1
|
Seki F, Yurimoto T, Kamioka M, Inoue T, Komaki Y, Iriki A, Sasaki E, Yamazaki Y. Development of a non-invasive novel individual marmoset holder for evaluation by awake functional magnetic resonance brain imaging. J Neurosci Methods 2025; 417:110390. [PMID: 39956398 DOI: 10.1016/j.jneumeth.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/07/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Although functional MRI (fMRI) in awake marmosets (Callithrix jacchus) is fascinating for functional brain mapping and evaluation of brain disease models, it is difficult to launch awake fMRI on scanners with bore sizes of less than 16 cm. A universal marmoset holder for the small-bore size MRI was designed, and it was evaluated whether this holder could conduct auditory stimulation fMRI in the awake state using 16 cm bore size MRI scanner. NEW METHOD The marmoset holder was designed with an outer diameter of 71.9 mm. A holder was designed to allow adjustment according to the individual head shape, enabling the use of the holder universally. An awake fMRI study of auditory response was conducted to evaluate the practicality of the new holder. Whole-brain activation was investigated when marmosets heard the marmoset social communication "phee call" an artificial tone sound and reversed of those. RESULTS The prefrontal cortex was significantly activated in response to phee calls, whereas only the auditory cortex was activated in response to pure tones. In contrast, the auditory response was decreased when marmosets heard phee call. Their stimulus-specific responses indicated they perceived and differentiated sound characteristics in the fMRI environment. COMPARISON WITH EXISTING METHODS A holder does not require surgical intervention or a custom-made helmet to minimize head movement in a small space. CONCLUSION Our newly developed holder made it possible to perform longitudinal fMRI experiments on multiple marmosets in a less invasive manner.
Collapse
Affiliation(s)
- Fumiko Seki
- Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Terumi Yurimoto
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Michiko Kamioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan; Laboratory of Parasitology, Faculty of Veterinary Medicine, Okayama University of Science.
| | - Yuji Komaki
- Imaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| | - Yumiko Yamazaki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Department of Psychological Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
2
|
Dureux A, Zanini A, Jafari A, Everling S. Ultra-high Field fMRI Reveals Effect of Ketamine on Vocal Processing in Common Marmosets. J Neurosci 2025; 45:e0651242025. [PMID: 39984201 PMCID: PMC11984087 DOI: 10.1523/jneurosci.0651-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Auditory deficits are a well-known symptom in neuropsychiatric disorders such as schizophrenia. The noncompetitive N-methyl-d-aspartate receptor antagonist ketamine has been used to model sensory and cognitive deficits in nonhuman primates, but its whole-brain effects remain largely unknown. Here we employed ultra-high field functional magnetic resonance imaging at 9.4 T in awake male and female marmoset monkeys (Callithrix jacchus) to compare brain activations to conspecific vocalizations, scrambled vocalizations, and nonvocal sounds following the administration of a subanesthetic dose of ketamine. Our findings reveal a broad suppression of activations across auditory regions following ketamine compared with saline. Additionally, we observed differential effects depending on the type of sound, with notable changes in the mediodorsal thalamus and anterior cingulate cortex, particularly during the processing of vocalizations. These findings suggest a potential overlap between the effects of ketamine and neural disruptions observed in schizophrenia, particularly affecting vocalization processing.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada,
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| |
Collapse
|
3
|
Jafari A, Dureux A, Zanini A, Menon RS, Gilbert KM, Everling S. Unique Cortical and Subcortical Activation Patterns for Different Conspecific Calls in Marmosets. J Neurosci 2025; 45:e0670242024. [PMID: 39516045 PMCID: PMC11735661 DOI: 10.1523/jneurosci.0670-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The common marmoset (Callithrix jacchus) is known for its highly vocal nature, displaying a diverse range of calls. Functional imaging in marmosets has shown that the processing of conspecific calls activates a brain network that includes fronto-temporal areas. It is currently unknown whether different call types activate the same or different networks. In this study, nine adult marmosets (four females) were exposed to four common vocalizations (phee, chatter, trill, and twitter), and their brain responses were recorded using event-related functional magnetic resonance imaging at 9.4 T. We found robust activations in the auditory cortices, encompassing core, belt, and parabelt regions, and in subcortical areas like the inferior colliculus, medial geniculate nucleus, and amygdala in response to these calls. Although a common network was engaged, distinct activity patterns were evident for different vocalizations that could be distinguished by a 3D convolutional neural network, indicating unique neural processing for each vocalization. Our findings also indicate the involvement of the cerebellum and medial prefrontal cortex in distinguishing particular vocalizations from others.
