1
|
McGraw CM, Poduri A. Machine learning enables high-throughput, low-replicate screening for novel anti-seizure targets and compounds using combined movement and calcium fluorescence in larval zebrafish. Eur J Pharmacol 2025; 991:177327. [PMID: 39914783 DOI: 10.1016/j.ejphar.2025.177327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/12/2025]
Abstract
Identifying new anti-seizure medications (ASMs) is difficult due to limitations in animal-based assays. Zebrafish (Danio rerio) serve as a model for chemical and genetic seizures, but current methods for detecting anti-seizure responses are limited by incomplete detection of anti-seizure responses (locomotor assays) or low-throughput (electrophysiology, fluorescence microscopy). To overcome these challenges, we developed a novel high-throughput method using combined locomotor and calcium fluorescence data from unrestrained larval zebrafish in a 96-well plate reader. Custom software tracked fish movement and fluorescence changes (deltaF/F0) from high-speed time-series, and logistic classifiers trained with elastic net regression distinguished seizure-like activity in response to the GABAA receptor antagonist pentylenetetrazole (PTZ). A classifier using combined data ("PTZ M + F"; AUC-ROC: 0.98; F1: 0.912) outperformed movement-only ("PTZ M"; AUC-ROC: 0.9) and fluorescence-only classifiers ("PTZ F"; AUC-ROC 0.96). Seizure-like event rate increased in proportion to PTZ concentration, and was suppressed by valproic acid (VPA). Meanwhile, TGB selectively reduced events defined by the "PTZ M + F″ classifier, paralleling previous reports that TGB reduces electrographic but not locomotor seizures. Using bootstrap simulation, we calculated statistical power and demonstrated reliable detection of ASM effects with as few as N = 4 replicates. In a test screen, 4 out of 5 ASMs were detected. This high-throughput approach combines previously orthogonal assays for zebrafish ASM screening.
Collapse
Affiliation(s)
- Christopher Michael McGraw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, USA.
| | - Annapurna Poduri
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
2
|
Yavuz M, İyiköşker P, Mutlu N, Kiliçparlar S, Şalci ÖH, Dolu G, Kaymakçilar EN, Akkol S, Onat F. Dexmedetomidine, an alpha 2A receptor agonist, triggers seizures unilaterally in GAERS during the pre-epileptic phase: does the onset of spike-and-wave discharges occur in a focal manner? Front Neurol 2023; 14:1231736. [PMID: 38146441 PMCID: PMC10749324 DOI: 10.3389/fneur.2023.1231736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction The genetic absence epilepsy rat from Strasbourg (GAERS) is a rat model for infantile absence epilepsy with spike-and-wave discharges (SWDs). This study aimed to investigate the potential of alpha 2A agonism to induce seizures during the pre-epileptic period in GAERS rats. Methods Stereotaxic surgery was performed on male pups and adult GAERS rats to implant recording electrodes in the frontoparietal cortices (right/left) under anesthesia (PN23-26). Following the recovery period, pup GAERS rats were subjected to electroencephalography (EEG) recordings for 2 h. Before the injections, pup epileptiform activity was examined using baseline EEG data. Dexmedetomidine was acutely administered at 0.6 mg/kg to pup GAERS rats 2-3 days after the surgery and once during the post-natal (PN) days 25-29. Epileptiform activities before injections triggered unilateral SWDs and induced sleep durations, and power spectral density was evaluated based on EEG traces. Results The most prominent finding of this study is that unilateral SWD-like activities were induced in 47% of the animals with the intraperitoneal dexmedetomidine injection. The baseline EEGs of pup GAERS rats had no SWDs as expected since they are in the pre-epileptic period but showed low-amplitude non-rhythmic epileptiform activity. There was no difference in the duration of epileptiform activities between the basal EEG groups and DEX-injected unilateral SWD-like-exhibiting and non-SWD-like activities groups; however, the sleep duration of the unilateral SWD-like-exhibiting group was shorter. Power spectrum density (PSD) results revealed that the 1.75-Hz power in the left hemisphere peaks significantly higher than in the right. Discussion As anticipated, pup GAERS rats in the pre-epileptic stage showed no SWDs. Nevertheless, they exhibited sporadic epileptiform activities. Specifically, dexmedetomidine induced SWD-like activities solely within the left hemisphere. These observations imply that absence seizures might originate unilaterally in the left cortex due to α2AAR agonism. Additional research is necessary to explore the precise cortical focal point of this activity.
