A Kurian
- Department of Neurology and Neurodisability, Great Ormond Street Hospital, London, UK
- Neurogenetics Group, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL-Great Ormond Street Institute of Child Health, London, UK
| | - D Hargrave
- Cancer Group, UCL-Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
2
|
Ni S, Chen R, Hu K. Experimental murine models of brainstem gliomas. Drug Discov Today 2021; 27:1218-1235. [PMID: 34954326 DOI: 10.1016/j.drudis.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
As an intractable central nervous system (CNS) tumor, brainstem gliomas (BGs) are one of the leading causes of pediatric death by brain tumors. Owing to the risk of surgical resection and the little improvement in survival time after radiotherapy and chemotherapy, there is an urgent need to find reliable model systems to better understand the regional pathogenesis of the brainstem and improve treatment strategies. In this review, we outline the evolution of BG murine models, and discuss both their advantages and limitations in drug discovery.
Collapse
Affiliation(s)
- Shuting Ni
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Rechberger JS, Power EA, Lu VM, Zhang L, Sarkaria JN, Daniels DJ. Evaluating infusate parameters for direct drug delivery to the brainstem: a comparative study of convection-enhanced delivery versus osmotic pump delivery. Neurosurg Focus 2021; 48:E2. [PMID: 31896090 DOI: 10.3171/2019.10.focus19703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Convection-enhanced delivery (CED) and osmotic pump delivery both have been promoted as promising techniques to deliver drugs to pediatric diffuse intrinsic pontine gliomas (DIPGs). Correspondingly, the aim of this study was to understand how infusate molecular weight (MW), duration of delivery, and mechanism of delivery (CED or osmotic pump) affect volume of distribution (Vd) in the brainstem, to better inform drug selection and delivery in future DIPG investigations. METHODS A series of in vivo experiments were conducted using rat models. CED and osmotic pump delivery systems were surgically implanted in the brainstem, and different MW fluorescent dextran beads were infused either once (acute) or daily for 5 days (chronic) in a volume infused (Vi). Brainstems were harvested after the last infusion, and Vd was quantified using serial sectioning and fluorescence imaging. RESULTS Fluorescence imaging showed infusate uptake within the brainstem for both systems without complication. A significant inverse relationship was observed between infusate MW and Vd in all settings, which was distinctly exponential in nature in the setting of acute delivery across the 570-Da to 150-kDa range. Chronic duration and CED technique resulted in significantly greater Vd compared to acute duration or osmotic pump delivery, respectively. When accounting for Vi, acute infusion yielded significantly greater Vd/Vi than chronic infusion. The distribution in CED versus osmotic pump delivery was significantly affected by infusate MW at higher weights. CONCLUSIONS Here the authors demonstrate that infusate MW, duration of infusion, and infusion mechanism all impact the Vd of an infused agent and should be considered when selecting drugs and infusion parameters for novel investigations to treat DIPGs.
Collapse
Affiliation(s)
| | - Erica A Power
- 1Department of Neurologic Surgery, Mayo Clinic.,2Mayo Clinic Graduate School of Biomedical Sciences
| | - Victor M Lu
- 1Department of Neurologic Surgery, Mayo Clinic
| | - Liang Zhang
- 1Department of Neurologic Surgery, Mayo Clinic
| | | | - David J Daniels
- 1Department of Neurologic Surgery, Mayo Clinic.,4Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Bellat V, Alcaina Y, Tung CH, Ting R, Michel AO, Souweidane M, Law B. A combined approach of convection-enhanced delivery of peptide nanofiber reservoir to prolong local DM1 retention for diffuse intrinsic pontine glioma treatment. Neuro Oncol 2020; 22:1495-1504. [PMID: 32301996 PMCID: PMC7566426 DOI: 10.1093/neuonc/noaa101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is a highly lethal malignancy that occurs predominantly in children. DIPG is inoperable and post-diagnosis survival is less than 1 year, as conventional chemotherapy is ineffective. The intact blood-brain barrier (BBB) blocks drugs from entering the brain. Convection-enhanced delivery (CED) is a direct infusion technique delivering drugs to the brain, but it suffers from rapid drug clearance. Our goal is to overcome the delivery barrier via CED and maintain a therapeutic concentration at the glioma site with a payload-adjustable peptide nanofiber precursor (NFP) that displays a prolonged retention property as a drug carrier. METHODS The post-CED retention of 89Zr-NFP was determined in real time using PET/CT imaging. Emtansine (DM1), a microtubule inhibitor, was conjugated to NFP. The cytotoxicity of the resulting DM1-NFP was tested against patient-derived DIPG cell lines. The therapeutic efficacy was evaluated in animals bearing orthotopic DIPG, according to glioma growth (measured using bioluminescence imaging) and the long-term survival. RESULTS DM1-NFP demonstrated potency against multiple glioma cell lines. The half-maximal inhibitory concentration values were in the nanomolar range. NFP remained at the infusion site (pons) for weeks, with a clearance half-life of 60 days. DM1-NFP inhibited glioma progression in animals, and offered a survival benefit (median survival of 62 days) compared with the untreated controls (28 days) and DM1-treated animal group (26 days). CONCLUSIONS CED, in combination with DM1-NFP, complementarily functions to bypass the BBB, prolong drug retention at the fusion site, and maintain an effective therapeutic effect against DIPG to improve treatment outcome.