Collapse
Affiliation(s)
- Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
Rollin IZ, Papoti D, Bishop M, Szczupak D, Corigliano MR, Hitchens TK, Zhang B, Pell SKA, Guretse SS, Dureux A, Murai T, Sukoff Rizzo SJ, Klassen LM, Zeman P, Gilbert KM, Menon RS, Lin MK, Everling S, Silva AC, Schaeffer DJ. An Open Access Resource for Marmoset Neuroscientific Apparatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623252. [PMID: 39605348 PMCID: PMC11601486 DOI: 10.1101/2024.11.12.623252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The use of the common marmoset (Callithrix jacchus) for neuroscientific inquiry has grown precipitously over the past two decades. Despite windfalls of grant support from funding initiatives in North America, Europe, and Asia to model human brain diseases in the marmoset, marmoset-specific apparatus are of sparse availability from commercial vendors and thus are often developed and reside within individual laboratories. Through our collective research efforts, we have designed and vetted myriad designs for awake or anesthetized magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), as well as focused ultrasound (FUS), electrophysiology, optical imaging, surgery, and behavior in marmosets across the age-span. This resource makes these designs openly available, reducing the burden of de novo development across the marmoset field. The computer-aided-design (CAD) files are publicly available through the Marmoset Brain Connectome (MBC) resource (https://www.marmosetbrainconnectome.org/apparatus/) and include dozens of downloadable CAD assemblies, software and online calculators for marmoset neuroscience. In addition, we make available a variety of vetted touchscreen and task-based fMRI code and stimuli. Here, we highlight the online interface and the development and validation of a few yet unpublished resources: Software to automatically extract the head morphology of a marmoset from a CT and produce a 3D printable helmet for awake neuroimaging, and the design and validation of 8-channel and 14-channel receive arrays for imaging deep structures during anatomical and functional MRI.
Collapse
Affiliation(s)
- Isabela Zimmermann Rollin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Daniel Papoti
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mitchell Bishop
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael R. Corigliano
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bei Zhang
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Sarah K. A. Pell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simeon S. Guretse
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Takeshi Murai
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacey J. Sukoff Rizzo
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - L. Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Meng-Kuan Lin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Afonso C. Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David J. Schaeffer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Dureux A, Zanini A, Everling S. Mapping of facial and vocal processing in common marmosets with ultra-high field fMRI. Commun Biol 2024; 7:317. [PMID: 38480875 PMCID: PMC10937914 DOI: 10.1038/s42003-024-06002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Primate communication relies on multimodal cues, such as vision and audition, to facilitate the exchange of intentions, enable social interactions, avoid predators, and foster group cohesion during daily activities. Understanding the integration of facial and vocal signals is pivotal to comprehend social interaction. In this study, we acquire whole-brain ultra-high field (9.4 T) fMRI data from awake marmosets (Callithrix jacchus) to explore brain responses to unimodal and combined facial and vocal stimuli. Our findings reveal that the multisensory condition not only intensifies activations in the occipito-temporal face patches and auditory voice patches but also engages a more extensive network that includes additional parietal, prefrontal and cingulate areas, compared to the summed responses of the unimodal conditions. By uncovering the neural network underlying multisensory audiovisual integration in marmosets, this study highlights the efficiency and adaptability of the marmoset brain in processing facial and vocal social signals, providing significant insights into primate social communication.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada.