Collapse
Affiliation(s)
- Melis Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Pelin İyiköşker
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Nursima Mutlu
- Department of Biotechnology and Genetics, Institute of Science, Istanbul University, Istanbul, Türkiye
| | - Serra Kiliçparlar
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Öykü Hazal Şalci
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Gökçen Dolu
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | | | - Serdar Akkol
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Institute of Neurosciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
3
|
Effects of Postnatal Caffeine Exposure on Absence Epilepsy and Comorbid Depression: Results of a Study in WAG/Rij Rats. Brain Sci 2022; 12:brainsci12030361. [PMID: 35326317 PMCID: PMC8946037 DOI: 10.3390/brainsci12030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to investigate effect of early caffeine exposure on epileptogenesis and occurrence of absence seizures and comorbid depression in adulthood. For this purpose, Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats were enrolled in a control and two experimental groups on the 7th day after the delivery. The rats in experimental groups received either 10 or 20 mg/kg caffeine subcutaneously while animals in control group had subcutaneous injections of 0.9% saline. The injections started at postnatal day 7 (PND7) and were continued each day for 5 days. At 6–7 months of age, electroencephalogram (EEG) recordings and behavioral recordings in the forced swimming test, sucrose consumption/preference test and locomotor activity test were carried out. At 6 months of age, 10 mg/kg and 20 mg/kg caffeine-treated WAG/Rij rats showed increased immobility latency and active swimming duration in forced swimming test when compared with the untreated controls. In addition, 20 mg/kg caffeine treatment decreased immobility time. In sucrose preference/consumption tests, WAG/Rij rats in 10 mg/kg caffeine group demonstrated higher sucrose consumption and preference compared to untreated controls. The rats treated with 20 mg/kg caffeine showed higher sucrose preference compared to control rats. The exploratory activity of rats in the 10 mg/kg caffeine-treated group was found to be higher than in the 20 mg/kg caffeine-treated and control groups in the locomotor activity test. At 7 months of age, caffeine-treated animals showed a decreased spike-wave discharge (SWD) number compared to the control animals. These results indicate that postnatal caffeine treatment may decrease the number of seizure and depression-like behaviors in WAG/Rij rats in later life. Caffeine blockade of adenosine receptors during the early developmental period may have beneficial effects in reducing seizure frequency and depression-like behaviors in WAG/Rij rat model.
Collapse
|
4
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
5
|
Panthi S, Leitch B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front Cell Neurosci 2021; 15:688905. [PMID: 34122016 PMCID: PMC8193234 DOI: 10.3389/fncel.2021.688905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Parvalbumin-expressing (PV+) interneurons are a subset of GABAergic inhibitory interneurons that mediate feed-forward inhibition (FFI) within the cortico-thalamocortical (CTC) network of the brain. The CTC network is a reciprocal loop with connections between cortex and thalamus. FFI PV+ interneurons control the firing of principal excitatory neurons within the CTC network and prevent runaway excitation. Studies have shown that generalized spike-wave discharges (SWDs), the hallmark of absence seizures on electroencephalogram (EEG), originate within the CTC network. In the stargazer mouse model of absence epilepsy, reduced FFI is believed to contribute to absence seizure genesis as there is a specific loss of excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at synaptic inputs to PV+ interneurons within the CTC network. However, the degree to which this deficit is directly related to seizure generation has not yet been established. Using chemogenetics and in vivo EEG recording, we recently demonstrated that functional silencing of PV+ interneurons in either the somatosensory cortex (SScortex) or the reticular thalamic nucleus (RTN) is sufficient to generate absence-SWDs. Here, we used the same approach to assess whether activating PV+ FFI interneurons within the CTC network during absence seizures would prevent or reduce seizures. To target these interneurons, mice expressing Cre recombinase in PV+ interneurons (PV-Cre) were bred with mice expressing excitatory Gq-DREADD (hM3Dq-flox) receptors. An intraperitoneal dose of pro-epileptic chemical pentylenetetrazol (PTZ) was used to induce absence seizure. The impact of activation of FFI PV+ interneurons during seizures was tested by focal injection of the “designer drug” clozapine N-oxide (CNO) into either the SScortex or the RTN thalamus. Seizures were assessed in PVCre/Gq-DREADD animals using EEG/video recordings. Overall, DREADD-mediated activation of PV+ interneurons provided anti-epileptic effects against PTZ-induced seizures. CNO activation of FFI either prevented PTZ-induced absence seizures or suppressed their severity. Furthermore, PTZ-induced tonic-clonic seizures were also reduced in severity by activation of FFI PV+ interneurons. In contrast, administration of CNO to non-DREADD wild-type control animals did not afford any protection against PTZ-induced seizures. These data demonstrate that FFI PV+ interneurons within CTC microcircuits could be a potential therapeutic target for anti-absence seizure treatment in some patients.