1
|
Galin M, Milot E, Martin T, Bessot N, Giffard B, Denise P, Perrier J, Quarck G. Does vestibular stimulation modify circadian rhythms and sleep? A systematic review. Sleep Med 2025; 131:106520. [PMID: 40252490 DOI: 10.1016/j.sleep.2025.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Circadian rhythms and sleep processes are essential in human and their disruption affect health in many ways. They share anatomical-functional pathways with the vestibular system making vestibular stimulation an interesting tool that has yet to prove its efficacy at reducing such disruptions. This review aims at evaluating the effects of different types of vestibular stimulations on circadian rhythms and sleep. METHODS It followed PRISMA recommendations and was registered to PROSPERO (CRD42024492913). The databases PubMed and ScienceDirect were searched until January 2024 for articles published between 1950 and 2023 to collect articles fitting the scope of the review. RESULTS Among the ninety-six screened studies, a total of twelve studies were included. A significant beneficial effect of vestibular stimulation was shown on a circadian rhythm and in eight out of eleven studies evaluating sleep. Among the twelve studies, three showed a high risk of bias, two induced some concerns and the seven left showed a low risk of bias. CONCLUSION Vestibular stimulation appears as a promising technique to improve both circadian rhythms and sleep.
Collapse
Affiliation(s)
- Melvin Galin
- Université de Caen Normandie, Inserm, EPHE-PSL, PSL University, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000, Caen, France; Le Mans Université, Movement - Interactions - Performance, MIP, 72085, France.
| | - Emma Milot
- Le Mans Université, Movement - Interactions - Performance, MIP, 72085, France
| | - Tristan Martin
- Université de Caen Normandie, INSERM, Normandie Université, Caen, F-14000, France
| | - Nicolas Bessot
- Le Mans Université, Movement - Interactions - Performance, MIP, 72085, France
| | - Bénédicte Giffard
- Université de Caen Normandie, Inserm, EPHE-PSL, PSL University, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000, Caen, France
| | - Pierre Denise
- Le Mans Université, Movement - Interactions - Performance, MIP, 72085, France
| | - Joy Perrier
- Université de Caen Normandie, Inserm, EPHE-PSL, PSL University, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000, Caen, France.
| | - Gaëlle Quarck
- Le Mans Université, Movement - Interactions - Performance, MIP, 72085, France
| |
Collapse
|
2
|
Terzaghi M, d'Orio P, Sartori I, Pelliccia V, Zauli FM, Colnaghi S, Rustioni V, Caruana F, Vecchio MD, Versino M, Avanzini P. Spatio-temporal dynamics of sound-induced vestibular processing: insights from stereo-EEG recordings. Neuroimage 2025; 314:121261. [PMID: 40354844 DOI: 10.1016/j.neuroimage.2025.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/02/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
Numerous functions rely on the activation of the vestibular system, resulting in widespread activation of cortical brain regions. However, although the topographical organization of vestibular processing is relatively well understood, the temporal dynamics of this information processing remain insufficiently explored. In this study, we conducted an in-depth analysis of intracerebral recordings from 107 patients (123 implanted hemispheres) to investigate the cortical response to acoustic and sound-induced vestibular stimuli (SVS), thus unveiling the spatiotemporal dynamics of vestibular processing. Our findings revealed the existence of distinct early components (phasic peak, 20-40 ms) localized in Heschl's area, planum temporale, retroinsula, posterior insular cortex, PFcm, parietal operculum, and structures above the Sylvian fissure. Moreover, we identified later, tonic components (peaking at 50-80 ms) characterized by an extended duration, returning to baseline between 200 and 300 ms. Remarkably, these latter components exclusively involved the perisylvian cortices. The findings demonstrated that the early stages of human otolithic vestibular information processing involve both parallel and hierarchical pathways distributed across the perisylvian and peri‑Rolandic regions, rather than being restricted to a single primary cortical area. Furthermore, two distinct streams reminiscent of the dorsal/ventral dichotomy with specific spatio-temporal characteristics were identified. Collectively, our study uncovers a complex and interconnected cortical network that underlies vestibular processing, shedding light on the temporal dynamics of this essential sensory system. These findings pave the way for a deeper understanding of the functional organization of the vestibular system and its implications for sensory perception and motor control.
