1
|
Shimoju R. Dorsal column pathway is involved in tactile reward-induced affective 50-kHz ultrasonic vocalizations in rats. PLoS One 2025; 20:e0320645. [PMID: 40138331 PMCID: PMC11940486 DOI: 10.1371/journal.pone.0320645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Rhythmic stroking induces positive emotions in rats via the mesolimbic dopamine system. However, the ascending pathways underlying the affective 50-kHz ultrasonic vocalizations (USVs) induced by somatosensory stimulation remain unknown. The dorsal column consists of ascending spinal tracts that convey innocuous tactile information from the spinal cord to the brain. Here, we investigated whether the somatosensory signals transmitted through the dorsal column pathway contribute to the induction of positive 50-kHz USVs during rhythmic stroking. The 50-kHz USVs, behavior, approach latency, and mechanical tactile thresholds of animals with dorsal column lesions (DCL) at the upper thoracic level were compared with those in sham-operated animals. The DCL significantly reduced the number of 50-kHz USVs, harmonics, and split calls during rhythmic stroking, and the number of hedonic frequency-modulated calls (trill, complex, and step up calls) after rhythmic stroking. The DCL significantly increased the approach latency compared to presurgical controls. Sham-operated rats demonstrated a significant increase in the number of 50-kHz USVs and shortened approach latency compared with presurgical control values. Our results suggest that the somatosensory input conveyed by the dorsal column triggers the affective 50-kHz USVs during rhythmic stroking and approach behaviors. These findings contribute to revealing the neural circuits underlying somatosensory-emotional integration.
Collapse
Affiliation(s)
- Rie Shimoju
- Center for Basic Medical Research, International University of Health and Welfare, Otawara, Tochigi, Japan
| |
Collapse
|
2
|
Yamauchi T, Takahashi K, Yoshioka T, Yamada D, Nakano Y, Kasai S, Iriyama S, Yoshizawa K, Nishino S, Miyazaki S, Saitoh A. Inaudible airborne ultrasound affects emotional states in the olfactory bulbectomized rat depression model. Sci Rep 2025; 15:3199. [PMID: 39863793 PMCID: PMC11762311 DOI: 10.1038/s41598-025-87036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality. Here, we investigated the impact of US exposure on the emotional state of OBX rats. In naive rats, exposure to 100 kHz US for 1 h did not increase the number of c-Fos-positive cells in auditory-related cortical areas, and US, as a tone cue, did not elicit a conditioned fear response in the auditory fear conditioning test. These results indicate that the frequency of 100 kHz is hard to hear for rats. However, US improved hyperemotionality (HE) scores and decreased plasma corticosterone levels in OBX rats, suggesting ameliorative effects on depression-like symptoms and stress. In contrast to HE scores, US exposure did not influence anxiety-like behaviors in the elevated plus maze. In conclusion, we demonstrated that exposure to airborne US can alleviate depressive-like symptoms in the OBX rat depression model. This is the first study to show that exposure to airborne US alone produces changes in emotional states in an animal model.
Collapse
Affiliation(s)
- Tsugumi Yamauchi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kou Takahashi
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshio Nakano
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Iriyama
- Laboratory of Quantum information dynamics, Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | | | - Satoru Miyazaki
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
3
|
Brudzynski SM, Burgdorf JS, Moskal JR. From emotional arousal to executive action. Role of the prefrontal cortex. Brain Struct Funct 2024; 229:2327-2338. [PMID: 39096390 PMCID: PMC11611949 DOI: 10.1007/s00429-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Emotional arousal is caused by the activity of two parallel ascending systems targeting mostly the subcortical limbic regions and the prefrontal cortex. The aversive, negative arousal system is initiated by the activity of the mesolimbic cholinergic system and the hedonic, appetitive, arousal is initiated by the activity of the mesolimbic dopaminergic system. Both ascending projections have a diffused nature and arise from the rostral, tegmental part of the brain reticular activating system. The mesolimbic cholinergic system originates in the laterodorsal tegmental nucleus and the mesolimbic dopaminergic system in the ventral tegmental area. Cholinergic and dopaminergic arousal systems have converging input to the medial prefrontal cortex. The arousal system can modulate cortical EEG with alpha rhythms, which enhance synaptic strength as shown by an increase in long-term potentiation (LTP), whereas delta frequencies are associated with decreased arousal and a decrease in synaptic strength as shown by an increase in long-term depotentiation (LTD). It is postulated that the medial prefrontal cortex is an adaptable node with decision making capability and may control the switch between positive and negative affect and is responsible for modifying or changing emotional state and its expression.
Collapse
Affiliation(s)
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Joseph R Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Serra M, Marongiu J, Simola N, Costa G. Emission of 50-kHz ultrasonic vocalizations stimulated by antiparkinsonian dopaminomimetic drugs in hemiparkinsonian rats is associated with neuronal activation in subcortical regions that regulate the affective state. Exp Neurol 2024; 381:114939. [PMID: 39191345 DOI: 10.1016/j.expneurol.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Dopamine replacement therapy (DRT) of Parkinson's disease (PD) may trigger non-motor complications, some of which affect hedonic homeostatic regulation. Management of iatrogenic alterations in the affective state in PD is unsatisfactory, partly because of the limitations in the experimental models that are used in the preclinical investigation of the neurobiology and therapy of these alterations. In this connection, we recently employed a new experimental approach consisting in measuring the emission of 50-kHz ultrasonic vocalizations (USVs), a marker of positive affect, in hemiparkinsonian rats treated with drugs used in the DRT of PD. To further strengthen our approach, we here evaluated how the acute and repeated (× 5, on alternate days) administration of apomorphine (2 mg/kg, i.p.) or L-3,4-dihydroxyphenilalanine (L-DOPA, 12 mg/kg, i.p.) modified the immunoreactivity for Zif-268, a marker of neuronal activation, in the nucleus accumbens (NAc), caudate-putamen (CPu) and medial prefrontal cortex (mPFC), which are brain regions that regulate emotional states and drugs' affective properties. Acute and repeated treatment with either apomorphine or L-DOPA stimulated the emission of 50-kHz USVs in hemiparkinsonian rats, and this effect was paired with increased Zif-268 immunoreactivity in the NAc and CPu, but not mPFC. These findings indicate that subcortical and cortical regions may differently regulate the emission of 50-kHz USVs in hemiparkinsonian rats treated with dopaminergic drugs used in the DRT of PD. Moreover, they provide further evidence that measuring 50-kHz USV emissions in hemiparkinsonian rats may be a relevant approach to investigate at the preclinical level the affective properties of antiparkinsonian drugs.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Piras G, Cadoni C, Caria F, Pintori N, Spano E, Vanejevs M, Ture A, Tocco G, Simola N, De Luca MA. Characterization of the Neurochemical and Behavioral Effects of the Phenethylamine 2-Cl-4,5-MDMA in Adolescent and Adult Male Rats. Int J Neuropsychopharmacol 2024; 27:pyae016. [PMID: 38546531 PMCID: PMC11120233 DOI: 10.1093/ijnp/pyae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proliferation of novel psychoactive substances (NPS) in the drug market raises concerns about uncertainty on their pharmacological profile and the health hazard linked to their use. Within the category of synthetic stimulant NPS, the phenethylamine 2-Cl-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) has been linked to severe intoxication requiring hospitalization. Thereby, the characterization of its pharmacological profile is urgently warranted. METHODS By in vivo brain microdialysis in adolescent and adult male rats we investigated the effects of 2-Cl-4,5-MDMA on dopamine (DA) and serotonin (5-HT) neurotransmission in two brain areas critical for the motivational and rewarding properties of drugs, the nucleus accumbens (NAc) shell and the medial prefrontal cortex (mPFC). Moreover, we evaluated the locomotor and stereotyped activity induced by 2-Cl-4,5-MDMA and the emission of 50-kHz ultrasonic vocalizations (USVs) to characterize its affective properties. RESULTS 2-Cl-4,5-MDMA increased dialysate DA and 5-HT in a dose-, brain area-, and age-dependent manner. Notably, 2-Cl-4,5-MDMA more markedly increased dialysate DA in the NAc shell and mPFC of adult than adolescent rats, while the opposite was observed on dialysate 5-HT in the NAc shell, with adolescent rats being more responsive. Furthermore, 2-Cl-4,5-MDMA stimulated locomotion and stereotyped activity in both adolescent and adult rats, although to a greater extent in adolescents. Finally, 2-Cl-4,5-MDMA did not stimulate the emission of 50-kHz USVs. CONCLUSIONS This is the first pharmacological characterization of 2-Cl-4,5-MDMA demonstrating that its neurochemical and behavioral effects may differ between adolescence and adulthood. These preclinical data could help understanding the central effects of 2-Cl-4,5-MDMA by increasing awareness on possible health damage in users.