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Leite JP, Garcia-Cairasco N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci Biobehav Rev 2020; 111:166-182. [PMID: 31954723 DOI: 10.1016/j.neubiorev.2020.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is a neurological disorder characterized by the presence of seizures and neuropsychiatric comorbidities. Despite the number of antiepileptic drugs, one-third of patients did not have their seizures under control, leading to pharmacoresistance epilepsy. Cannabis sativa has been used since ancient times in Medicine for the treatment of many diseases, including convulsive seizures. In this context, Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been a promising compound for treating epilepsies due to its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. In this review, we summarize evidence of the CBD anticonvulsant activities present in a great diversity of animal models. Special attention was given to behavioral CBD effects and its translation to human epilepsies. CBD anticonvulsant effects are associated with a great variety of mechanisms of action such as endocannabinoid and calcium signaling. CBD has shown effectiveness in the clinical scenario for epilepsies, but its effects on epilepsy-related comorbidities are scarce even in basic research. More detailed and complex behavioral evaluation about CBD effects on seizures and epilepsy-related comorbidities are required.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - João P Leite
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Perescis MF, van Luijtelaar G, van Rijn CM. Neonatal exposure to AY-9944 increases typical spike and wave discharges in WAG/Rij and Wistar rats. Epilepsy Res 2019; 157:106184. [DOI: 10.1016/j.eplepsyres.2019.106184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022]
|
8
|
Lee S, Hwang E, Lee M, Choi JH. Distinct Topographical Patterns of Spike-Wave Discharge in Transgenic and Pharmacologically Induced Absence Seizure Models. Exp Neurobiol 2019; 28:474-484. [PMID: 31495076 PMCID: PMC6751861 DOI: 10.5607/en.2019.28.4.474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Absence seizures (AS) are generalized non-convulsive seizures characterized by a brief loss of consciousness and spike-and-wave discharges (SWD) in an electroencephalogram (EEG). A number of animal models have been developed to explain the mechanisms of AS, and thalamo-cortical networks are considered to be involved. However, the cortical foci have not been well described in mouse models of AS. This study aims to use a high density EEG in pathophysiologically different AS models to compare the spatiotemporal patterns of SWDs. We used two AS models: a pharmacologically induced model (gamma-hydroxybutyric acid, GHB model) and a transgenic model (phospholipase beta4 knock-out, PLCβ4 model). The occurrences of SWDs were confirmed by thalamic recordings. The topographical analysis of SWDs showed that the onset and propagation patterns were markedly distinguishable between the two models. In the PLCβ4 model, the foci were located within the somatosensory cortex followed by propagation to the frontal cortex, whereas in the GHB model, a majority of SWDs was initiated in the prefrontal cortex followed by propagation to the posterior cortex. In addition, in the GHB model, foci were also observed in other cortical areas. This observation indicates that different cortical networks are involved in the generation of SWDs across the two models.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Oral Physiology, Faculty of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Eunjin Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Mina Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
9
|
Source localization of epileptiform discharges in childhood absence epilepsy using a distributed source model: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study. Neurol Sci 2019; 40:993-1000. [PMID: 30756246 DOI: 10.1007/s10072-019-03751-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Localizing the source of epileptiform discharges in generalized epilepsy has been controversial for the past few decades. Recent neuroimaging studies have shown that epileptiform discharges in generalized epilepsy can be localized to a particular region. Childhood absence epilepsy (CAE) is the most common generalized epilepsy in childhood and is considered the prototype of idiopathic generalized epilepsy (IGE). To better understand electrophysiological changes and their development in CAE, we investigated the origin of epileptiform discharges. We performed distributed source localization with standardized, low-resolution, brain electromagnetic tomography (sLORETA). In 16 children with CAE, sLORETA images corresponding to the midpoint of the ascending phase and the negative peak of the spike were obtained from a total of 242 EEG epochs (121 epochs at each timepoint). Maximal current source density (CSD) was mostly located in the frontal lobe (69.4%). At the gyral level, maximal CSD was most commonly in the superior frontal gyrus (39.3%) followed by the middle frontal gyrus (14.0%) and medial frontal gyrus (8.7%). At the hemisphere level, maximal CSD was dominant in the right cerebral hemisphere (63.6%). These results were consistent at the midpoint of the ascending phase and the negative peak of the spike. Our results demonstrated that the major source of epileptiform discharges in CAE was the frontal lobe. These results suggest that the frontal lobe is involved in generating CAE. This finding is consistent with recent studies that have suggested selective cortical involvement, especially in the frontal regions, in IGE.