Collapse
Affiliation(s)
- Vanessa Bellat
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Yago Alcaina
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Richard Ting
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Adam O Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Mark Souweidane
- Department of Neurological Surgery, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Benedict Law
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Sasaki T, Katagi H, Goldman S, Becher OJ, Hashizume R. Convection-Enhanced Delivery of Enhancer of Zeste Homolog-2 (EZH2) Inhibitor for the Treatment of Diffuse Intrinsic Pontine Glioma. Neurosurgery 2020; 87:E680-E688. [PMID: 32674144 DOI: 10.1093/neuros/nyaa301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brain tumor and the majority of patients die within 2 yr after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which precludes total surgical resection, and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. Convection-enhanced delivery (CED) is a direct infusion technique to deliver therapeutic agents into a target site in the brain and able to deliver a high concentration drug to the infusion site without systemic toxicities. OBJECTIVE To assess the efficacy of enhancer of zeste homolog-2 (EZH2) inhibitor by CED against human DIPG xenograft models. METHODS The concentration of EZH2 inhibitor (EPZ-6438) in the brainstem tumor was evaluated by liquid chromatography-mass spectrometry (LC/MS). We treated mice-bearing human DIPG xenografts with EPZ-6438 using systemic (intraperitoneal) or CED administration. Intracranial tumor growth was monitored by bioluminescence image, and the therapeutic response was evaluated by animal survival. RESULTS LC/MS analysis showed that the concentration of EPZ-6438 in the brainstem tumor was 3.74% of serum concentration after systemic administration. CED of EPZ-6438 suppressed tumor growth and significantly extended animal survival when compared to systemic administration of EPZ-6438 (P = .0475). CONCLUSION Our results indicate that CED of an EZH2 inhibitor is a promising strategy to bypass the BBB and to increase the efficacy of an EZH2 inhibitor for the treatment of DIPG.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stewart Goldman
- Division of Hematology, Oncology and Stem Cell Transplantation in the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oren J Becher
- Division of Hematology, Oncology and Stem Cell Transplantation in the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
6
|
Characterization of the Blood-Brain Barrier Integrity and the Brain Transport of SN-38 in an Orthotopic Xenograft Rat Model of Diffuse Intrinsic Pontine Glioma. Pharmaceutics 2020; 12:pharmaceutics12050399. [PMID: 32349240 PMCID: PMC7284501 DOI: 10.3390/pharmaceutics12050399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed 1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and 2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.
Collapse
|
7
|
Kuzan-Fischer CM, Souweidane MM. The intersect of neurosurgery with diffuse intrinsic pontine glioma. J Neurosurg Pediatr 2019; 24:611-621. [PMID: 31786541 DOI: 10.3171/2019.5.peds18376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 11/06/2022]
Abstract
An invited article highlighting diffuse intrinsic pontine glioma (DIPG) to celebrate the 75th Anniversary of the Journal of Neurosurgery, a journal known to define surgical nuance and enterprise, is paradoxical since DIPG has long been relegated to surgical abandonment. More recently, however, the neurosurgeon is emerging as a critical stakeholder given our role in tissue sampling, collaborative scientific research, and therapeutic drug delivery. The foundation for this revival lies in an expanding reliance on tissue accession for understanding tumor biology, available funding to fuel research, and strides with interventional drug delivery.