Collapse
Affiliation(s)
- Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Cadoni
- Institute of Neuroscience, National Research Council of Italy, Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
6
|
Saldanha TCS, Sanchez WN, Palombo P, Cruz FC, Galduróz JCF, Schwarting RKW, Andreatini R, da Cunha C, Pochapski JA. Biperiden reverses the increase in 50-kHz ultrasonic vocalizations but not the increase in locomotor activity induced by cocaine. Behav Brain Res 2024; 461:114841. [PMID: 38159887 PMCID: PMC10903531 DOI: 10.1016/j.bbr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Cocaine use disorder (CUD) is a worldwide public health problem, associated with severe psychosocial and economic impacts. Currently, no FDA-approved treatment is available for CUD. However, an emerging body of evidence from clinical and preclinical studies suggests that biperiden, an M1 muscarinic receptor antagonist, presents potential therapeutic use for CUD. These studies have suggested that biperiden may reduce the reinforcing effects of cocaine. It is well established that rodents emit 50-kHz ultrasonic vocalizations (USV) in response to natural rewards and stimulant drugs, including cocaine. Nonetheless, the effects of biperiden on the cocaine-induced increase of 50-kHz USV remains unknown. Here, we hypothesized that biperiden could antagonize the acute effects of cocaine administration on rat 50-kHz USV. To test this hypothesis, adult male Wistar rats were divided into four experimental groups: saline, 5 mg/kg biperiden, 10 mg/kg cocaine, and biperiden/cocaine (5 and 10 mg/kg, i.p., respectively). USV and locomotor activity were recorded in baseline and test sessions. As expected, cocaine administration significantly increased the number of 50-kHz USV. Biperiden administration effectively antagonized the increase in 50-kHz USV induced by cocaine. Cocaine administration also increased the emission of trill and mixed 50 kHz USV subtypes and this effect was antagonized by biperiden. Additionally, we showed that biperiden did not affect the cocaine-induced increase in locomotor activity, although biperiden administration per se increased locomotor activity. In conclusion, our findings indicate that administering biperiden acutely reduces the positive affective effects of cocaine, as demonstrated by its ability to inhibit the increase in 50-kHz USV.
Collapse
Affiliation(s)
- Thais C S Saldanha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - William N Sanchez
- Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fábio C Cruz
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roberto Andreatini
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - José Augusto Pochapski
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
7
|
Cordeiro N, Pochapski JA, Luna WS, Baltazar G, Schwarting RK, Andreatini R, Da Cunha C. Forty-kHz ultrasonic vocalizations of rat pups predict adult behavior in the elevated plus-maze behavior but not the effect of cocaine on 50-kHz ultrasonic vocalizations. Behav Brain Res 2024; 458:114759. [PMID: 37952685 PMCID: PMC10797528 DOI: 10.1016/j.bbr.2023.114759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ultrasonic vocalizations (USV) are emitted by both young pups and adult rats to convey positive or negative emotional states. These USV manifestations are contingent on factors including developmental stage, situational requirements, and individual dispositions. Pups emit 40-kHz USV when separated from their mother and litter, which function to elicit maternal care. Conversely, adult rats can produce 50-kHz USV in response to stimuli that elicit reward-related states, including natural rewards, stimulant drugs, and reward-predictive stimuli. The present study aims to investigate whether pup 40-kHz USV can serve as predictors of behaviors related to positive or negative states in adult rats. Both male and female Wistar pups were initially tested on the 11th postnatal day and subsequently in adulthood. There was no significant difference in the number of 40-kHz ultrasonic vocalizations between male and female pups. However, cocaine elicited more 50-kHz USV and hyperactivity in adult females compared to males. Notably, cocaine increased the proportion of step and trill USV subtypes in both adult males and females. Interestingly, this effect of cocaine was stronger in females that were in the diestrus, compared to the estrus phase. In males, a significant positive correlation was found between pup 40-kHz USV and lower anxiety scores in adult male but not female rats tested on the elevated plus-maze test. Furthermore, no significant correlation was found between pup 40-kHz and adult 50-kHz USV in both males and females, whether in undrugged (saline) or in cocaine-treated rats. It is possible that the 40-kHz USV emitted by pups predicted reduced anxiety-like behavior only for male rats because they could elicit maternal care directed specifically to male pups. These findings suggest that 40-kHz USV can serve as an indicator of the emotional link between the rat mother and male pups. Indeed, this suggests that maternal care exerts a positive influence on the emotional state during adulthood.
Collapse
Affiliation(s)
- Nícolas Cordeiro
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - José Augusto Pochapski
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - William Sanchez Luna
- Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Gabriel Baltazar
- Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Rainer K Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roberto Andreatini
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Claudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
8
|
Serra M, Costa G, Onaivi E, Simola N. Divergent Acute and Enduring Changes in 50-kHz Ultrasonic Vocalizations in Rats Repeatedly Treated With Amphetamine and Dopaminergic Antagonists: New Insights on the Role of Dopamine in Calling Behavior. Int J Neuropsychopharmacol 2024; 27:pyae001. [PMID: 38174899 PMCID: PMC10852626 DOI: 10.1093/ijnp/pyae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Rats emit 50-kHz ultrasonic vocalizations (USVs) in response to nonpharmacological and pharmacological stimuli, with addictive psychostimulants being the most effective drugs that elicit calling behavior in rats. Earlier investigations found that dopamine D1-like and D2-like receptors modulate the emission of 50-kHz USVs stimulated in rats by the acute administration of addictive psychostimulants. Conversely, information is lacking on how dopamine D1-like and D2-like receptors modulate calling behavior in rats that are repeatedly treated with addictive psychostimulants. METHODS We evaluated the emission of 50-kHz USVs in rats repeatedly treated (×5 on alternate days) with amphetamine (1 mg/kg, i.p.) either alone or together with (1) SCH 23390 (0.1-1 mg/kg, s.c.), a dopamine D1 receptor antagonist; (2) raclopride (0.3-1 mg/kg, s.c.), a selective dopamine D2 receptor antagonist; or (3) a combination of SCH 23390 and raclopride (0.1 + 0.3 mg/kg, s.c.). Calling behavior of rats was recorded following pharmacological treatment, as well as in response to the presentation of amphetamine-paired cues and to amphetamine challenge (both performed 7 days after treatment discontinuation). RESULTS Amphetamine-treated rats displayed a sensitized 50-kHz USV emission during repeated treatment, as well as marked calling behavior in response to amphetamine-paired cues and to amphetamine challenge. Antagonism of D1 or D2 receptors either significantly suppressed or attenuated the emission of 50-kHz USVs in amphetamine-treated rats, with a maximal effect after synergistic antagonism of both receptors. CONCLUSIONS These results shed further light on how dopamine transmission modulates the emission of 50-kHz USVs in rats treated with psychoactive drugs.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Emmanuel Onaivi
- Biology Department, William Paterson University, Wayne, New Jersey, USA
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Melo-Thomas L, Schwarting RKW. Paradoxical kinesia may no longer be a paradox waiting for 100 years to be unraveled. Rev Neurosci 2023; 34:775-799. [PMID: 36933238 DOI: 10.1515/revneuro-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder mainly characterized by bradykinesia and akinesia. Interestingly, these motor disabilities can depend on the patient emotional state. Disabled PD patients remain able to produce normal motor responses in the context of urgent or externally driven situations or even when exposed to appetitive cues such as music. To describe this phenomenon Souques coined the term "paradoxical kinesia" a century ago. Since then, the mechanisms underlying paradoxical kinesia are still unknown due to a paucity of valid animal models that replicate this phenomenon. To overcome this limitation, we established two animal models of paradoxical kinesia. Using these models, we investigated the neural mechanisms of paradoxical kinesia, with the results pointing to the inferior colliculus (IC) as a key structure. Intracollicular electrical deep brain stimulation, glutamatergic and GABAergic mechanisms may be involved in the elaboration of paradoxical kinesia. Since paradoxical kinesia might work by activation of some alternative pathway bypassing basal ganglia, we suggest the IC as a candidate to be part of this pathway.