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5K8, Canada
| |
Collapse
|
6
|
Okuno T, Ichinohe N, Woodward A. A reappraisal of the default mode and frontoparietal networks in the common marmoset brain. FRONTIERS IN NEUROIMAGING 2024; 2:1345643. [PMID: 38264540 PMCID: PMC10803424 DOI: 10.3389/fnimg.2023.1345643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In recent years the common marmoset homolog of the human default mode network (DMN) has been a hot topic of discussion in the marmoset research field. Previously, the posterior cingulate cortex regions (PGM, A19M) and posterior parietal cortex regions (LIP, MIP) were defined as the DMN, but some studies claim that these form the frontoparietal network (FPN). We restarted from a neuroanatomical point of view and identified two DMN candidates: Comp-A (which has been called both the DMN and FPN) and Comp-B. We performed GLM analysis on auditory task-fMRI and found Comp-B to be more appropriate as the DMN, and Comp-A as the FPN. Additionally, through fingerprint analysis, a DMN and FPN in the tasking human was closer to the resting common marmoset. The human DMN appears to have an advanced function that may be underdeveloped in the common marmoset brain.
Collapse
Affiliation(s)
- Takuto Okuno
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noritaka Ichinohe
- Laboratory for Ultrastructure Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
7
|
Zanini A, Dureux A, Jafari A, Gilbert KM, Zeman P, Bellyou M, Li A, Tuin CV, Everling S. In vivo functional brain mapping using ultra-high-field fMRI in awake common marmosets. STAR Protoc 2023; 4:102586. [PMID: 37738120 PMCID: PMC10520676 DOI: 10.1016/j.xpro.2023.102586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is gaining attention in the field of cognitive neuroscience. The development of an effective protocol for fMRI data acquisition in awake marmosets is a key factor in developing reliable comparative studies. Here, we describe a protocol to obtain fMRI data in awake marmosets using auditory and visual stimulation. We describe steps for surgical and anesthesia procedures, MRI training, and positioning the marmosets within an MRI-compatible body restraint. We then detail fMRI scanning and preprocessing of functional images. For complete details on the use and execution of this protocol, please refer to Jafari et al. (2023).1.
Collapse
Affiliation(s)
- Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Alex Li
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Cheryl Vander Tuin
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
8
|
Dureux A, Zanini A, Selvanayagam J, Menon RS, Everling S. Gaze patterns and brain activations in humans and marmosets in the Frith-Happé theory-of-mind animation task. eLife 2023; 12:e86327. [PMID: 37449983 PMCID: PMC10435231 DOI: 10.7554/elife.86327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Theory of Mind (ToM) refers to the cognitive ability to attribute mental states to other individuals. This ability extends even to the attribution of mental states to animations featuring simple geometric shapes, such as the Frith-Happé animations in which two triangles move either purposelessly (Random condition), exhibit purely physical movement (Goal-directed condition), or move as if one triangle is reacting to the other triangle's mental states (ToM condition). While this capacity in humans has been thoroughly established, research on nonhuman primates has yielded inconsistent results. This study explored how marmosets (Callithrix jacchus), a highly social primate species, process Frith-Happé animations by examining gaze patterns and brain activations of marmosets and humans as they observed these animations. We revealed that both marmosets and humans exhibited longer fixations on one of the triangles in ToM animations, compared to other conditions. However, we did not observe the same pattern of longer overall fixation duration on the ToM animations in marmosets as identified in humans. Furthermore, our findings reveal that both species activated extensive and comparable brain networks when viewing ToM versus Random animations, suggesting that marmosets differentiate between these scenarios similarly to humans. While marmosets did not mimic human overall fixation patterns, their gaze behavior and neural activations indicate a distinction between ToM and non-ToM scenarios. This study expands our understanding of nonhuman primate cognitive abilities, shedding light on potential similarities and differences in ToM processing between marmosets and humans.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonCanada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonCanada
| | - Janahan Selvanayagam
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonCanada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonCanada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, University of Western OntarioLondonCanada
| |
Collapse
|
9
|
Belin P, Trapeau R, Obliger-Debouche M. A small, but vocal, brain. Cell Rep 2023; 42:112651. [PMID: 37314925 DOI: 10.1016/j.celrep.2023.112651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
In the May issue of Cell Reports, Jafari et al.1 used ultra-high-field fMRI to show that marmosets, like humans and macaques, possess an extensive network of voice-selective areas.