Collapse
Affiliation(s)
| | - Mark M Souweidane
- Departments of1Neurological Surgery and
- 2Pediatrics, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York; and
- 3Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
8
|
Lorenzo MF, Thomas SC, Kani Y, Hinckley J, Lee M, Adler J, Verbridge SS, Hsu FC, Robertson JL, Davalos RV, Rossmeisl JH. Temporal Characterization of Blood-Brain Barrier Disruption with High-Frequency Electroporation. Cancers (Basel) 2019; 11:cancers11121850. [PMID: 31771214 PMCID: PMC6966593 DOI: 10.3390/cancers11121850] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Treatment of intracranial disorders suffers from the inability to accumulate therapeutic drug concentrations due to protection from the blood–brain barrier (BBB). Electroporation-based therapies have demonstrated the capability of permeating the BBB, but knowledge of the longevity of BBB disruption (BBBD) is limited. In this study, we quantify the temporal, high-frequency electroporation (HFE)-mediated BBBD in an in vivo healthy rat brain model. 40 male Fisher rats underwent HFE treatment; two blunt tipped monopolar electrodes were advanced into the brain and 200 bursts of HFE were delivered at a voltage-to-distance ratio of 600 V/cm. BBBD was verified with contrast enhanced T1W MRI (gadopentetate dimeglumine) and pathologically (Evans blue dye) at time points of 1, 24, 48, 72, and 96 h after HFE. Contrast enhanced T1W scans demonstrated BBBD for 1 to 72 h after HFE but intact BBB at 96 h. Histologically, tissue damage was restricted to electrode insertion tracks. BBBD was induced with minimal muscle contractions and minimal cell death attributed to HFE. Numerical modeling indicated that brief BBBD was induced with low magnitude electric fields, and BBBD duration increased with field strength. These data suggest the spatiotemporal characteristics of HFE-mediated BBBD may be modulated with the locally applied electric field.
Collapse
Affiliation(s)
- Melvin F. Lorenzo
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA; (M.F.L.); (M.L.); (R.V.D.)
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.C.T.); (S.S.V.); (J.L.R.)
| | - Sean C. Thomas
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.C.T.); (S.S.V.); (J.L.R.)
| | - Yukitaka Kani
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (Y.K.); (J.H.); (J.A.)
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (Y.K.); (J.H.); (J.A.)
| | - Matthew Lee
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA; (M.F.L.); (M.L.); (R.V.D.)
| | - Joy Adler
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (Y.K.); (J.H.); (J.A.)
| | - Scott S. Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.C.T.); (S.S.V.); (J.L.R.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - John L. Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.C.T.); (S.S.V.); (J.L.R.)
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (Y.K.); (J.H.); (J.A.)
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA; (M.F.L.); (M.L.); (R.V.D.)
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.C.T.); (S.S.V.); (J.L.R.)
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (Y.K.); (J.H.); (J.A.)
- Correspondence: ; Tel.: +1-540-231-7288
| |
Collapse
|
9
|
Himes BT, Zhang L, Daniels DJ. Treatment Strategies in Diffuse Midline Gliomas With the H3K27M Mutation: The Role of Convection-Enhanced Delivery in Overcoming Anatomic Challenges. Front Oncol 2019; 9:31. [PMID: 30800634 PMCID: PMC6375835 DOI: 10.3389/fonc.2019.00031] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
Diffuse midline gliomas harboring the H3 K27M mutation—including the previously named diffuse intrinsic pontine glioma (DIPG)—are lethal high-grade pediatric brain tumors that are inoperable and without cure. Despite numerous clinical trials, the prognosis remains poor, with a median survival of ~1 year from diagnosis. Systemic administration of chemotherapeutic agents is often hindered by the blood brain barrier (BBB), and even drugs that successfully cross the barrier may suffer from unpredictable distributions. The challenge in treating this deadly disease relies on effective delivery of a therapeutic agent to the bulk tumor as well as infiltrating cells. Therefore, methods that can enhance drug delivery to the brain are of great interest. Convection-enhanced delivery (CED) is a strategy that bypasses the BBB entirely and enhances drug distribution by applying hydraulic pressure to deliver agents directly and evenly into a target region. This technique reliably distributes infusate homogenously through the interstitial space of the target region and achieves high local drug concentrations in the brain. Moreover, recent studies have also shown that continuous delivery of drug over an extended period of time is safe, feasible, and more efficacious than standard single session CED. Therefore, CED represents a promising technique for treating midline tumors with the H3K27M mutation.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Sewing ACP, Lagerweij T, van Vuurden DG, Meel MH, Veringa SJE, Carcaboso AM, Gaillard PJ, Peter Vandertop W, Wesseling P, Noske D, Kaspers GJL, Hulleman E. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma. J Neurosurg Pediatr 2017; 19:518-530. [PMID: 28291423 DOI: 10.3171/2016.9.peds16152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic window for treating orthotopic brainstem tumors in mice. For tumors in the thalamus, therapeutic concentrations to slow down tumor growth could be reached. These data suggest that anatomical location determines the severity of toxicity after local delivery of therapeutic agents and that caution should be used when translating data from supratentorial CED studies to treat infratentorial tumors.