Collapse
Affiliation(s)
- Liana Melo-Thomas
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
10
|
Nelson XJ, Taylor AH, Cartmill EA, Lyn H, Robinson LM, Janik V, Allen C. Joyful by nature: approaches to investigate the evolution and function of joy in non-human animals. Biol Rev Camb Philos Soc 2023; 98:1548-1563. [PMID: 37127535 DOI: 10.1111/brv.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered 'laughter' vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.
Collapse
Affiliation(s)
- Ximena J Nelson
- Private Bag 4800, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alex H Taylor
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys, 23, Barcelona, Spain
- School of Psychology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erica A Cartmill
- Departments of Anthropology and Psychology, UCLA, 375 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Heidi Lyn
- Department of Psychology, University of South Alabama, 75 S. University Blvd., Mobile, AL, 36688, USA
| | - Lauren M Robinson
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| | - Vincent Janik
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St Andrews, KY16 8LB, UK
| | - Colin Allen
- Department of History & Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| |
Collapse
|
11
|
Chronic stress and stressful emotional contagion affect the empathy-like behavior of rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01081-9. [PMID: 36899132 DOI: 10.3758/s13415-023-01081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Empathy is a potential motivation for prosocial behaviors that is related to many psychiatric diseases, such as major depressive disorder; however, its neural mechanisms remain unclear. To elucidate the relationship between empathy and stress, we established a chronic stress contagion (SC) procedure combined with chronic unpredictable mild stress (CUMS) to investigate (1) whether depressive rats show impaired empathy-like behavior toward fearful conspecifics, (2) whether frequent social contact with normal familiar conspecifics (social support) alleviates the negative effects of CUMS, and (3) the effect of long-term exposure to a depressed partner on emotional and empathic responses in normal rats. We found that the CUMS group showed less empathy-like behavior in the social transfer of fear model (STFM), as indicated by less social interaction with the demonstrator and reduced freezing behavior in the fear-expression test. Social contact partially alleviated depression-like behaviors and the negative effect of CUMS in the fear-transfer test. The normal rats who experienced stress contagion from daily exposure to a depressed partner for 3 weeks showed lower anxiety and increased social response in the fear-transfer test than the control group. We concluded that chronic stress impairs empathy-like behaviors, while social contact partially buffers the effect of CUMS. Thus, social contact or contagion of stress is mutually beneficial to both stressed individuals and nonstressed partners. Higher dopamine and lower norepinephrine levels in the basolateral amygdala probably contributed to these beneficial effects.
Collapse
|
12
|
Champeil-Potokar G, Kreichati L, Rampin O, Denis I, Darcel N, Bombail V. Rats chirp with their mouth full: During an experimental meal, adult male Wistar rats emitted flat ultrasonic vocalisations upon feeding. Front Behav Neurosci 2023; 17:1089631. [PMID: 36815182 PMCID: PMC9939450 DOI: 10.3389/fnbeh.2023.1089631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Rats produce ultrasonic vocalisation (USVs) that are classified into different types, based on their average frequency. In pups 40 kHz USVs are produced upon social isolation, and in adults USVs can be associated with affective states and specific behavioural patterns (i.e., appetitive 50 kHz vocalisations of frequency range 30-100 kHz, or aversive 20 kHz vocalisations of frequency range 18-30 kHz). Generally, USVs of frequency around 50 kHz are linked to activation of brain reward pathways, during anticipation or experience of rewarding stimuli. Previous studies have described several subtypes of 50 kHz USVs, according to their acoustic properties. We asked whether USV production might be relevant to feeding behaviour. We recorded USVs from 14-week old adult rats during the satisfaction of a physiological need: refeeding following mild food deprivation (17 h overnight fast). We analysed a 10 min consummatory phase, preceded by a 10 min anticipatory phase, as a control for the experimental meal. Following identification of USV subtypes, we applied frequentist and Bayesian (Monte Carlo shuffling) statistical analyses to investigate the relationship between USV emission and rat behaviour. We found that it was not total USV quantity that varied in response to food consumption, but the subtype of USV produced. Most importantly we found that rats who feed tend to produce flat USVs of a frequency around 40 kHz. Beyond the previous reports of circumstantial association feeding-flat USVs, our observation directly correlate vocalisation and ingestive behaviour. Our study highlights that, in addition to quantification of the production rate, study of USV subtypes might inform us further on rat consummatory behaviour. Since this vocalisation behaviour can have a communicative purpose, those findings also illustrate nutrition studies might benefit from considering the possible social dimension of feeding behaviour.
Collapse
Affiliation(s)
- Gaelle Champeil-Potokar
- Physiology of Nutrition and Feeding Behaviour Unit (PNCA, UMR 0914), University of Paris-Saclay-AgroParisTech-National Research Institute for Agriculture, Food and Environment (INRAE), Paris, France
| | - Léa Kreichati
- Physiology of Nutrition and Feeding Behaviour Unit (PNCA, UMR 0914), University of Paris-Saclay-AgroParisTech-National Research Institute for Agriculture, Food and Environment (INRAE), Paris, France
| | - Olivier Rampin
- Physiology of Nutrition and Feeding Behaviour Unit (PNCA, UMR 0914), University of Paris-Saclay-AgroParisTech-National Research Institute for Agriculture, Food and Environment (INRAE), Paris, France
| | - Isabelle Denis
- Physiology of Nutrition and Feeding Behaviour Unit (PNCA, UMR 0914), University of Paris-Saclay-AgroParisTech-National Research Institute for Agriculture, Food and Environment (INRAE), Paris, France
| | - Nicolas Darcel
- Physiology of Nutrition and Feeding Behaviour Unit (PNCA, UMR 0914), University of Paris-Saclay-AgroParisTech-National Research Institute for Agriculture, Food and Environment (INRAE), Paris, France
| | - Vincent Bombail
- Physiology of Nutrition and Feeding Behaviour Unit (PNCA, UMR 0914), University of Paris-Saclay-AgroParisTech-National Research Institute for Agriculture, Food and Environment (INRAE), Paris, France.,Animal Behaviour and Welfare Group, Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
13
|
D’aloisio G, Acevedo MB, Angulo-Alcalde A, Trujillo V, Molina JC. Moderate ethanol exposure during early ontogeny of the rat alters respiratory plasticity, ultrasonic distress vocalizations, increases brain catalase activity, and acetaldehyde-mediated ethanol intake. Front Behav Neurosci 2022; 16:1031115. [DOI: 10.3389/fnbeh.2022.1031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Early ontogeny of the rat (late gestation and postnatal first week) is a sensitive period to ethanol’s positive reinforcing effects and its detrimental effects on respiratory plasticity. Recent studies show that acetaldehyde, the first ethanol metabolite, plays a key role in the modulation of ethanol motivational effects. Ethanol brain metabolization into acetaldehyde via the catalase system appears critical in modulating ethanol positive reinforcing consequences. Catalase system activity peak levels occur early in the ontogeny. Yet, the role of ethanol-derived acetaldehyde during the late gestational period on respiration response, ultrasonic vocalizations (USVs), and ethanol intake during the first week of the rat remains poorly explored. In the present study, pregnant rats were given a subcutaneous injection of an acetaldehyde-sequestering agent (D-penicillamine, 50 mg/kg) or saline (0.9% NaCl), 30 min prior to an intragastric administration of ethanol (2.0 g/kg) or water (vehicle) on gestational days 17–20. Respiration rates (breaths/min) and apneic episodes in a whole-body plethysmograph were registered on postnatal days (PDs) 2 and 4, while simultaneously pups received milk or ethanol infusions for 40-min in an artificial lactation test. Each intake test was followed by a 5-min long USVs emission record. On PD 8, immediately after pups completed a 15-min ethanol intake test, brain samples were collected and kept frozen for catalase activity determination. Results indicated that a moderate experience with ethanol during the late gestational period disrupted breathing plasticity, increased ethanol intake, as well brain catalase activity. Animals postnatally exposed to ethanol increased their ethanol intake and exerted differential affective reactions on USVs and apneic episodes depending on whether the experience with ethanol occur prenatal or postnatally. Under the present experimental conditions, we failed to observe, a clear role of acetaldehyde mediating ethanol’s effects on respiratory plasticity or affective states, nevertheless gestational acetaldehyde was of crucial importance in determining subsequent ethanol intake affinity. As a whole, results emphasize the importance of considering the participation of acetaldehyde in fetal programming processes derived from a brief moderate ethanol experience early in development, which in turn, argues against “safe or harmless” ethanol levels of exposure.