Collapse
Affiliation(s)
- Michele Terzaghi
- Sleep and Epilepsy Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Piergiorgio d'Orio
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy; Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy.
| | - Ivana Sartori
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Veronica Pelliccia
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Flavia Maria Zauli
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy; Department of Philosophy "Piero Martinetti", University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Silvia Colnaghi
- SC Neurology and Stroke Unit, Ospedale Civile di Voghera, Dipartimento interaziendale di Neuroscienze, ASST Pavia, Italy
| | - Valter Rustioni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fausto Caruana
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maurizio Versino
- Istituto Clinico Mater Domini Humanitas, Castellanza, Italy; Istituto Auxologico Capitanio, IRCCS, Milan, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
3
|
Marchand S, Langlade A, Legois Q, Séverac Cauquil A. A wide-ranging review of galvanic vestibular stimulation: from its genesis to basic science and clinical applications. Exp Brain Res 2025; 243:131. [PMID: 40289049 PMCID: PMC12034599 DOI: 10.1007/s00221-025-07079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Galvanic vestibular stimulation (GVS) involves applying small electrical currents to the vestibular organs via electrodes placed on the mastoids, providing a powerful tool for investigating vestibular function. Despite its long history, GVS remains highly relevant for researchers due to its ability to probe the vestibular system's role in posture, gaze control, perception, and cortical processing. Recent technical advances have considerably expanded its application in both basic research and clinical practice. Despite the fact it is not realistic to cover all aspects of GVS within the constraints of a manuscript, this narrative review summarizes the history and neurophysiological mechanisms of GVS and provides new insights and perspectives for current and future studies, both in fundamental and clinical applications. We synthesize the main findings from neurophysiological, behavioral, and neuroimaging studies, focusing on the effects of GVS on postural control, ocular responses, cortical activity, and self-motion perception. Then diagnostic and therapeutic applications are explored in balance disorders, stroke rehabilitation, and neurodegenerative diseases. Clinical approaches could benefit from greater reliance on laboratory research to refine stimulation protocols, for maximum efficacy in its therapeutic use. A final discussion summarizes what is currently well-established with regard to GVS and opens up new and exciting perspectives in basic science and clinical applications.
Collapse
Affiliation(s)
- Sarah Marchand
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, Toulouse, France
| | - Alba Langlade
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, Toulouse, France
| | - Quentin Legois
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, Toulouse, France
- Service d'ORL, Otoneurologie et ORL Pédiatrique-CHU Toulouse Purpan, Toulouse, France
| | | |
Collapse
|
4
|
Truong DQ, Thomas C, Ira S, Valter Y, Clark TK, Datta A. Unpacking Galvanic Vestibular Stimulation using simulations and relating current flow to reported motions: Comparison across common and specialized electrode placements. PLoS One 2024; 19:e0309007. [PMID: 39186497 PMCID: PMC11346646 DOI: 10.1371/journal.pone.0309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/04/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Galvanic Vestibular Stimulation (GVS) is a non-invasive electrical stimulation technique that is typically used to probe the vestibular system. When using direct current or very low frequency sine, GVS causes postural sway or perception of illusory (virtual) motions. GVS is commonly delivered using two electrodes placed at the mastoids, however, placements involving additional electrodes / locations have been employed. Our objective was to systematically evaluate all known GVS electrode placements, compare induced current flow, and how it relates to the archetypal sway and virtual motions. The ultimate goal is to help users in having a better understanding of the effects of different placements. METHODS We simulated seven GVS electrode placements with same total injected current using an ultra-high resolution model. Induced electric field (EF) patterns at the cortical and the level of vestibular organs (left and right) were determined. A range of current flow metrics including potential factors such as inter-electrode separation, percentage of current entering the cranial cavity, and symmetricity were calculated. Finally, we relate current flow to reported GVS motions. RESULTS As expected, current flow patterns are electrode placement specific. Placements with two electrodes generally result in higher EF magnitude. Placements with four electrodes result in lower percentage of current entering the cranial cavity. Symmetric placements do not result in similar EF values in the left and the right organs respectively- highlighting inherent anatomical asymmetry of the human head. Asymmetric placements were found to induce as much as ~3-fold higher EF in one organ over the other. The percentage of current entering the cranial cavity varies between ~15% and ~40% depending on the placement. CONCLUSIONS We expect our study to advance understanding of GVS and provide insight on probable mechanism of action of a certain electrode placement choice. The dataset generated across several metrics will support hypothesis testing relating empirical outcomes to current flow patterns. Further, the differences in current flow will guide stimulation strategy (what placement and how much scalp current to use) and facilitate a quantitatively informed rational / optimal decision.
Collapse
Affiliation(s)
- Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Chris Thomas
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Sanjidah Ira
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Yishai Valter
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
| | - Torin K. Clark
- Smead Aerospace Engineering Sciences Department, College of Engineering and Applied Science, University of Colorado, Boulder, Colorado, United States of America
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, New Jersey, United States of America
- Biomedical Engineering, City College of New York, New York, New York, United States of America
| |
Collapse
|
5
|
Smaczny S, Behle L, Kuppe S, Karnath HO, Lindner A. Sustained bias of spatial attention in a 3 T MRI scanner. Sci Rep 2024; 14:12657. [PMID: 38825633 PMCID: PMC11144696 DOI: 10.1038/s41598-024-62981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024] Open
Abstract
When lying inside a MRI scanner and even in the absence of any motion, the static magnetic field of MRI scanners induces a magneto-hydrodynamic stimulation of subjects' vestibular organ (MVS). MVS thereby not only causes a horizontal vestibular nystagmus but also induces a horizontal bias in spatial attention. In this study, we aimed to determine the time course of MVS-induced biases in both VOR and spatial attention inside a 3 T MRI-scanner as well as their respective aftereffects after participants left the scanner. Eye movements and overt spatial attention in a visual search task were assessed in healthy volunteers before, during, and after a one-hour MVS period. All participants exhibited a VOR inside the scanner, which declined over time but never vanished completely. Importantly, there was also an MVS-induced horizontal bias in spatial attention and exploration, which persisted throughout the entire hour within the scanner. Upon exiting the scanner, we observed aftereffects in the opposite direction manifested in both the VOR and in spatial attention, which were statistically no longer detectable after 7 min. Sustained MVS effects on spatial attention have important implications for the design and interpretation of fMRI-studies and for the development of therapeutic interventions counteracting spatial neglect.
