1
|
García-Domínguez M. The Role of TNF-α in Neuropathic Pain: An Immunotherapeutic Perspective. Life (Basel) 2025; 15:785. [PMID: 40430212 PMCID: PMC12113436 DOI: 10.3390/life15050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
TNF-α is a pro-inflammatory cytokine that plays a pivotal role in the regulation of immune responses. It is predominantly produced by activated macrophages, although other cell types, such as T lymphocytes and NK cells, also contribute to its secretion. TNF-α participates in various physiological processes, including cell proliferation and differentiation. Moreover, TNF-α has been implicated in the pathogenesis of numerous inflammatory and autoimmune disorders. Recent studies have highlighted the important role of TNF-α in neuropathic pain, a complex and frequently disabling condition caused by nerve injury or dysfunction. Increased TNF-α levels in the nervous system have been associated with the onset of neuropathic pain, contributing to neuronal sensitization and alterations in pain signaling pathways. This study supports the idea that TNF-α connects the immune system with the nervous system, thereby supporting our understanding of the neuroimmune interface of pain and bringing a potential treatment against neuropathic pain: targeting TNF-α. Anti-TNF-α antibody administration reduces pain behaviors and neuroinflammation in preclinical animal models. Simultaneously, clinical trials are evaluating the safety and efficacy of anti-TNF-α treatments, with preliminary results indicating promising outcomes in patients experiencing neuropathic pain. Here, targeting TNF-α goes beyond its conventional spectrum of inflammatory pathologies and initiates a new mechanism-based approach to defining neuropathic pain, thereby improving the quality of life of the individuals affected and bringing together an area of colossal unmet clinical need.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Andersen MA, Schouenborg J. Polydimethylsiloxane as a more biocompatible alternative to glass in optogenetics. Sci Rep 2023; 13:16090. [PMID: 37752160 PMCID: PMC10522705 DOI: 10.1038/s41598-023-43297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Optogenetics is highly useful to stimulate or inhibit defined neuronal populations and is often used together with electrophysiological recordings. Due to poor penetration of light in tissue, there is a need for biocompatible wave guides. Glass wave guides are relatively stiff and known to cause glia reaction that likely influence the activity in the remaining neurons. We developed highly flexible micro wave guides for optogenetics that can be used in combination with long-lasting electrophysiological recordings. We designed and evaluated polydimethylsiloxane (PDMS) mono-fibers, which use the tissue as cladding, with a diameter of 71 ± 10 µm and 126 ± 5 µm. We showed that micro PDMS fibers transmitted 9-33 mW/mm2 light energy enough to activate channelrhodopsin. This was confirmed in acute extracellular recordings in vivo in which optogenetic stimulation through the PDMS fibers generated action potentials in rat hippocampus with a short onset latency. PDMS fibers had significantly less microglia and astrocytic activation in the zone nearest to the implant as compared to glass. There was no obvious difference in number of adjacent neurons between size matched wave guides. Micro PDMS wave guide demonstrates in vivo functionality and improved biocompatibility as compared to glass. This enables the delivery of light with less tissue damage.
Collapse
Affiliation(s)
- Michael Aagaard Andersen
- Neuronano Research Center, Department of Experimental Medicine, Lund University, Lund, Sweden.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Cuttaz EA, Syed O, Chapman CAR, Goding JA, Bailey ZK, Portillo-Lara R, Green RA. A Pilot In Vivo Study of Flexible Fully Polymeric Nerve Cuff Electrodes . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083283 DOI: 10.1109/embc40787.2023.10341006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent trends in the field of bioelectronics have been focused on the development of electrodes that facilitate safe and efficient stimulation of nervous tissues. Novel conducting polymer (CP) based materials, such as flexible and fully polymeric conductive elastomers (CEs), constitute a promising alternative to improve on the limitations of current metallic devices. This pilot study demonstrates the performance of tripolar CE-based peripheral nerve cuffs compared to current commercial tripolar platinum-iridium (PtIr) nerve cuffs in vivo. CE and metallic cuff devices were implanted onto rodent sciatic nerves for a period of 8 weeks. Throughout the entire study, the CE device demonstrated improved charge transfer and electrochemical safety compared to the PtIr cuff, able to safely inject 2 to 3 times more charge. In comparison to the commercial control, the CE cuff was able to record in the in vivo setting with reduced noise and produced smaller voltages at all simulation levels. CE technologies provide a promising alternative to metallic devices for the development of bioelectronics with enhanced chronic device functionality.