Collapse
|
10
|
Salvati KA, Beenhakker MP. Out of thin air: Hyperventilation-triggered seizures. Brain Res 2019; 1703:41-52. [PMID: 29288644 PMCID: PMC6546426 DOI: 10.1016/j.brainres.2017.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Voluntary hyperventilation triggers seizures in the vast majority of people with absence epilepsy. The mechanisms that underlie this phenomenon remain unknown. Herein, we review observations - many made long ago - that provide insight into the relationship between breathing and absence seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, United States
| | - Mark P Beenhakker
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, United States.
| |
Collapse
|
11
|
Santos VR, Kobayashi I, Hammack R, Danko G, Forcelli PA. Impact of strain, sex, and estrous cycle on gamma butyrolactone-evoked absence seizures in rats. Epilepsy Res 2018; 147:62-70. [PMID: 30261353 PMCID: PMC6226012 DOI: 10.1016/j.eplepsyres.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy syndrome and is characterized by typical absence seizures (AS). AS are non-convulsive epileptic seizures characterized by a sudden loss of awareness and bilaterally generalized synchronous 2.5-4 Hz spike and slow-wave discharges (SWD). Gamma butyrolactone (GBL) is an acute pharmacological model of AS and induces bilaterally synchronous SWDs and behavioral arrest. Despite the long use of this model, little is known about its strain and sex-dependent features. We compared the dose-response profile of GBL-evoked SWDs in three rat strains (Long Evans, Sprague-Dawley, and Wistar), and examined the modulatory effects of estrous cycle on SWDs in female Wistar rats. We evaluated the number of seizures, the cumulative time seizing, and the average seizure duration as a function of dose, strain, and sex/estrous phase. Long Evans rats displayed the greatest sensitivity to GBL, followed by Wistar rats, and then by Sprague-Dawley rats. GBL-evoked SWDs were modulated by estrous cycle in female rats, with the lowest sensitivity to GBL occurring during metestrus. Wistar rats showed the greatest variability as a function of dose, and the least variability within dose; these features make this strain desirable for interventional studies. Moreover, our finding that the SWD response to GBL differs as a function of estrous cycle underscores the importance of cycle monitoring in studies examining female animals using this model. Together, these strain and sex-dependent findings provide guidance for future studies.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Ihori Kobayashi
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, United States
| | - Robert Hammack
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Gregory Danko
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States; Department of Neuroscience, Georgetown University School of Medicine, United States; Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, United States.
| |
Collapse
|
12
|
Wielaender F, James FMK, Cortez MA, Kluger G, Neßler JN, Tipold A, Lohi H, Fischer A. Absence Seizures as a Feature of Juvenile Myoclonic Epilepsy in Rhodesian Ridgeback Dogs. J Vet Intern Med 2017; 32:428-432. [PMID: 29194766 PMCID: PMC5787207 DOI: 10.1111/jvim.14892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 01/17/2023] Open
Abstract
Myoclonic epilepsy in Rhodesian Ridgeback (RR) dogs is characterized by myoclonic seizures occurring mainly during relaxation periods, a juvenile age of onset and generalized tonic‐clonic seizures in one‐third of patients. An 8‐month‐old female intact RR was presented for myoclonic seizures and staring episodes that both started at 10 weeks of age. Testing for the DIRAS1 variant indicated a homozygous mutant genotype. Unsedated wireless video‐electroencephalography (EEG) identified frequent, bilaterally synchronous, generalized 4 Hz spike‐and‐wave complexes (SWC) during the staring episodes in addition to the characteristic myoclonic seizures with generalized 4–5 Hz SWC or 4–5 Hz slowing. Photic stimulation did not evoke a photoparoxysmal response. Repeat video‐EEG 2 months after initiation of levetiracetam treatment disclosed a >95% decrease in frequency of myoclonic seizures, and absence seizures were no longer evident. Absence seizures represent another seizure type in juvenile myoclonic epilepsy (JME) in RR dogs, which reinforces its parallels to JME in humans.