Collapse
|
14
|
Palagi E, Caruana F, de Waal FBM. The naturalistic approach to laughter in humans and other animals: towards a unified theory. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210175. [PMID: 36126670 PMCID: PMC9489289 DOI: 10.1098/rstb.2021.0175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022] Open
Abstract
This opinion piece aims to tackle the biological, psychological, neural and cultural underpinnings of laughter from a naturalistic and evolutionary perspective. A naturalistic account of laughter requires the revaluation of two dogmas of a longstanding philosophical tradition, that is, the quintessential link between laughter and humour, and the uniquely human nature of this behaviour. In the spirit of Provine's and Panksepp's seminal studies, who firstly argued against the anti-naturalistic dogmas, here we review compelling evidence that (i) laughter is first and foremost a social behaviour aimed at regulating social relationships, easing social tensions and establishing social bonds, and that (ii) homologue and homoplasic behaviours of laughter exist in primates and rodents, who also share with humans the same underpinning neural circuitry. We make a case for the hypothesis that the contagiousness of laughter and its pervasive social infectiousness in everyday social interactions is mediated by a specific mirror mechanism. Finally, we argue that a naturalistic account of laughter should not be intended as an outright rejection of classic theories; rather, in the last part of the piece we argue that our perspective is potentially able to integrate previous viewpoints-including classic philosophical theories-ultimately providing a unified evolutionary explanation of laughter. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Elisabetta Palagi
- Unit of Ethology, Department of Biology, University of Pisa, via A. Volta 6, Pisa 56126, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, Parma 43125, Italy
| | | |
Collapse
|
15
|
Stable long-term individual differences in 50-kHz vocalization rate and call subtype prevalence in adult male rats: Comparisons with sucrose preference. PLoS One 2022; 17:e0276743. [PMID: 36301879 PMCID: PMC9612506 DOI: 10.1371/journal.pone.0276743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Sucrose preference (SP) is a widely used measure of anhedonia in rat models of depression, yet depressed patients do not reliably show an analogous deficit. As an alternative affect-related measure, adult rat ultrasonic vocalizations (USVs) are attracting interest, but it is unclear whether SP and USVs provide independent measures. Here, we have assessed whether SP and USV emission are correlated in the absence of a depressogenic procedure. To this end, 24 male Long-Evans rats were tested daily for 24 days, with alternating SP tests and USV recordings; after a 3-month hiatus, USV emission was re-evaluated for 6 more days. SP was measured in simultaneous two-bottle choice tests, and USVs were recorded in an open field. The main measures were: SP, 50-kHz call rate, and relative prevalence of trill and flat call subtypes. These measures showed temporally-stable individual differences across the initial 24-day testing period, and at the 3-month USV follow-up tests. Correlational analysis revealed no significant relationships between SP and the three main USV measures. Rats differed consistently, not only in their 50-kHz call rates but also in their 50-kHz call profiles (i.e., the relative prevalence of 14 call subtypes); most rats preferentially emitted either trill or flat calls. Several inter-call subtype associations were detected, including a strong negative relationship between the relative prevalence of flat and trill calls. The 50-kHz call rate was correlated with the relative prevalence of only one call subtype (short calls, negative correlation), but was positively correlated with absolute emission rates for almost all subtypes. In conclusion, adult rats exhibited temporally-stable individual differences over weeks (SP) or months (USVs) of testing. This trait-like stability helped to reveal a lack of relationship between SP and the USV-related variables under study, suggesting that these measures may capture different constructs of possible relevance to animal models of depression.
Collapse
|
16
|
Yamauchi T, Yoshioka T, Yamada D, Hamano T, Ikeda M, Kamei M, Otsuki T, Sato Y, Nii K, Suzuki M, Iriyama S, Yoshizawa K, Nishino S, Ichikawa H, Miyazaki S, Saitoh A. High-frequency ultrasound exposure improves depressive-like behavior in an olfactory bulbectomized rat model of depression. Neuroreport 2022; 33:445-449. [PMID: 35703736 PMCID: PMC9154295 DOI: 10.1097/wnr.0000000000001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES According to previous studies, ultrasound exposure appears to be a noninvasive method for modulating brain activity related to cognition and consciousness; however, its effects on emotional states remain unclear. Therefore, an animal model is required in which the effects and effect mechanisms of ultrasound exposure can be investigated. Thus, we used olfactory bulbectomized rats as an animal model of depression and investigated their emotional state following ultrasound exposure. METHODS In male Wistar/ST olfactory bulbectomized rats, hyperemotionality was evaluated according to hyperemotionality scoring and the scores before and after 24-h ultrasound exposure were compared. Elevated plus maze (EPM) tests were also conducted after 24-h ultrasound exposure, and blood samples were collected in which plasma corticosterone concentrations were measured. RESULTS Following exposure to high-frequency (~50 kHz) ultrasound vocalizations (USVs) associated with the pleasant emotions of rats, the hyperemotionality scores of olfactory bulbectomized rats were significantly reduced. Additionally, the latency of the first entry into the open arm of the EPM was significantly decreased in USV-exposed olfactory bulbectomized rats, as were their plasma corticosterone levels. Furthermore, artificial ultrasound (50 kHz) at a similar frequency to that of USV also significantly decreased the hyperemotionality score of olfactory bulbectomized rats. CONCLUSIONS Ultrasound exposure improved depressive-like behavior in olfactory bulbectomized rats and reduced their plasma corticosterone levels. Thus, we recommend the use of olfactory bulbectomized rats as an animal model for investigating the effects and effect mechanisms of ultrasound exposure.
Collapse
Affiliation(s)
- Tsugumi Yamauchi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Laboratory of Psychology, Noda Division, Institute of Arts and Sciences, Tokyo University of Science
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Takumi Hamano
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | | | | | | - Satoshi Iriyama
- Laboratory of Quantum information dynamics, Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Hiroko Ichikawa
- Laboratory of Psychology, Noda Division, Institute of Arts and Sciences, Tokyo University of Science
| | - Satoru Miyazaki
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
17
|
Opioid and Sucrose Craving Are Accompanied by Unique Behavioral and Affective Profiles after Extended Abstinence in Male and Female Rats. eNeuro 2022; 9:ENEURO.0515-21.2022. [PMID: 35241453 PMCID: PMC9007407 DOI: 10.1523/eneuro.0515-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Incubation of craving refers to the intensification of drug-seeking behavior in response to reward-paired cues over the course of abstinence. In rodents, craving and drug-seeking behaviors have been measured by an increase in lever pressing in the absence of reinforcer availability in response to cue presentations. However, craving in rodents is difficult to define and little is known about the behavioral signatures that accompany increased drug-seeking behavior measured by lever pressing. The affective components of relapse are also important, but understudied in rodents. Hormonal fluctuations influence craving for psychostimulants, but little is known about the impact of the estrous cycle on opioid-seeking behavior. This study sought to delineate the behavioral and affective signatures associated with craving, and to examine the influence of the female estrous cycle on craving. Male and female rats underwent 10 d of intravenous opioid self-administration. Separate cohorts of control rats self-administered oral sucrose, a natural nondrug reward. Cue-induced seeking tests were conducted after 1 or 30d of forced abstinence. These sessions were recorded and scored for overall locomotion, instances of sniffing, grooming, or hyperactivity. Ultrasonic vocalizations (USVs) were also recorded to determine affective profiles that accompany opioid seeking. Although active lever presses and overall locomotion increased unanimously over extended abstinence from heroin and sucrose, a sex- and reinforcer-specific behavioral and affective signature of craving emerged. Furthermore, although the female estrous cycle did not affect taking or seeking, it appears to influence more granular behaviors.