Collapse
|
4
|
Li G, Ma X, Xu Z, Shen Y, Yuan M, Huang J, Cole T, Wei J, Liu S, Han F, Li H, Bayinqiaoge, Xu Z, Tang SY, Liu Z. A crack compensation strategy for highly stretchable conductors based on liquid metal inclusions. iScience 2022; 25:105495. [PMID: 36419853 PMCID: PMC9676391 DOI: 10.1016/j.isci.2022.105495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Crack control strategies have been proven very useful for enhancing the stretchability of metal film-based stretchable conductors. However, existing strategies often suffer from the drawbacks of complicated preparation and predefined effective directions. Here, we propose a crack compensation strategy for preparing conductors featured with high stretchability by using liquid metal microparticles (LMMPs)-embedded polydimethylsiloxane (PDMS) as the substrate with a thin film of gold (Au) sputtered on the surface. LMMPs can be elongated to connect the cracked Au film upon stretching, which can form a conductive "island-tunnel" (IT) architecture to compensate for the cracks and maintain the conductivity. The high performance of the stretchable conductor is demonstrated by using it as electrodes to record surface electromyography of human brachioradialis and monitor electrocorticography signals of a rat in normal and epileptic states. The developed strategy shows the potential to provide a new perspective for the fabrication of flexible electronics.
Collapse
Affiliation(s)
- Guoqiang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author
| | - Zirong Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Man Yuan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianping Huang
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tim Cole
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jingjing Wei
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sanhu Liu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Fei Han
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hanfei Li
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bayinqiaoge
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zhiwu Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Shi-Yang Tang
- Department of Electronic Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Corresponding author
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
5
|
Payne SC, Wiedmann NM, Eiber CD, Wong AW, Senn P, Osborne PB, Keast JR, Fallon JB. Recording of Electrically Evoked Neural Activity and Bladder Pressure Responses in Awake Rats Chronically Implanted With a Pelvic Nerve Array. Front Neurosci 2020; 14:619275. [PMID: 33390899 PMCID: PMC7773906 DOI: 10.3389/fnins.2020.619275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023] Open
Abstract
Bioelectronic medical devices are well established and widely used in the treatment of urological dysfunction. Approved targets include the sacral S3 spinal root and posterior tibial nerve, but an alternate target is the group of pelvic splanchnic nerves, as these contain sacral visceral sensory and autonomic motor pathways that coordinate storage and voiding functions of the bladder. Here, we developed a device suitable for long-term use in an awake rat model to study electrical neuromodulation of the pelvic nerve (homolog of the human pelvic splanchnic nerves). In male Sprague-Dawley rats, custom planar four-electrode arrays were implanted over the distal end of the pelvic nerve, close to the major pelvic ganglion. Electrically evoked compound action potentials (ECAPs) were reliably detected under anesthesia and in chronically implanted, awake rats up to 8 weeks post-surgery. ECAP waveforms showed three peaks, with latencies that suggested electrical stimulation activated several subpopulations of myelinated A-fiber and unmyelinated C-fiber axons. Chronic implantation of the array did not impact on voiding evoked in awake rats by continuous cystometry, where void parameters were comparable to those published in naïve rats. Electrical stimulation with chronically implanted arrays also induced two classes of bladder pressure responses detected by continuous flow cystometry in awake rats: voiding contractions and non-voiding contractions. No evidence of tissue pathology produced by chronically implanted arrays was detected by immunohistochemical visualization of markers for neuronal injury or noxious spinal cord activation. These results demonstrate a rat pelvic nerve electrode array that can be used for preclinical development of closed loop neuromodulation devices targeting the pelvic nerve as a therapy for neuro-urological dysfunction.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole M Wiedmann
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Calvin D Eiber
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Agnes W Wong
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Philipp Senn
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - James B Fallon
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia.,Department of Otolaryngology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
A review for the peripheral nerve interface designer. J Neurosci Methods 2019; 332:108523. [PMID: 31743684 DOI: 10.1016/j.jneumeth.2019.108523] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Informational density and relative accessibility of the peripheral nervous system make it an attractive site for therapeutic intervention. Electrode-based electrophysiological interfaces with peripheral nerves have been under development since the 1960s and, for several applications, have seen widespread clinical implementation. However, many applications require a combination of neural target resolution and stability which has thus far eluded existing peripheral nerve interfaces (PNIs). With the goal of aiding PNI designers in development of devices that meet the demands of next-generation applications, this review seeks to collect and present practical considerations and best practices which emerge from the literature, including both lessons learned during early PNI development and recent ideas. Fundamental and practical principles guiding PNI design are reviewed, followed by an updated and critical account of existing PNI designs and strategies. Finally, a brief survey of in vitro and in vivo PNI characterization methods is presented.