Collapse
Affiliation(s)
- A Charlotte P Sewing
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Tonny Lagerweij
- Neurosurgery, and.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Dannis G van Vuurden
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Michaël H Meel
- Departments of 1 Pediatric Oncology.,Neurosurgery, and.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Susanna J E Veringa
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Spain
| | | | - W Peter Vandertop
- Neurosurgery, and.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Pieter Wesseling
- Pathology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam.,2-BBB Medicines, Leiden.,Department of Pathology, RadboudUMC, Nijmegen
| | - David Noske
- Neurosurgery, and.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| | - Gertjan J L Kaspers
- Neuro-Oncology Research Group.,Academy of Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ; and
| | - Esther Hulleman
- Departments of 1 Pediatric Oncology.,Neuro-Oncology Research Group.,Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam
| |
Collapse
|
11
|
Lapin DH, Tsoli M, Ziegler DS. Genomic Insights into Diffuse Intrinsic Pontine Glioma. Front Oncol 2017; 7:57. [PMID: 28401062 PMCID: PMC5368268 DOI: 10.3389/fonc.2017.00057] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor with a peak incidence in middle childhood and a median survival of less than 1 year. The dismal prognosis associated with DIPG has been exacerbated by the failure of over 250 clinical trials to meaningfully improve survival compared with radiotherapy, the current standard of care. The traditional practice to not biopsy DIPG led to a scarcity in available tissue samples for laboratory analysis that till recently hindered therapeutic advances. Over the past few years, the acquisition of patient derived tumor samples through biopsy and autopsy protocols has led to distinct breakthroughs in the identification of key oncogenic drivers implicated in DIPG development. Aberrations have been discovered in critical genetic drivers including histone H3, ACVR1, TP53, PDGFRA, and Myc. Mutations, previously not identified in other malignancies, highlight DIPG as a distinct biological entity. Identification of novel markers has already greatly influenced the direction of preclinical investigations and offers the exciting possibility of establishing biologically targeted therapies. This review will outline the current knowledge of the genomic landscape related to DIPG, overview preclinical investigations, and reflect how biological advances have influenced the focus of clinical trials toward targeted therapies.
Collapse
Affiliation(s)
- Danielle H Lapin
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales , Randwick, NSW , Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales , Randwick, NSW , Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
12
|
Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system. J Control Release 2016; 240:251-266. [DOI: 10.1016/j.jconrel.2015.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
|
13
|
Goodwin CR, Xu R, Iyer R, Sankey EW, Liu A, Abu-Bonsrah N, Sarabia-Estrada R, Frazier JL, Sciubba DM, Jallo GI. Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas. Clin Neurol Neurosurg 2016; 142:120-127. [PMID: 26849840 DOI: 10.1016/j.clineuro.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Brainstem gliomas comprise 10-20% of all pediatric central nervous system (CNS) tumors and diffuse intrinsic pontine gliomas (DIPGs) account for the majority of these lesions. DIPG is a rapidly progressive disease with almost universally fatal outcomes and a median survival less than 12 months. Current standard-of-care treatment for DIPG includes radiation therapy, but its long-term survival effects are still under debate. Clinical trials investigating the efficacy of systemic administration of various therapeutic agents have been associated with disappointing outcomes. Recent efforts have focused on improvements in chemotherapeutic agents employed and in methods of localized and targeted drug delivery. This review provides an update on current preclinical and clinical studies investigating treatment options for brainstem gliomas.
Collapse
Affiliation(s)
- C Rory Goodwin
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Risheng Xu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rajiv Iyer
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Eric W Sankey
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Ann Liu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Nancy Abu-Bonsrah
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rachel Sarabia-Estrada
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - James L Frazier
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Daniel M Sciubba
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - George I Jallo
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA.
| |
Collapse
|
14
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
15
|
Misuraca KL, Cordero FJ, Becher OJ. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma. Front Oncol 2015; 5:172. [PMID: 26258075 PMCID: PMC4513210 DOI: 10.3389/fonc.2015.00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/09/2015] [Indexed: 01/03/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.
Collapse
Affiliation(s)
- Katherine L Misuraca
- Department of Pediatrics, Division of Hematology-Oncology, Duke University Medical Center , Durham, NC , USA
| | | | - Oren J Becher
- Department of Pediatrics, Division of Hematology-Oncology, Duke University Medical Center , Durham, NC , USA ; Department of Pathology, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
16
|
Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, Quist MJ, Davis LE, Huang EC, Woo PJ, Ponnuswami A, Chen S, Johung TB, Sun W, Kogiso M, Du Y, Qi L, Huang Y, Hütt-Cabezas M, Warren KE, Le Dret L, Meltzer PS, Mao H, Quezado M, van Vuurden DG, Abraham J, Fouladi M, Svalina MN, Wang N, Hawkins C, Nazarian J, Alonso MM, Raabe EH, Hulleman E, Spellman PT, Li XN, Keller C, Pal R, Grill J, Monje M. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 2015; 21:555-9. [PMID: 25939062 PMCID: PMC4862411 DOI: 10.1038/nm.3855] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNAseq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated efficacy in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat with histone demethylase inhibitor GSKJ4 revealed synergy. Together, these data suggest a promising therapeutic strategy for DIPG.