Collapse
Affiliation(s)
- Stefan Smaczny
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe Seyler Str. 3, 72076, Tübingen, Germany
| | - Leonie Behle
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe Seyler Str. 3, 72076, Tübingen, Germany
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Sara Kuppe
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe Seyler Str. 3, 72076, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe Seyler Str. 3, 72076, Tübingen, Germany.
- Department of Psychology, University of South Carolina, Columbia, SC, 29208, USA.
| | - Axel Lindner
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe Seyler Str. 3, 72076, Tübingen, Germany.
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Xie H, Liang M, Mo Y, Schmidt C, Wang C, Chien JH. Comparison Between Effects of Galvanic and Vibration-Based Vestibular Stimulation on Postural Control and Gait Performance in Healthy Participants: A Systematic Review of Cross-Sectional Studies. Ann Biomed Eng 2024; 52:757-793. [PMID: 38148425 DOI: 10.1007/s10439-023-03425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Electricity and vibration were two commonly used physical agents to provide vestibular stimulation in previous studies. This study aimed to systematically review the effects of galvanic (GVS) and vibration-based vestibular stimulation (VVS) on gait performance and postural control in healthy participants. Five bioscience and engineering databases, including MEDLINE via PubMed, CINAHL via EBSCO, Cochrane Library, Scopus, and Embase, were searched until March 19th, 2023. Studies published between 2000 and 2023 in English involving GVS and VVS related to gait performance and postural control were included. The procedure was followed via the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The methodological quality of included studies was assessed using the NIH study quality assessment tool for observational cohort and cross-sectional studies. A total of 55 cross-sectional studies met the inclusion criteria and were included in this study. Five studies were good-quality while 49 were moderate-quality and 1 was poor-quality. There were 50 included studies involving GVS and 5 included studies involving VVS. GVS and VVS utilized different physical agents to provide vestibular stimulation and demonstrated similar effects on vestibular perception. Supra-threshold GVS and VVS produced vestibular perturbation that impaired gait performance and postural control, while sub-threshold GVS and VVS induced stochastic resonance phenomenon that led to an improvement. Bilateral vestibular stimulation demonstrated a greater effect on gait and posture than unilateral vestibular stimulation. Compared to GVS, VVS had the characteristics of better tolerance and fewer side effects, which may substitute GVS to provide more acceptable vestibular stimulation.
Collapse
Affiliation(s)
- Haoyu Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meizhen Liang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yujia Mo
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Cindy Schmidt
- Leon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | | |
Collapse
|
7
|
Fitze DC, Mast FW, Ertl M. Human vestibular perceptual thresholds - A systematic review of passive motion perception. Gait Posture 2024; 107:83-95. [PMID: 37778297 DOI: 10.1016/j.gaitpost.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The vestibular system detects head accelerations within 6 degrees of freedom. How well this is accomplished is described by vestibular perceptual thresholds. They are a measure of perceptual performance based on the conscious evaluation of sensory information. This review provides an integrative synthesis of the vestibular perceptual thresholds reported in the literature. The focus lies on the estimation of thresholds in healthy participants, used devices and stimulus profiles. The dependence of these thresholds on the participants clinical status and age is also reviewed. Furthermore, thresholds from primate studies are discussed. RESULTS Thresholds have been measured for frequencies ranging from 0.05 to 5 Hz. They decrease with increasing frequency for five of the six main degrees of freedom (inter-aural, head-vertical, naso-occipital, yaw, pitch). No consistent pattern is evident for roll rotations. For a frequency range beyond 5 Hz, a U-shaped relationship is suggested by a qualitative comparison to primate data. Where enough data is available, increasing thresholds with age and higher thresholds in patients compared to healthy controls can be observed. No effects related to gender or handedness are reported. SIGNIFICANCE Vestibular thresholds are essential for next generation screening tools in the clinical domain, for the assessment of athletic performance, and workplace safety alike. Knowledge about vestibular perceptual thresholds contributes to basic and applied research in fields such as perception, cognition, learning, and healthy aging. This review provides normative values for vestibular thresholds. Gaps in current knowledge are highlighted and attention is drawn to specific issues for improving the inter-study comparability in the future.