Collapse
|
18
|
Scott KJ, Tashakori-Sabzevar F, Bilkey DK. Maternal immune activation alters the sequential structure of ultrasonic communications in male rats. Brain Behav Immun Health 2021; 16:100304. [PMID: 34589796 PMCID: PMC8474666 DOI: 10.1016/j.bbih.2021.100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 07/24/2021] [Indexed: 11/23/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for schizophrenia and many of the symptoms and neurodevelopmental changes associated with this disorder have been modelled in the rodent. While several previous studies have reported that rodent ultrasonic vocalizations (USVs) are affected by MIA, no previous study has examined whether MIA affects the way that individual USVs occur over time to produce vocalisation sequences. The sequential aspect of this behaviour may be particularly important because changes in sequencing mechanisms have been proposed as a core deficit in schizophrenia. The present research generates MIA with POLY I:C administered to pregnant Sprague-Dawley rat dams at GD15. Male pairs of MIA adult offspring or pairs of their saline controls were placed into a two-chamber apparatus where they were separated from each other by a perforated plexiglass barrier. USVs were recorded for a period of 10 min and automated detection and call review were used to classify short call types in the nominal 50 kHz band of social affiliative calls. Our data show that the duration of these 50-kHz USVs is longer in MIA rat pairs and the time between calls is shorter. Furthermore, the transition probability between call pairs was different in the MIA animals compared to the control group, indicating alterations in sequential behaviour. These results provide the first evidence that USV call sequencing is altered by the MIA intervention and suggest that further investigations of these temporally extended aspects of USV production are likely to reveal useful information about the mechanisms that underlie sequence generation. This is particularly important given previous research suggesting that sequencing deficits may have a significant impact on both behaviour and cognition.
Collapse
Affiliation(s)
| | | | - David K. Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Lawson KA, Flores AY, Hokenson RE, Ruiz CM, Mahler SV. Nucleus Accumbens Chemogenetic Inhibition Suppresses Amphetamine-Induced Ultrasonic Vocalizations in Male and Female Rats. Brain Sci 2021; 11:1255. [PMID: 34679320 PMCID: PMC8534195 DOI: 10.3390/brainsci11101255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
Adult rats emit ultrasonic vocalizations (USVs) related to their affective states, potentially providing information about their subjective experiences during behavioral neuroscience experiments. If so, USVs might provide an important link between invasive animal preclinical studies and human studies in which subjective states can be readily queried. Here, we induced USVs in male and female Long Evans rats using acute amphetamine (2 mg/kg), and asked how reversibly inhibiting nucleus accumbens neurons using designer receptors exclusively activated by designer drugs (DREADDs) impacts USV production. We analyzed USV characteristics using "Deepsqueak" software, and manually categorized detected calls into four previously defined subtypes. We found that systemic administration of the DREADD agonist clozapine-n-oxide, relative to vehicle in the same rats, suppressed the number of frequency-modulated and trill-containing USVs without impacting high frequency, unmodulated (flat) USVs, nor the small number of low-frequency USVs observed. Using chemogenetics, these results thus confirm that nucleus accumbens neurons are essential for production of amphetamine-induced frequency-modulated USVs. They also support the premise of further investigating the characteristics and subcategories of these calls as a window into the subjective effects of neural manipulations, with potential future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California, Irvine. 1203 McGaugh Hall, Irvine, CA 92697, USA; (K.A.L.); (A.Y.F.); (R.E.H.); (C.M.R.)
| |
Collapse
|
20
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Effects of β-Phenylethylamine on Psychomotor, Rewarding, and Reinforcing Behaviors and Affective State: The Role of Dopamine D1 Receptors. Int J Mol Sci 2021; 22:ijms22179485. [PMID: 34502393 PMCID: PMC8430604 DOI: 10.3390/ijms22179485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/28/2023] Open
Abstract
Beta-phenylethylamine (β-PEA) is a well-known and widespread endogenous neuroactive trace amine found throughout the central nervous system in humans. In this study, we demonstrated the effects of β-PEA on psychomotor, rewarding, and reinforcing behaviors and affective state using the open-field test, conditioned place preference (CPP), self-administration, and ultrasonic vocalizations (USVs) paradigms. We also investigated the role of the dopamine (DA) D1 receptor in the behavioral effects of β-PEA in rodents. Using enzyme-linked immunosorbent assay (ELISA) and Western immunoblotting, we also determined the DA concentration and the DA-related protein levels in the dorsal striatum of mice administered with acute β-PEA. The results showed that acute β-PEA increased stereotypic behaviors such as circling and head-twitching responses in mice. In the CPP experiment, β-PEA increased place preference in mice. In the self-administration test, β-PEA significantly enhanced self-administration during a 2 h session under fixed ratio (FR) schedules (FR1 and FR3) and produced a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement in rats. In addition, acute β-PEA increased 50-kHz USV calls in rats. Furthermore, acute β-PEA administration increased DA concentration and p-DAT and TH expression in the dorsal striatum of mice. Finally, pretreatment with SCH23390, a DA D1 receptor antagonist, attenuated β-PEA-induced circling behavior and β-PEA-taking behavior in rodents. Taken together, these findings suggest that β-PEA has rewarding and reinforcing effects and psychoactive properties, which induce psychomotor behaviors and a positive affective state by activating the DA D1 receptor in the dorsal striatum.
Collapse
|
22
|
Sanchez WN, Pochapski JA, Jessen LF, Ellenberger M, Schwarting RK, Robinson DL, Andreatini R, Da Cunha C. Diazepam attenuates the effects of cocaine on locomotion, 50-kHz ultrasonic vocalizations and phasic dopamine in the nucleus accumbens of rats. Br J Pharmacol 2021; 179:1565-1577. [PMID: 34389975 DOI: 10.1111/bph.15658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, there is no effective drug to treat cocaine-use disorder, which affects millions of people worldwide. Benzodiazepines are potential therapeutic candidates, as microdialysis and voltammetry studies have shown that they can decrease dopamine concentrations in the nucleus accumbens of rodents and block the increase in dopamine levels and appetitive 50-kHz ultrasonic vocalizations (USVs) induced by amphetamine in rats. EXPERIMENTAL APPROACH Here, we tested whether administration of 2.5-mg·kg-1 diazepam (i.p.) in adult male rats could block the effects of 20-mg·kg-1 cocaine (i.p.) on electrically evoked phasic dopamine signals in the nucleus accumbens measured by fast-scan cyclic voltammetry, as well as 50-kHz USV and locomotor activity. KEY RESULTS Cocaine injection increased evoked dopamine signals up to threefold within 5 min, and the increase was significantly higher than baseline for at least 75 min. The injection of diazepam, 5 min after cocaine, attenuated the cocaine effect by nearly 50%, and this attenuation was maintained for at least 40 min. Behaviourally, cocaine increased the number of appetitive 50-kHz calls by about 12-fold. Diazepam significantly blocked this effect for the entire duration of the session. Also, cocaine-treated rats were more active than controls and diazepam significantly attenuated cocaine-induced locomotion, by up to 50%. CONCLUSION AND IMPLICATIONS These results suggest that the neurochemical and psychostimulant effects of cocaine can be mitigated by diazepam.
Collapse
Affiliation(s)
- William N Sanchez
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil.,Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jose A Pochapski
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil.,Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leticia F Jessen
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marek Ellenberger
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University Marburg, Marburg, Germany
| | - Rainer K Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University Marburg, Marburg, Germany
| | - Donita L Robinson
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roberto Andreatini
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Claudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil.,Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
23
|
Association between Novel Object Recognition/Spontaneous Alternation Behavior and Emission of Ultrasonic Vocalizations in Rats: Possible Relevance to the Study of Memory. Brain Sci 2021; 11:brainsci11081053. [PMID: 34439672 PMCID: PMC8394680 DOI: 10.3390/brainsci11081053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Rats emit ultrasonic vocalizations (USVs) in situations with emotional valence, and USVs have also been proposed as a marker for memories conditioned to those situations. This study investigated whether USV emissions can predict and/or be associated with the behavior of rats in tests that evaluate unconditioned memory. To this end, rats were subjected to “tickling”, a procedure of heterospecific play that has emotional valence and elicits the emission of USVs, and afterwards evaluated in the novel object recognition test (NOR) and in the single trial continuous spontaneous alternation behavior (SAB) test in a Y maze. The number of 22-kHz USVs (aversive) and 50-kHz USVs (appetitive) emitted in response to tickling and during NOR and SAB tests were scored, and the correlations among them and with rats’ behavior evaluated. Rats emitted 50-kHz USVs, but not 22-kHz USVs, during the NOR and SAB tests, and such calling behavior was not linked with the behavioral readouts indicative of memory function in either test. However, rats that prevalently emitted 22-kHz USVs in response to tickling displayed an impaired NOR performance. These findings suggest that measuring the emission of USVs could be of interest in studies of unconditioned memory, at least with regard to 22-kHz USVs.