Collapse
Affiliation(s)
- Pascal Belin
- La Timone Neuroscience Institute, Marseille, France.
| | | | | |
Collapse
|
10
|
Zanini A, Dureux A, Selvanayagam J, Everling S. Ultra-high field fMRI identifies an action-observation network in the common marmoset. Commun Biol 2023; 6:553. [PMID: 37217698 DOI: 10.1038/s42003-023-04942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
The observation of others' actions activates a network of temporal, parietal and premotor/prefrontal areas in macaque monkeys and humans. This action-observation network (AON) has been shown to play important roles in social action monitoring, learning by imitation, and social cognition in both species. It is unclear whether a similar network exists in New-World primates, which separated from Old-Word primates ~35 million years ago. Here we used ultra-high field fMRI at 9.4 T in awake common marmosets (Callithrix jacchus) while they watched videos depicting goal-directed (grasping food) or non-goal-directed actions. The observation of goal-directed actions activates a temporo-parieto-frontal network, including areas 6 and 45 in premotor/prefrontal cortices, areas PGa-IPa, FST and TE in occipito-temporal region and areas V6A, MIP, LIP and PG in the occipito-parietal cortex. These results show overlap with the humans and macaques' AON, demonstrating the existence of an evolutionarily conserved network that likely predates the separation of Old and New-World primates.
Collapse
Affiliation(s)
- Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Janahan Selvanayagam
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Jafari A, Dureux A, Zanini A, Menon RS, Gilbert KM, Everling S. A vocalization-processing network in marmosets. Cell Rep 2023; 42:112526. [PMID: 37195863 DOI: 10.1016/j.celrep.2023.112526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Vocalizations play an important role in the daily life of primates and likely form the basis of human language. Functional imaging studies have demonstrated that listening to voices activates a fronto-temporal voice perception network in human participants. Here, we acquired whole-brain ultrahigh-field (9.4 T) fMRI in awake marmosets (Callithrix jacchus) and demonstrate that these small, highly vocal New World primates possess a similar fronto-temporal network, including subcortical regions, that is activated by the presentation of conspecific vocalizations. The findings suggest that the human voice perception network has evolved from an ancestral vocalization-processing network that predates the separation of New and Old World primates.
Collapse
Affiliation(s)
- Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
12
|
Dureux A, Zanini A, Everling S. Face-Selective Patches in Marmosets Are Involved in Dynamic and Static Facial Expression Processing. J Neurosci 2023; 43:3477-3494. [PMID: 37001990 PMCID: PMC10184744 DOI: 10.1523/jneurosci.1484-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The correct identification of facial expressions is critical for understanding the intention of others during social communication in the daily life of all primates. Here we used ultra-high-field fMRI at 9.4 T to investigate the neural network activated by facial expressions in awake New World common marmosets from both male and female sex, and to determine the effect of facial motions on this network. We further explored how the face-patch network is involved in the processing of facial expressions. Our results show that dynamic and static facial expressions activate face patches in temporal and frontal areas (O, PV, PD, MD, AD, and PL) as well as in the amygdala, with stronger responses for negative faces, also associated with an increase of the respiration rates of the monkey. Processing of dynamic facial expressions involves an extended network recruiting additional regions not known to be part of the face-processing network, suggesting that face motions may facilitate the recognition of facial expressions. We report for the first time in New World marmosets that the perception and identification of changeable facial expressions, vital for social communication, recruit face-selective brain patches also involved in face detection processing and are associated with an increase of arousal.SIGNIFICANCE STATEMENT Recent research in humans and nonhuman primates has highlighted the importance to correctly recognize and process facial expressions to understand others' emotions in social interactions. The current study focuses on the fMRI responses of emotional facial expressions in the common marmoset (Callithrix jacchus), a New World primate species sharing several similarities of social behavior with humans. Our results reveal that temporal and frontal face patches are involved in both basic face detection and facial expression processing. The specific recruitment of these patches for negative faces associated with an increase of the arousal level show that marmosets process facial expressions of their congener, vital for social communication.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| |
Collapse
|