Collapse
Affiliation(s)
- Daniel C Fitze
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| | - Fred W Mast
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| | - Matthias Ertl
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
8
|
La Scaleia B, Brunetti C, Lacquaniti F, Zago M. Head-centric computing for vestibular stimulation under head-free conditions. Front Bioeng Biotechnol 2023; 11:1296901. [PMID: 38130821 PMCID: PMC10734306 DOI: 10.3389/fbioe.2023.1296901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Background: The vestibular end organs (semicircular canals, saccule and utricle) monitor head orientation and motion. Vestibular stimulation by means of controlled translations, rotations or tilts of the head represents a routine manoeuvre to test the vestibular apparatus in a laboratory or clinical setting. In diagnostics, it is used to assess oculomotor postural or perceptual responses, whose abnormalities can reveal subclinical vestibular dysfunctions due to pathology, aging or drugs. Objective: The assessment of the vestibular function requires the alignment of the motion stimuli as close as possible with reference axes of the head, for instance the cardinal axes naso-occipital, interaural, cranio-caudal. This is often achieved by using a head restraint, such as a helmet or strap holding the head tightly in a predefined posture that guarantees the alignment described above. However, such restraints may be quite uncomfortable, especially for elderly or claustrophobic patients. Moreover, it might be desirable to test the vestibular function under the more natural conditions in which the head is free to move, as when subjects are tracking a visual target or they are standing erect on the moving platform. Here, we document algorithms that allow delivering motion stimuli aligned with head-fixed axes under head-free conditions. Methods: We implemented and validated these algorithms using a MOOG-6DOF motion platform in two different conditions. 1) The participant kept the head in a resting, fully unrestrained posture, while inter-aural, naso-occipital or cranio-caudal translations were applied. 2) The participant moved the head continuously while a naso-occipital translation was applied. Head and platform motion were monitored in real-time using Vicon. Results: The results for both conditions showed excellent agreement between the theoretical spatio-temporal profile of the motion stimuli and the corresponding profile of actual motion as measured in real-time. Conclusion: We propose our approach as a safe, non-intrusive method to test the vestibular system under the natural head-free conditions required by the experiential perspective of the patients.
Collapse
Affiliation(s)
- Barbara La Scaleia
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Brunetti
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico—Scientific Institute for Research, Hospitalization and Healthcare, Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Myrka Zago
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Burles F, Iaria G. Neurocognitive Adaptations for Spatial Orientation and Navigation in Astronauts. Brain Sci 2023; 13:1592. [PMID: 38002551 PMCID: PMC10669796 DOI: 10.3390/brainsci13111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Astronauts often face orientation challenges while on orbit, which can lead to operator errors in demanding spatial tasks. In this study, we investigated the impact of long-duration spaceflight on the neural processes supporting astronauts' spatial orientation skills. Using functional magnetic resonance imaging (fMRI), we collected data from 16 astronauts six months before and two weeks after their International Space Station (ISS) missions while performing a spatial orientation task that requires generating a mental representation of one's surroundings. During this task, astronauts exhibited a general reduction in neural activity evoked from spatial-processing brain regions after spaceflight. The neural activity evoked in the precuneus was most saliently reduced following spaceflight, along with less powerful effects observed in the angular gyrus and retrosplenial regions of the brain. Importantly, the reduction in precuneus activity we identified was not accounted for by changes in behavioral performance or changes in grey matter concentration. These findings overall show less engagement of explicitly spatial neurological processes at postflight, suggesting astronauts make use of complementary strategies to perform some spatial tasks as an adaptation to spaceflight. These preliminary findings highlight the need for developing countermeasures or procedures that minimize the detrimental effects of spaceflight on spatial cognition, especially in light of planned long-distance future missions.
Collapse
Affiliation(s)
- Ford Burles
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giuseppe Iaria
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Martarelli CS, Chiquet S, Ertl M. Keeping track of reality: embedding visual memory in natural behaviour. Memory 2023; 31:1295-1305. [PMID: 37727126 DOI: 10.1080/09658211.2023.2260148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023]
Abstract
Since immersive virtual reality (IVR) emerged as a research method in the 1980s, the focus has been on the similarities between IVR and actual reality. In this vein, it has been suggested that IVR methodology might fill the gap between laboratory studies and real life. IVR allows for high internal validity (i.e., a high degree of experimental control and experimental replicability), as well as high external validity by letting participants engage with the environment in an almost natural manner. Despite internal validity being crucial to experimental designs, external validity also matters in terms of the generalizability of results. In this paper, we first highlight and summarise the similarities and differences between IVR, desktop situations (both non-immersive VR and computer experiments), and reality. In the second step, we propose that IVR is a promising tool for visual memory research in terms of investigating the representation of visual information embedded in natural behaviour. We encourage researchers to carry out experiments on both two-dimensional computer screens and in immersive virtual environments to investigate visual memory and validate and replicate the findings. IVR is valuable because of its potential to improve theoretical understanding and increase the psychological relevance of the findings.