Collapse
|
24
|
Simola N, Serra M, Marongiu J, Costa G, Morelli M. Increased emissions of 50-kHz ultrasonic vocalizations in hemiparkinsonian rats repeatedly treated with dopaminomimetic drugs: A potential preclinical model for studying the affective properties of dopamine replacement therapy in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110184. [PMID: 33242502 DOI: 10.1016/j.pnpbp.2020.110184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Dopamine replacement therapy used in Parkinson's disease (PD) may induce alterations in the emotional state that can underlie the manifestation of iatrogenic psychiatric-like disturbances. The preclinical investigation of these disturbances is limited, also because few reliable paradigms are available to study the affective properties of dopaminomimetic drugs in parkinsonian animals. To provide a relevant experimental tool in this respect, we evaluated whether dopaminomimetic drugs modified the emission of 50-kHz ultrasonic vocalizations (USVs), a behavioral marker of positive affect, in rats bearing a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle. Apomorphine (2 or 4 mg/kg, i.p.), L-3,4-dihydroxyphenilalanine (L-DOPA, 6 or 12 mg/kg, i.p.), or pramipexole (2 or 4 mg/kg, i.p.) were administered in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, rats were re-exposed to the test cage to measure conditioned calling behavior and thereafter received a drug challenge. Hemiparkinsonian rats treated with either apomorphine or L-DOPA, but not pramipexole, markedly vocalized during repeated treatment and after challenge, and showed conditioned calling behavior. Moreover, apomorphine, L-DOPA and pramipexole elicited different patterns of 50-kHz USV emissions and rotational behavior, indicating that calling behavior in hemiparkinsonian rats treated with dopaminomimetic drugs is not a byproduct of motor activation. Taken together, these results suggest that measuring 50-kHz USV emissions may be a relevant experimental tool for studying how dopaminomimetic drugs modify the affective state in parkinsonian rats, with possible implications for the preclinical investigation of iatrogenic psychiatric-like disturbances in PD.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy; CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
25
|
Lesch R, Schwaha T, Orozco A, Shilling M, Brunelli S, Hofer M, Bowling DL, Zimmerberg B, Fitch WT. Selection on vocal output affects laryngeal morphology in rats. J Anat 2021; 238:1179-1190. [PMID: 33480050 PMCID: PMC8053590 DOI: 10.1111/joa.13366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Although laryngeal morphology often reflects adaptations for vocalization, the structural consequences of selection for particular aspects of vocal behavior remain poorly understood. In this study, we investigated the effects of increased ultrasonic calling in pups on the adult larynx morphology in selectively bred rat lines. Laryngeal morphology was assessed using multiple techniques: mineralized cartilage volumes were compared in 3D-models derived from microCT scans, internal structure was compared using clearing and staining procedures combined with microscopy, cellular structure was compared using histology and microscopy, and element composition was assessed with scanning energy dispersive X-ray spectroscopy. Our results show that adult rats from lines bred to produce ultrasonic calls at higher rates as pups have shorter vocal folds and a more mineralized thyroid cartilage compared to rats bred to produce ultrasonic calls at lower rates. The change in vocal fold length appears to account for differences in low-frequency calls in these two rat lines. We suggest that the observed increases in mineralization of the thyroid cartilage in the high-ultrasound lineage provide increased reinforcement of the laryngeal structure during ultrasonic call production. Our findings therefore demonstrate an effect of selection for vocal behavior on laryngeal morphology, with acoustic consequences.
Collapse
Affiliation(s)
- Raffaela Lesch
- Department of Behavioral and Cognitive BiologyUniversity of ViennaViennaAustria
| | - Thomas Schwaha
- Department of Evolutionary Biology, Integrative ZoologyUniversity of ViennaViennaAustria
| | - Andrea Orozco
- Department of PsychologyWilliams CollegeWilliamstownMAUSA
| | | | - Susan Brunelli
- Department of PsychiatryColumbia UniversityNew YorkNYUSA
| | - Myron Hofer
- Department of PsychiatryColumbia UniversityNew YorkNYUSA
| | - Daniel L. Bowling
- Department of Behavioral and Cognitive BiologyUniversity of ViennaViennaAustria
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCAUSA
| | | | | |
Collapse
|
26
|
Extracellular Dopamine Levels in Nucleus Accumbens after Chronic Stress in Rats with Persistently High vs. Low 50-kHz Ultrasonic Vocalization Response. Brain Sci 2021; 11:brainsci11040470. [PMID: 33917789 PMCID: PMC8068186 DOI: 10.3390/brainsci11040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Fifty-kHz ultrasonic vocalizations (USVs) in response to an imitation of rough-and-tumble play ('tickling') have been associated with positive affective states and rewarding experience in the rat. This USV response can be used as a measure of inter-individual differences in positive affect. We have previously shown that rats with persistently low positive affectivity are more vulnerable to the effects of chronic variable stress (CVS). To examine whether these differential responses are associated with dopaminergic neurotransmission in the nucleus accumbens (NAc), juvenile male Wistar rats were categorized as of high or low positive affectivity (HC and LC, respectively), and after reaching adulthood, extracellular dopamine (DA) levels in the NAc shell were measured using in vivo microdialysis after three weeks of CVS. Baseline levels of DA were compared as well as the response to K+-induced depolarization and the effect of glial glutamate transporter EAAT2 inhibition by 4 mM l-trans-pyrrolidine-2,4-dicarboxylate (PDC). DA baseline levels were higher in control LC-rats, and stress significantly lowered the DA content in LC-rats. An interaction of stress and affectivity appeared in response to depolarization where stress increased the DA output in HC-rats whereas it decreased it in LC-rats. These results show that NAc-shell DA is differentially regulated in response to stress in animals with high and low positive affect.
Collapse
|
27
|
Serra M, Marongiu J, Simola N. Lack of drug- and cue-stimulated emissions of ultrasonic vocalizations in C57BL/6J mice repeatedly treated with amphetamine. Neurosci Lett 2021; 749:135733. [PMID: 33592304 DOI: 10.1016/j.neulet.2021.135733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
The emission of ultrasonic vocalizations (USVs) is thought to communicate the behavioral and emotional states elicited in rodents by social and non-social stimuli. On this basis, studies of psychopharmacology in rats are increasingly utilizing USVs as a behavioral marker to evaluate the effects of drugs on the emotional state. Conversely, very limited information is available as to whether psychoactive drugs influence USV emissions in mice. To provide new insights in this respect, we evaluated the emission of USVs in C57BL/6J mice subjected to repeated treatment with the dopaminergic psychostimulant of abuse amphetamine. Mice were first allowed to perform social contacts in dyads, and 2 days later they received amphetamine (1-4 mg/kg, i.p.) in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, mice were re-exposed to the test cage to evaluate whether the presentation of drug-paired environmental cues elicited calling behavior, and thereafter received an amphetamine challenge. An additional group of animals received the dopamine receptor agonist apomorphine (1-4 mg/kg, i.p.), to further clarify the role of dopamine transmission in calling behavior of mice. C57BL/6J mice emitted USVs during social contacts, but did not significantly vocalize after amphetamine administration, in response to amphetamine-paired environmental cues, and after apomorphine administration. These results indicate that C57BL/6J mice may respond differently to social and pharmacological stimuli in terms of USV emissions, and may lay the foundation for future studies aimed at clarifying whether USVs may be a useful behavioral marker in studies of psychopharmacology in mice.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| |
Collapse
|
28
|
Lesch R, Orozco A, Shilling M, Zimmerberg B, Fitch WT. Selection on ultrasonic call rate in neonatal rats affects low frequency, but not ultrasonic, vocalizations in adults. Ethology 2020; 126:1007-1018. [PMID: 39027033 PMCID: PMC7616252 DOI: 10.1111/eth.13075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/22/2020] [Indexed: 01/18/2023]
Abstract
In this experiment, we studied a rodent model selected over 57 generations for high or low rates of ultrasonic vocalizations (USVs) during maternal separation as pups. We investigated the influence of this breeding on the adult animals' subsequent vocal output, comparing acoustic variables across developmental stages. We hypothesized that selection on pup USV rate would impact adult USV production without affecting lower frequency calls. Contrary to this hypothesis, we found neither number of USV calls or other acoustic variables to differ among selected adult lines. Instead, we found that pup USV selection mainly affected adults' low-frequency (human-audible) calls. Furthermore, low-frequency vocalizations did not fully fit a predicted correlation between body weight and fundamental frequency: high line males, although the heaviest on average, did not produce the lowest fundamental frequencies. Our findings suggest that selection for early ultrasonic vocal behaviour pleiotropically results in changes in anatomical production mechanisms and/or neural control affecting low-frequency calls.