Collapse
Affiliation(s)
- F Wielaender
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - F M K James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M A Cortez
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada.,Neurosciences & Mental Health Program, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
| | - G Kluger
- Department of Neuropediatrics, Epilepsy Center, Schoen Klinik, Vogtareuth, Germany.,Paracelsus Medical University, Salzburg, Austria
| | - J N Neßler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - A Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - H Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhalsan Research Centre, Helsinki, Finland
| | - A Fischer
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Vuong J, Devergnas A. The role of the basal ganglia in the control of seizure. J Neural Transm (Vienna) 2017; 125:531-545. [PMID: 28766041 DOI: 10.1007/s00702-017-1768-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/23/2017] [Indexed: 12/19/2022]
Abstract
Epilepsy is a network disorder and each type of seizure involves distinct cortical and subcortical network, differently implicated in the control and propagation of the ictal activity. The role of the basal ganglia has been revealed in several cases of focal and generalized seizures. Here, we review the data that show the implication of the basal ganglia in absence, temporal lobe, and neocortical seizures in animal models (rodent, cat, and non-human primate) and in human. Based on these results and the advancement of deep brain stimulation for Parkinson's disease, basal ganglia neuromodulation has been tested with some success that can be equally seen as promising or disappointing. The effect of deep brain stimulation can be considered promising with a 76% in seizure reduction in temporal lobe epilepsy patients, but also disappointing, since only few patients have become seizure free and the antiepileptic effects have been highly variable among patients. This variability could probably be explained by the heterogeneity among the patients included in these clinical studies. To illustrate the importance of specific network identification, electrophysiological activity of the putamen and caudate nucleus has been recorded during penicillin-induced pre-frontal and motor seizures in one monkey. While an increase of the firing rate was found in putamen and caudate nucleus during pre-frontal seizures, only the activity of the putamen cells was increased during motor seizures. These preliminary results demonstrate the implication of the basal ganglia in two types of neocortical seizures and the necessity of studying the network to identify the important nodes implicated in the propagation and control of each type of seizure.
Collapse
Affiliation(s)
- J Vuong
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Annaelle Devergnas
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Sigal I, Koletar MM, Ringuette D, Gad R, Jeffrey M, Carlen PL, Stefanovic B, Levi O. Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system. BIOMEDICAL OPTICS EXPRESS 2016; 7:3596-3609. [PMID: 27699123 PMCID: PMC5030035 DOI: 10.1364/boe.7.003596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 05/20/2023]
Abstract
We report on a miniature label-free imaging system for monitoring brain blood flow and blood oxygenation changes in awake, freely behaving rats. The device, weighing 15 grams, enables imaging in a ∼ 2 × 2 mm field of view with 4.4 μm lateral resolution and 1 - 8 Hz temporal sampling rate. The imaging is performed through a chronically-implanted cranial window that remains optically clear between 2 to > 6 weeks after the craniotomy. This imaging method is well suited for longitudinal studies of chronic models of brain diseases and disorders. In this work, it is applied to monitoring neurovascular coupling during drug-induced absence-like seizures 6 weeks following the craniotomy.
Collapse
Affiliation(s)
- Iliya Sigal
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Margaret M. Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
| | - Dene Ringuette
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
| | - Raanan Gad
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Melanie Jeffrey
- Krembil Research Institute, 60 Leonard Avenue, Toronto, ON M5T 2S1,
Canada
| | - Peter L. Carlen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- Krembil Research Institute, 60 Leonard Avenue, Toronto, ON M5T 2S1,
Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
- Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
| | - Ofer Levi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| |
Collapse
|