Collapse
Affiliation(s)
| | - Sandra Chiquet
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Matthias Ertl
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Tarnutzer AA, Ward BK, Shaikh AG. Novel ways to modulate the vestibular system: Magnetic vestibular stimulation, deep brain stimulation and transcranial magnetic stimulation / transcranial direct current stimulation. J Neurol Sci 2023; 445:120544. [PMID: 36621040 DOI: 10.1016/j.jns.2023.120544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Advances in neurotechnologies are revolutionizing our understanding of complex neural circuits and enabling new treatments for disorders of the human brain. In the vestibular system, electromagnetic stimuli can now modulate vestibular reflexes and sensations of self-motion by artificially stimulating the labyrinth, cerebellum, cerebral cortex, and their connections. OBJECTIVE In this narrative review, we describe evolving neuromodulatory techniques including magnetic vestibular stimulation (MVS), deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), and transcranial direct-current stimulation (tDCS) and discuss current and potential future application in the field of neuro-otology. RESULTS MVS triggers both vestibular nystagmic (persistent) and perceptual (lasting ∼1 min) responses that may serve as a model to study central adaptational mechanisms and pathomechanisms of hemispatial neglect. By systematically mapping DBS electrodes, targeted stimulation of central vestibular pathways allowed modulating eye movements, vestibular heading perception, spatial attention and graviception, resulting in reduced anti-saccade error rates and hypometria, improved heading discrimination, shifts in verticality perception and transiently decreased spatial attention. For TMS/tDCS treatment trials have demonstrated amelioration of vestibular symptoms in various neuro-otological conditions, including chronic vestibular insufficiency, Mal-de-Debarquement and cerebellar ataxia. CONCLUSION Neuromodulation has a bright future as a potential treatment of vestibular dysfunction. MVS, DBS and TMS may provide new and sophisticated, customizable, and specific treatment options of vestibular symptoms in humans. While promising treatment responses have been reported for TMS/tDCS, treatment trials for vestibular disorders using MVS or DBS have yet to be defined and performed.
Collapse
Affiliation(s)
- A A Tarnutzer
- Neurology, Cantonal Hospital of Baden, Baden, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - B K Ward
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A G Shaikh
- Department of Neurology, University Hospitals and Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Smith JL, Ahluwalia V, Gore RK, Allen JW. Eagle-449: A volumetric, whole-brain compilation of brain atlases for vestibular functional MRI research. Sci Data 2023; 10:29. [PMID: 36641517 PMCID: PMC9840609 DOI: 10.1038/s41597-023-01938-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Human vestibular processing involves distributed networks of cortical and subcortical regions which perform sensory and multimodal integrative functions. These functional hubs are also interconnected with areas subserving cognitive, affective, and body-representative domains. Analysis of these diverse components of the vestibular and vestibular-associated networks, and synthesis of their holistic functioning, is therefore vital to our understanding of the genesis of vestibular dysfunctions and aid treatment development. Novel neuroimaging methodologies, including functional and structural connectivity analyses, have provided important contributions in this area, but often require the use of atlases which are comprised of well-defined a priori regions of interest. Investigating vestibular dysfunction requires a more detailed atlas that encompasses cortical, subcortical, cerebellar, and brainstem regions. The present paper represents an effort to establish a compilation of existing, peer-reviewed brain atlases which collectively afford comprehensive coverage of these regions while explicitly focusing on vestibular substrates. It is expected that this compilation will be iteratively improved with additional contributions from researchers in the field.
Collapse
Affiliation(s)
- Jeremy L Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishwadeep Ahluwalia
- Georgia Institute of Technology, Atlanta, Georgia, USA
- GSU/GT Center for Advanced Brain Imaging, Atlanta, Georgia, USA
| | - Russell K Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Shepherd Center, Atlanta, Georgia, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Pivovarnik ES. Development of Sensory Processing in Premature Infants and Implications for Evidence-Based Music Therapy in the NICU. Neonatal Netw 2022; 41:189-199. [PMID: 35840335 DOI: 10.1891/nn-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this article is to provide an overview of the development of sensory processing in premature infants with implications for music therapists providing evidence-based care in a NICU. An overview of sensory processing and sensory processing disorders in premature infants is included, with specific emphasis on development of sensory systems of premature infants. Implications for developmentally appropriate music as therapy for premature infants are identified. Evidence-based NICU-MT can be combined with nursing care to reduce the risks of sensory processing disorder for the developing premature infant.