Collapse
Affiliation(s)
- Raffaela Lesch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Andrea Orozco
- Department of Psychology, Williams College, Williamstown, MA, USA
| | | | - Betty Zimmerberg
- Department of Psychology, Williams College, Williamstown, MA, USA
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Wang Y, Wan B, Huang J, Clarke PBS. Effects of nicotine, nornicotine and cotinine, alone or in combination, on locomotor activity and ultrasonic vocalization emission in adult rats. Psychopharmacology (Berl) 2020; 237:2809-2822. [PMID: 32556369 DOI: 10.1007/s00213-020-05574-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE The behavioral effects of the nicotine metabolites nornicotine and cotinine have not been investigated extensively. OBJECTIVES To evaluate the effects of nicotine, cotinine, and nornicotine, given alone or in combination, on locomotor activity and emission of ultrasonic vocalizations in male adult rats. METHODS Rats were first given home cage nicotine injections to make them tolerant to the drug's locomotor depressant effects. On subsequent days, locomotor activity (LMA) and ultrasonic vocalizations were recorded in an open field, for 60 min after challenge injection, using repeated measures designs. In single-drug experiments, subjects were tested with nicotine 0.05-0.4 mg/kg, cotinine 0.03-3 mg/kg, or nornicotine 0.1-10 mg/kg. In drug-combination experiments, saline or nicotine 0.2 mg/kg challenge was preceded by cotinine (0, 0.3, 3 mg/kg) or nornicotine (0, 0.1, 0.3, 1, 3 mg/kg) injection. RESULTS High doses of nornicotine increased LMA and blunted the locomotor stimulant effect of nicotine. Less consistently, nicotine and high doses of nornicotine decreased the 50-kHz call rate, with no clear evidence of a nornicotine × nicotine interaction. Cotinine, given alone or before nicotine injection, altered neither LMA nor the call rate. No drug altered the relative prevalence of flat vs. trill 50-kHz call subtypes, except that the highest dose of nornicotine promoted flat calls over trills. No drug evoked 22-kHz calls. CONCLUSION Nornicotine can exert an acute anti-nicotine effect in vivo, as previously reported in vitro. The finding that nicotine did not detectably alter the 50-kHz call profile appears consistent with this drug's mild subjective effects in human subjects.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1320, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Benson Wan
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1320, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Jodie Huang
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1320, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building Rm. 1320, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
30
|
Sagheddu C, Pintori N, Kalaba P, Dragačević V, Piras G, Lubec J, Simola N, De Luca MA, Lubec G, Pistis M. Neurophysiological and Neurochemical Effects of the Putative Cognitive Enhancer ( S)-CE-123 on Mesocorticolimbic Dopamine System. Biomolecules 2020; 10:biom10050779. [PMID: 32443397 PMCID: PMC7277835 DOI: 10.3390/biom10050779] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Treatments for cognitive impairments associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder or narcolepsy, aim at modulating extracellular dopamine levels in the brain. CE-123 (5-((benzhydrylsulfinyl)methyl) thiazole) is a novel modafinil analog with improved specificity and efficacy for dopamine transporter inhibition that improves cognitive and motivational processes in experimental animals. We studied the neuropharmacological and behavioral effects of the S-enantiomer of CE-123 ((S)-CE-123) and R-modafinil in cognitive- and reward-related brain areas of adult male rats. In vivo single unit recordings in anesthetized animals showed that (S)-CE-123, but not R-modafinil, dose-dependently (1.25 to 10 mg/kg i.v.) reduced firing of pyramidal neurons in the infralimbic/prelimbic (IL/PrL) cortex. Neither compound the affected firing activity of ventral tegmental area dopamine cells. In freely moving animals, (S)-CE-123 (10 mg/kg i.p.) increased extracellular dopamine levels in the IL/PrL, with different patterns when compared to R-modafinil (10 mg/kg i.p.); in the nucleus accumbens shell, a low and transitory increase of dopamine was observed only after (S)-CE-123. Neither (S)-CE-123 nor R-modafinil initiated the emission of 50-kHz ultrasonic vocalizations, a behavioral marker of positive affect and drug-mediated reward. Our data support previous reports of the procognitive effects of (S)-CE-123, and show a minor impact on reward-related dopaminergic areas.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.S.); (N.P.); (G.P.); (N.S.); (M.A.D.L.)
| | - Nicholas Pintori
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.S.); (N.P.); (G.P.); (N.S.); (M.A.D.L.)
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria; (P.K.); (V.D.)
| | - Vladimir Dragačević
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria; (P.K.); (V.D.)
| | - Gessica Piras
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.S.); (N.P.); (G.P.); (N.S.); (M.A.D.L.)
| | - Jana Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Nicola Simola
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.S.); (N.P.); (G.P.); (N.S.); (M.A.D.L.)
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.S.); (N.P.); (G.P.); (N.S.); (M.A.D.L.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: (G.L.); (M.P.); Tel.: +43-(0)-6622420-0 (G.L.); +39-070-675-4324 (M.P.)
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (C.S.); (N.P.); (G.P.); (N.S.); (M.A.D.L.)
- Neuroscience Institute, National Research Council of Italy (CNR), Section of Cagliari, 09100 Cagliari, Italy
- Correspondence: (G.L.); (M.P.); Tel.: +43-(0)-6622420-0 (G.L.); +39-070-675-4324 (M.P.)
| |
Collapse
|
31
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol 2020; 11:674. [PMID: 32477137 PMCID: PMC7235364 DOI: 10.3389/fphar.2020.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
To study how motivational factors modulate experience-dependent neurobehavioral plasticity, we modify a protocol of environmental enrichment (EE) in rats. We assumed that the benefits derived from EE might vary according to the level of incentive salience attributed to it. To enhance the rewarding properties of EE, access to the EE cage varied randomly from 2 to 48 h for 30 days (REE). The REE group was enriched only 50% of the time and was compared to standard housing and continuous EE (CEE) groups. As behavioral readout, we analyzed the spontaneous activity and the ultrasonic vocalizations (USVs) within the EE cage weekly, and in the open field test at the end of the experiment. In the cage, REE increased the utilization of materials, physical activity, and the rate of appetitive USVs. In the OF, the CEE-induced enhancements in novelty habituation and social signaling were equaled by the REE. At the neural level, we measured the expression of genes related to neural plasticity and epigenetic regulations in different brain regions. In the dorsal striatum and hippocampus, REE upregulated the expression of the brain-derived neurotrophic factor, its tropomyosin kinase B receptor, and the DNA methyltransferase 3A. Altogether, our results suggest that the higher activity within the cage and the augmented incentive motivation provoked by the REE boosted its neurobehavioral effects equaling or surpassing those observed in the CEE condition. As constant exposures to treatments or stimulating environments are virtually impossible for humans, restricted EE protocols would have greater translational value than traditional ones.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Health Research, University of Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
32
|
Costa G, Serra M, Marongiu J, Morelli M, Simola N. Influence of dopamine transmission in the medial prefrontal cortex and dorsal striatum on the emission of 50-kHz ultrasonic vocalizations in rats treated with amphetamine: Effects on drug-stimulated and conditioned calls. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109797. [PMID: 31669508 DOI: 10.1016/j.pnpbp.2019.109797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Rat ultrasonic vocalizations (USVs) of 50 kHz are increasingly being evaluated as a behavioral marker of the affective properties of drugs. Studies in amphetamine-treated rats have shown that activation of dopamine transmission in the nucleus accumbens (NAc) initiates the emission of 50-kHz USVs, but little is known on how dopamine transmission in other brain regions modulates the effects of drugs on calling behavior. To clarify this issue, we evaluated 50-kHz USV emissions in rats subjected to dopaminergic denervation of either the medial prefrontal cortex (mPFC) or the dorsal striatum (DS) and treated with amphetamine. Rats received amphetamine (1 mg/kg, i.p. × 5) on alternate days in a test cage; 7 days later, they were re-exposed to the test cage, to measure calling behavior that may reflect drug conditioning, and then challenged with amphetamine (1 mg/kg, i.p.). The numbers of total and categorized 50-kHz USVs emitted were evaluated, along with immunofluorescence for Zif-268 in the NAc. Dopamine-denervated and sham-operated rats displayed comparable patterns of calling behavior during amphetamine treatment and after amphetamine challenge. Conversely, rats that were dopamine-denervated in the mPFC, but not DS, emitted low numbers of 50-kHz USVs on test cage re-exposure. Finally, dopamine-denervated rats displayed a less marked increase in Zif-268-positive neurons in the NAc shell after amphetamine challenge, compared with sham-operated rats. These results may be relevant to identify the neuronal circuits that modulate 50-kHz USV emissions in rats treated with amphetamine, as well as the interplay between calling behavior and affective properties of drugs.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy; CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| |
Collapse
|
33
|
Mulvihill KG, Brudzynski SM. Association of medial corticostriatal regions with amphetamine-induced emission of 50 kHz vocalizations as studied by Zif-268 expression in the rat brain. Brain Res 2020; 1726:146505. [DOI: 10.1016/j.brainres.2019.146505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023]
|
34
|
Brydges NM, Hall J, Best C, Rule L, Watkin H, Drake AJ, Lewis C, Thomas KL, Hall J. Childhood stress impairs social function through AVP-dependent mechanisms. Transl Psychiatry 2019; 9:330. [PMID: 31819033 PMCID: PMC6901493 DOI: 10.1038/s41398-019-0678-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Impaired social function is a core feature of many psychiatric illnesses. Adverse experiences during childhood increase risk for mental illness, however it is currently unclear whether stress early in life plays a direct role in the development of social difficulties. Using a rat model of pre-pubertal stress (PPS), we investigated effects on social behaviour, oxytocin and arginine vasopressin (AVP) in the periphery (plasma) and centrally in the paraventricular and supraoptic hypothalamic nuclei. We also explored social performance and AVP expression (plasma) in participants with borderline personality disorder (BPD) who experienced a high incidence of childhood stress. Social behaviour was impaired and AVP expression increased in animals experiencing PPS and participants with BPD. Behavioural deficits in animals were rescued through administration of the AVPR1a antagonist Relcovaptan (SR49059). AVP levels and recognition of negative emotions were significantly correlated in BPD participants only. In conclusion, early life stress plays a role in the precipitation of social dysfunction, and AVP mediates at least part of this effect.