Collapse
Affiliation(s)
- Catherine S Grasso
- Center for Spatial Systems Biomedicine, Department of Molecular and Medical Genetics, Oregon Health &Science University (OHSU), Portland, Oregon, USA
| | - Yujie Tang
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA. [5] Present addresses: Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.T.) and Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou, China (Y.H.)
| | | | - Noah E Berlow
- Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Lining Liu
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA
| | - Marie-Anne Debily
- 1] CNRS, UMR 8203, Gustave Roussy, Université Paris-Sud, Villejuif, France. [2] Département de biologie, Université d'Evry-Val d'Essone, Evry, France
| | - Michael J Quist
- Center for Spatial Systems Biomedicine, Department of Molecular and Medical Genetics, Oregon Health &Science University (OHSU), Portland, Oregon, USA
| | - Lara E Davis
- Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Department of Pediatrics, OHSU, Portland, Oregon, USA
| | - Elaine C Huang
- Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Department of Pediatrics, OHSU, Portland, Oregon, USA
| | - Pamelyn J Woo
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA
| | - Anitha Ponnuswami
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA
| | - Spenser Chen
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA
| | - Tessa B Johung
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA
| | - Wenchao Sun
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Mari Kogiso
- Laboratory of Molecular Neurooncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yuchen Du
- Laboratory of Molecular Neurooncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Lin Qi
- Laboratory of Molecular Neurooncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yulun Huang
- 1] Laboratory of Molecular Neurooncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA. [2] Present addresses: Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.T.) and Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou, China (Y.H.)
| | - Marianne Hütt-Cabezas
- 1] Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA. [2] Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ludivine Le Dret
- CNRS, UMR 8203, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | | | - Hua Mao
- Laboratory of Molecular Neurooncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Dannis G van Vuurden
- 1] Department of Pediatric Oncology and Hematology, VU University Medical Center, Amsterdam, The Netherlands. [2] Neuro-Oncology Research Group Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jinu Abraham
- Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Department of Pediatrics, OHSU, Portland, Oregon, USA
| | - Maryam Fouladi
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew N Svalina
- 1] Center for Spatial Systems Biomedicine, Department of Molecular and Medical Genetics, Oregon Health &Science University (OHSU), Portland, Oregon, USA. [2] Children's Cancer Therapy Development Institute, Fort Collins, Colorado, USA
| | - Nicholas Wang
- Center for Spatial Systems Biomedicine, Department of Molecular and Medical Genetics, Oregon Health &Science University (OHSU), Portland, Oregon, USA
| | - Cynthia Hawkins
- 1] Department of Pediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada. [2] Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Javad Nazarian
- Center for Research Institute, Children's National Health Systems, Washington, DC, USA
| | - Marta M Alonso
- Department of Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Eric H Raabe
- 1] Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA. [2] Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Esther Hulleman
- 1] Department of Pediatric Oncology and Hematology, VU University Medical Center, Amsterdam, The Netherlands. [2] Neuro-Oncology Research Group Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul T Spellman
- Center for Spatial Systems Biomedicine, Department of Molecular and Medical Genetics, Oregon Health &Science University (OHSU), Portland, Oregon, USA
| | - Xiao-Nan Li
- Laboratory of Molecular Neurooncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Charles Keller
- 1] Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Department of Pediatrics, OHSU, Portland, Oregon, USA. [2] Children's Cancer Therapy Development Institute, Fort Collins, Colorado, USA
| | - Ranadip Pal
- Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Jacques Grill
- 1] CNRS, UMR 8203, Gustave Roussy, Université Paris-Sud, Villejuif, France. [2] Departement de Cancerologie de l'Enfant et de l'Adolescent, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Michelle Monje
- 1] Department of Neurology, Stanford University, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University, Stanford, California, USA. [3] Department of Pediatrics, Stanford University, Stanford, California, USA. [4] Department of Pathology, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
van Tellingen O, Yetkin-Arik B, de Gooijer M, Wesseling P, Wurdinger T, de Vries H. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19:1-12. [DOI: 10.1016/j.drup.2015.02.002] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
|