Collapse
|
14
|
Blouin J, Pialasse JP, Mouchnino L, Simoneau M. On the Dynamics of Spatial Updating. Front Neurosci 2022; 16:780027. [PMID: 35250442 PMCID: PMC8893203 DOI: 10.3389/fnins.2022.780027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Most of our knowledge on the human neural bases of spatial updating comes from functional magnetic resonance imaging (fMRI) studies in which recumbent participants moved in virtual environments. As a result, little is known about the dynamic of spatial updating during real body motion. Here, we exploited the high temporal resolution of electroencephalography (EEG) to investigate the dynamics of cortical activation in a spatial updating task where participants had to remember their initial orientation while they were passively rotated about their vertical axis in the dark. After the rotations, the participants pointed toward their initial orientation. We contrasted the EEG signals with those recorded in a control condition in which participants had no cognitive task to perform during body rotations. We found that the amplitude of the P1N1 complex of the rotation-evoked potential (RotEPs) (recorded over the vertex) was significantly greater in the Updating task. The analyses of the cortical current in the source space revealed that the main significant task-related cortical activities started during the N1P2 interval (136–303 ms after rotation onset). They were essentially localized in the temporal and frontal (supplementary motor complex, dorsolateral prefrontal cortex, anterior prefrontal cortex) regions. During this time-window, the right superior posterior parietal cortex (PPC) also showed significant task-related activities. The increased activation of the PPC became bilateral over the P2N2 component (303–470 ms after rotation onset). In this late interval, the cuneus and precuneus started to show significant task-related activities. Together, the present results are consistent with the general scheme that the first task-related cortical activities during spatial updating are related to the encoding of spatial goals and to the storing of spatial information in working memory. These activities would precede those involved in higher order processes also relevant for updating body orientation during rotations linked to the egocentric and visual representations of the environment.
Collapse
Affiliation(s)
- Jean Blouin
- Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseille Université, Marseille, France
- *Correspondence: Jean Blouin,
| | | | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseille Université, Marseille, France
- Institut Universitaire de France, Paris, France
| | - Martin Simoneau
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale du CIUSSS de la Capitale-Nationale, Québec, QC, Canada
| |
Collapse
|
15
|
Nakul E, Bartolomei F, Lopez C. Vestibular-Evoked Cerebral Potentials. Front Neurol 2021; 12:674100. [PMID: 34621231 PMCID: PMC8490637 DOI: 10.3389/fneur.2021.674100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
The human vestibular cortex has mostly been approached using functional magnetic resonance imaging and positron emission tomography combined with artificial stimulation of the vestibular receptors or nerve. Few studies have used electroencephalography and benefited from its high temporal resolution to describe the spatiotemporal dynamics of vestibular information processing from the first milliseconds following vestibular stimulation. Evoked potentials (EPs) are largely used to describe neural processing of other sensory signals, but they remain poorly developed and standardized in vestibular neuroscience and neuro-otology. Yet, vestibular EPs of brainstem, cerebellar, and cortical origin have been reported as early as the 1960s. This review article summarizes and compares results from studies that have used a large range of vestibular stimulation, including natural vestibular stimulation on rotating chairs and motion platforms, as well as artificial vestibular stimulation (e.g., sounds, impulsive acceleration stimulation, galvanic stimulation). These studies identified vestibular EPs with short latency (<20 ms), middle latency (from 20 to 50 ms), and late latency (>50 ms). Analysis of the generators (source analysis) of these responses offers new insights into the neuroimaging of the vestibular system. Generators were consistently found in the parieto-insular and temporo-parietal junction-the core of the vestibular cortex-as well as in the prefrontal and frontal areas, superior parietal, and temporal areas. We discuss the relevance of vestibular EPs for basic research and clinical neuroscience and highlight their limitations.
Collapse
Affiliation(s)
- Estelle Nakul
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Neurosciences Cognitives (LNC), FR3C, Aix Marseille Univ, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Inserm, Aix Marseille Univ, Marseille, France
- Service de Neurophysiologie Clinique, Hôpital Timone, Aix Marseille Univ, Marseille, France
| | - Christophe Lopez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Neurosciences Cognitives (LNC), FR3C, Aix Marseille Univ, Marseille, France
| |
Collapse
|
16
|
Desgagnés A, Desmons M, Cyr JP, Simoneau M, Massé-Alarie H. Motor Responses of Lumbar Erector Spinae Induced by Electrical Vestibular Stimulation in Seated Participants. Front Hum Neurosci 2021; 15:690433. [PMID: 34366814 PMCID: PMC8339290 DOI: 10.3389/fnhum.2021.690433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The study of motor responses induced by electrical vestibular stimulation (EVS) may help clarify the role of the vestibular system in postural control. Although back muscles have an important role in postural control, their EVS-induced motor responses were rarely studied. Moreover, the effects of EVS parameters, head position, and vision on EVS-induced back muscles responses remain little explored. Objectives: To explore the effects of EVS parameters, head position, and vision on lumbar erector spinae muscles EVS-induced responses. Design: Exploratory, cross-sectional study. Materials and Methods: Ten healthy participants were recruited. Three head positions (right, left and no head rotation), 4 intensities (2, 3, 4, 5 mA), and 4 EVS durations (5, 20, 100, 200 ms) were tested in sitting position with eyes open or closed. EVS usually induced a body sway toward the anode (placed on the right mastoid). EMG activity of the right lumbar erector spinae was recorded. Variables of interest were amplitude, occurrence, and latency of the EVS-induced modulation of the EMG activity. Results: The short-latency response was inhibitory and the medium-latency response was excitatory. Increased EVS current intensity augmented the occurrence and the amplitude of the short- and medium-latency responses (more inhibition and more excitation, respectively). EVS duration influenced the medium-latency response differently depending on the position of the head. Right head rotation produced larger responses amplitude and occurrence than left head rotation. Opposite head rotation (left vs. right) did not induce a reversal of the short- and medium-latency responses (i.e., the inhibition did not become an excitation), as typically reported in lower legs muscles. The eyes open condition did not modulate muscle responses. Conclusion: Modulation of EVS parameters (current intensity and duration of EVS) affects the amplitude and occurrence of the lumbar erector spinae responses. In contrast, vision did not influence the responses, suggesting its minimal contribution to vestibulomotor control in sitting. The lack of response reversal in sagittal plane may reflect the biomechanical role of lumbar erector spinae to fine-tune the lumbar lordosis during the induced body sway. This hypothesis remains to be further tested.