Collapse
Affiliation(s)
- Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Jessica Hall
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Caroline Best
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Lowenna Rule
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Holly Watkin
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Catrin Lewis
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
35
|
Kõiv K, Vares M, Kroon C, Metelitsa M, Tiitsaar K, Laugus K, Jaako K, Harro J. Effect of chronic variable stress on sensitization to amphetamine in high and low sucrose-consuming rats. J Psychopharmacol 2019; 33:1512-1523. [PMID: 31208275 DOI: 10.1177/0269881119856000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individual vulnerability to stress manifests in the interaction of innate properties and environment. There is a growing interest in the individual variability in vulnerability to stress and how it contributes to the development of psychiatric disorders. Intake of palatable substances is often measured in animal models. We have previously demonstrated that the consumption of sucrose solution is a stable trait in rats. AIMS The present study aimed to compare the sensitivity of rats with high vs low liquid sucrose consumption to chronic variable stress and the stress effect on behavioural sensitization to amphetamine. METHODS Male Wistar rats were subjected to a chronic stress regimen and subsequent repeated treatment with amphetamine (1 mg/kg, intraperitoneally). Fifty-kHz ultrasonic vocalizations, locomotor activity and stereotypies were measured. RESULTS In no-stress baseline conditions, the behavioural response to acute amphetamine was similar in rats with high vs low sucrose consumption. Prior chronic stress potentiated the effect of amphetamine only in rats with high sucrose consumption. Behavioural sensitization to repeated administration of amphetamine was observed in non-stressed rats with lower sucrose preference, but not in the respective stressed group that had increased monoamine turnover in the nucleus accumbens. In contrast, in rats with high sucrose preference the amphetamine sensitization effect was prevalent in stressed rats, but not in non-stressed animals. INTERPRETATION Chronic stress can change the psychostimulant effect but this depends on the inherent reward sensitivity of the animal. Trait-wise, sucrose intake reflects vulnerability to chronic stress and may interact with the development of addiction.
Collapse
Affiliation(s)
- Kadri Kõiv
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Marten Vares
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Cristina Kroon
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Mait Metelitsa
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Kai Tiitsaar
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Karita Laugus
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Jaanus Harro
- Department of Psychology, University of Tartu, Tartu, Estonia
| |
Collapse
|
36
|
Kuchniak K, Wyszogrodzka E, Chrapusta SJ, Czarna M, Michalak M, Płaźnik A, Krząścik P, Mierzejewski P, Taracha E. Using anticipatory and drug-evoked appetitive ultrasonic vocalization for monitoring the rewarding effect of amphetamine in a rat model of drug self-administration. Behav Brain Res 2019; 376:112187. [PMID: 31473284 DOI: 10.1016/j.bbr.2019.112187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
Measuring ultrasonic vocalizations (USVs) allows studying psychoactive drug use-related affective states in laboratory rats and may help understand changes underlying the progress of addictions. We aimed at finding an effective scheme for amphetamine self-administration training in rats, identifying factors affecting their anticipatory and drug-evoked, frequency-modulated 50-kHz USV responses, and verifying whether the rewarding action of amphetamine promotes current drug intake during the training. Therefore, we monitored amphetamine intake and anticipatory and drug-evoked USVs in two rat cohorts trained using two different training schemes. Then we retrospectively divided these cohorts into low-amphetamine and high-amphetamine intake subsets and analyzed their frequency-modulated 50-kHz USV responses accordingly. Anticipatory (i.e., drug-context-related) USVs as well as USVs induced by self-administration training-related non-pharmacological manipulations (tested in an additional rat group) showed surprisingly high call rates but faded spontaneously relatively quickly. Only the scheme employing short cycles of training sessions (two instead of six) and intermittent instead of continuous intra-session drug availability yielded long-lasting escalation of amphetamine intake in a sizable subset. This subset showed high initial amphetamine-evoked USV call rate, which suggests that a strong rewarding action of the drug early in the SA training favors intake escalation. A major decrease in the drug-evoked USVs during advanced training indicated the emergence of tolerance to the rewarding action in these rats, a phenomenon that is characteristic of addiction. Frequency-modulated 50-kHz rat USVs are a good index of the rewarding action of amphetamine at the absence of USVs induced by drug context and other training-related factors.
Collapse
Affiliation(s)
- Karolina Kuchniak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
| | - Stanisław J Chrapusta
- Department of Experimental Pharmacology, Polish Academy of Sciences Medical Research Centre, 5 Pawińskiego St., 02-106, Warsaw, Poland
| | - Magdalena Czarna
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Magdalena Michalak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology, 1B Banacha St., 02-097 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
| | - Ewa Taracha
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland.
| |
Collapse
|
37
|
Brudzynski SM. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav Brain Res 2019; 363:1-12. [PMID: 30677449 DOI: 10.1016/j.bbr.2019.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
There is no clear relationship between crying and depression based on human neuropsychiatric observations. This situation originates from lack of suitable animal models of human crying. In the present article, an attempt will be made to answer the question whether emission of rat aversive vocalizations (22 kHz calls) may be regarded as an evolutionary equivalent of adult human crying. Using this comparison, the symptom of crying in depressed human patients will be reanalyzed. Numerous features and characteristics of rat 22 kHz aversive vocalizations and human crying vocalizations are equivalent. Comparing evolutionary, biological, physiological, neurophysiological, social, pharmacological, and pathological aspects have shown vast majority of common features. It is concluded that emission of rat 22 kHz vocalizations may be treated as an evolutionary vocal homolog of human crying, although emission of 22 kHz calls is not exactly the same phenomenon because of significant differences in cognitive processes between these species. It is further concluded that rat 22 kHz vocalizations and human crying vocalizations are both expressing anxiety and not depression. Analysis of the relationship between anxiety and depression reported in clinical studies supports this conclusion regardless of the nature and extent of comorbidity between these pathological states.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
38
|
Costa G, Serra M, Pintori N, Casu MA, Zanda MT, Murtas D, De Luca MA, Simola N, Fattore L. The novel psychoactive substance methoxetamine induces persistent behavioral abnormalities and neurotoxicity in rats. Neuropharmacology 2019; 144:219-232. [DOI: 10.1016/j.neuropharm.2018.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
39
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|