Collapse
Affiliation(s)
- Amélie Desgagnés
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Mikaël Desmons
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Jean-Philippe Cyr
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada.,Kinesiology Department, Laval University, Quebec City, QC, Canada
| | - Hugo Massé-Alarie
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Laval University, Quebec City, QC, Canada.,Rehabilitation Department, Laval University, Quebec City, QC, Canada
| |
Collapse
|
17
|
Valdés BA, Lajoie K, Marigold DS, Menon C. Cortical Effects of Noisy Galvanic Vestibular Stimulation Using Functional Near-Infrared Spectroscopy. SENSORS 2021; 21:s21041476. [PMID: 33672519 PMCID: PMC7923808 DOI: 10.3390/s21041476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) can improve different motor, sensory, and cognitive behaviors. However, it is unclear how this stimulation affects brain activity to facilitate these improvements. Functional near-infrared spectroscopy (fNIRS) is inexpensive, portable, and less prone to motion artifacts than other neuroimaging technology. Thus, fNIRS has the potential to provide insight into how nGVS affects cortical activity during a variety of natural behaviors. Here we sought to: (1) determine if fNIRS can detect cortical changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin with application of subthreshold nGVS, and (2) determine how subthreshold nGVS affects this fNIRS-derived hemodynamic response. A total of twelve healthy participants received nGVS and sham stimulation during a seated, resting-state paradigm. To determine whether nGVS altered activity in select cortical regions of interest (BA40, BA39), we compared differences between nGVS and sham HbO and HbR concentrations. We found a greater HbR response during nGVS compared to sham stimulation in left BA40, a region previously associated with vestibular processing, and with all left hemisphere channels combined (p < 0.05). We did not detect differences in HbO responses for any region during nGVS (p > 0.05). Our results suggest that fNIRS may be suitable for understanding the cortical effects of nGVS.
Collapse
Affiliation(s)
- Bulmaro A. Valdés
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
| | - Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
| | - Daniel S. Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada;
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems and Engineering Science, Simon Fraser University, 250-13450 102nd Avenue, Surrey, BC V5A 1S6, Canada; (B.A.V.); (K.L.)
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Ertl M, Zu Eulenburg P, Woller M, Dieterich M. The role of delta and theta oscillations during ego-motion in healthy adult volunteers. Exp Brain Res 2021; 239:1073-1083. [PMID: 33534022 PMCID: PMC8068649 DOI: 10.1007/s00221-020-06030-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
The successful cortical processing of multisensory input typically requires the integration of data represented in different reference systems to perform many fundamental tasks, such as bipedal locomotion. Animal studies have provided insights into the integration processes performed by the neocortex and have identified region specific tuning curves for different reference frames during ego-motion. Yet, there remains almost no data on this topic in humans. In this study, an experiment originally performed in animal research with the aim to identify brain regions modulated by the position of the head and eyes relative to a translational ego-motion was adapted for humans. Subjects sitting on a motion platform were accelerated along a translational pathway with either eyes and head aligned or a 20° yaw-plane offset relative to the motion direction while EEG was recorded. Using a distributed source localization approach, it was found that activity in area PFm, a part of Brodmann area 40, was modulated by the congruency of translational motion direction, eye, and head position. In addition, an asymmetry between the hemispheres in the opercular-insular region was observed during the cortical processing of the vestibular input. A frequency specific analysis revealed that low-frequency oscillations in the delta- and theta-band are modulated by vestibular stimulation. Source-localization estimated that the observed low-frequency oscillations are generated by vestibular core-regions, such as the parieto-opercular region and frontal areas like the mid-orbital gyrus and the medial frontal gyrus.
Collapse
Affiliation(s)
- M Ertl
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany.
| | - P Zu Eulenburg
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, München, Germany
- Institute for Neuroradiology, Ludwig-Maximilians-Universität München, München, Germany
| | - M Woller
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, München, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Salami A, Andreu-Perez J, Gillmeister H. Symptoms of depersonalisation/derealisation disorder as measured by brain electrical activity: A systematic review. Neurosci Biobehav Rev 2020; 118:524-537. [PMID: 32846163 DOI: 10.1016/j.neubiorev.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022]
Abstract
Depersonalisation/derealisation disorder (DPD) refers to frequent and persistent detachment from bodily self and disengagement from the outside world. As a dissociative disorder, DPD affects 1-2 % of the population, but takes 7-12 years on average to be accurately diagnosed. In this systematic review, we comprehensively describe research targeting the neural correlates of core DPD symptoms, covering publications between 1992 and 2020 that have used electrophysiological techniques. The aim was to investigate the diagnostic potential of these relatively inexpensive and convenient neuroimaging tools. We review the EEG power spectrum, components of the event-related potential (ERP), as well as vestibular and heartbeat evoked potentials as likely electrophysiological biomarkers to study DPD symptoms. We argue that acute anxiety- or trauma-related impairments in the integration of interoceptive and exteroceptive signals play a key role in the formation of DPD symptoms, and that future research needs analysis methods that can take this integration into account. We suggest tools for prospective studies of electrophysiological DPD biomarkers, which are urgently needed to fully develop their diagnostic potential.
Collapse
Affiliation(s)
- Abbas Salami
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; Smart Health Technologies Group, Centre for Computational Intelligence, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Javier Andreu-Perez
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; Smart Health Technologies Group, Centre for Computational Intelligence, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Helge Gillmeister
- Department of Psychology and Centre for Brain Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK; Smart Health Technologies Group, Centre for Computational Intelligence, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
20
|
Ertl M, Klaus M, Mast FW, Brandt T, Dieterich M. Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations. Neuroimage 2020; 219:117015. [PMID: 32505699 DOI: 10.1016/j.neuroimage.2020.117015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Perceptual decision-making is a complex task that requires multiple processing steps performed by spatially distinct brain regions interacting in order to optimize perception and motor response. Most of our knowledge on these processes and interactions were derived from unimodal stimulations of the visual system which identified the lateral intraparietal area and the posterior parietal cortex as critical regions. Unlike the visual system, the vestibular system has no primary cortical areas and it is associated with separate multisensory areas within the temporo-parietal cortex with the parieto-insular vestibular cortex, PIVC, being the core region. The aim of the presented experiment was to investigate the transition from sensation to perception and to reveal the main structures of the cortical vestibular system involved in perceptual decision-making. Therefore, an EEG analysis was performed in 35 healthy subjects during linear whole-body accelerations of different intensities on a motor-driven motion platform (hexapod). We used a discrimination task in order to judge the intensity of the accelerations. Furthermore, we manipulated the expectation of the upcoming stimulus by indicating the probability (25%, 50%, 75%, 100%) of the motion direction. The analysis of the vestibular evoked potentials (VestEPs) showed that the decision-making process leads to a second positive peak (P2b) which was not observed in previous task-free experiments. The comparison of the estimated neural generators of the P2a and P2b components showed significant activity differences in the anterior cingulus, the parahippocampal and the middle temporal gyri. Taking into account the time courses of the P2 components, the physical properties of the stimuli, and the responses given by the subjects we conclude that the P2b likely reflects the transition from the processing of sensory information to perceptual evaluation. Analyzing the decision-uncertainty reported by the subjects, a persistent divergence of the time courses starting at 188 ms after the acceleration was found at electrode Pz. This finding demonstrated that meta-cognition by means of confidence estimation starts in parallel with the decision-making process itself. Further analyses in the time-frequency domain revealed that a correct classification of acceleration intensities correlated with an inter-trial phase clustering at electrode Cz and an inter-site phase clustering of theta oscillations over frontal, central, and parietal cortical areas. The sites where the phase clustering was observed corresponded to core decision-making brain areas known from neuroimaging studies in the visual domain.
Collapse
Affiliation(s)
- M Ertl
- Department of Psychology, University Bern, Switzerland; Department of Neurology, Ludwig-Maximilians-Universität München, Germany.
| | - M Klaus
- Department of Psychology, University Bern, Switzerland
| | - F W Mast
- Department of Psychology, University Bern, Switzerland
| | - T Brandt
- German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Hertie Senior Research Professor for Clinical Neuroscience, Ludwig-Maximilians-Universität München, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Ertl M, Schulte M, Dieterich M. EEG microstate architecture does not change during passive whole-body accelerations. J Neurol 2020; 267:76-78. [PMID: 32468117 PMCID: PMC7718187 DOI: 10.1007/s00415-020-09794-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 11/24/2022]
Affiliation(s)
- M Ertl
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany. .,Department of Psychology, University of Bern, Bern, Switzerland.
| | - M Schulte
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|