Collapse
|
7
|
González-González MA, Kanneganti A, Joshi-Imre A, Hernandez-Reynoso AG, Bendale G, Modi R, Ecker M, Khurram A, Cogan SF, Voit WE, Romero-Ortega MI. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation. Sci Rep 2018; 8:16390. [PMID: 30401906 PMCID: PMC6219541 DOI: 10.1038/s41598-018-34566-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/18/2018] [Indexed: 01/21/2023] Open
Abstract
Silicone nerve cuff electrodes are commonly implanted on relatively large and accessible somatic nerves as peripheral neural interfaces. While these cuff electrodes are soft (1–50 MPa), their self-closing mechanism requires of thick walls (200–600 µm), which in turn contribute to fibrotic tissue growth around and inside the device, compromising the neural interface. We report the use of thiol-ene/acrylate shape memory polymer (SMP) for the fabrication of thin film multi-electrode softening cuffs (MSC). We fabricated multi-size MSC with eight titanium nitride (TiN) electrodes ranging from 1.35 to 13.95 × 10−4 cm2 (1–3 kΩ) and eight smaller gold (Au) electrodes (3.3 × 10−5 cm2; 750 kΩ), that soften at physiological conditions to a modulus of 550 MPa. While the SMP material is not as soft as silicone, the flexural forces of the SMP cuff are about 70–700 times lower in the MSC devices due to the 30 μm thick film compared to the 600 μm thick walls of the silicone cuffs. We demonstrated the efficacy of the MSC to record neural signals from rat sciatic and pelvic nerves (1000 µm and 200 µm diameter, respectively), and the selective fascicular stimulation by current steering. When implanted side-by-side and histologically compared 30 days thereafter, the MSC devices showed significantly less inflammation, indicated by a 70–80% reduction in ED1 positive macrophages, and 54–56% less fibrotic vimentin immunoreactivity. Together, the data supports the use of MSC as compliant and adaptable technology for the interfacing of somatic and autonomic peripheral nerves.
Collapse
Affiliation(s)
- María A González-González
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Aswini Kanneganti
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Alexandra Joshi-Imre
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ana G Hernandez-Reynoso
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Geetanjali Bendale
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Romil Modi
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Melanie Ecker
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ali Khurram
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Walter E Voit
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
8
|
De la Oliva N, Navarro X, Del Valle J. Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrode Implants in the Peripheral Nerve of the Rat. Anat Rec (Hoboken) 2018; 301:1722-1733. [PMID: 30353712 DOI: 10.1002/ar.23920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/23/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
Abstract
Intraneural electrodes must be in intimate contact with nerve fibers to have a proper function, but this interface is compromised due to the foreign body reaction (FBR). The FBR is characterized by a first inflammatory phase followed by a second anti-inflammatory and fibrotic phase, which results in the formation of a tissue capsule around the implant, causing physical separation between the active sites of the electrode and the nerve fibers. We have tested systemically several anti-inflammatory drugs such as dexamethasone (subcutaneous), ibuprofen and maraviroc (oral) to reduce macrophage activation, as well as clodronate liposomes (intraperitoneal) to reduce monocyte/macrophage infiltration, and sildenafil (oral) as an antifibrotic drug to reduce collagen deposition in an FBR model with longitudinal Parylene C intraneural implants in the rat sciatic nerve. Treatment with dexamethasone, ibuprofen, or clodronate significantly reduced the inflammatory reaction in the nerve in comparison to the saline group after 2 weeks of the implant, whereas sildenafil and maraviroc had no effect on infiltration of macrophages in the nerve. However, only dexamethasone was able to significantly reduce the matrix deposition around the implant. Similar positive results were obtained with dexamethasone in the case of polyimide-based intraneural implants, another polymer substrate for the electrode. These results indicate that inflammation triggers the FBR in peripheral nerves, and that anti-inflammatory treatment with dexamethasone may have beneficial effects on lengthening intraneural interface functionality. Anat Rec, 301:1722-1733, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natàlia De la Oliva
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
9
|
de la Oliva N, Mueller M, Stieglitz T, Navarro X, Del Valle J. On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Sci Rep 2018; 8:5965. [PMID: 29654317 PMCID: PMC5899141 DOI: 10.1038/s41598-018-24502-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
Parylene C is a highly flexible polymer used in several biomedical implants. Since previous studies have reported valuable biocompatible and manufacturing characteristics for brain and intraneural implants, we tested its suitability as a substrate for peripheral nerve electrodes. We evaluated 1-year-aged in vitro samples, where no chemical differences were observed and only a slight deviation on Young’s modulus was found. The foreign body reaction (FBR) to longitudinal Parylene C devices implanted in the rat sciatic nerve for 8 months was characterized. After 2 weeks, a capsule was formed around the device, which continued increasing up to 16 and 32 weeks. Histological analyses revealed two cell types implicated in the FBR: macrophages, in contact with the device, and fibroblasts, localized in the outermost zone after 8 weeks. Molecular analysis of implanted nerves comparing Parylene C and polyimide devices revealed a peak of inflammatory cytokines after 1 day of implant, returning to low levels thereafter. Only an increase of CCL2 and CCL3 was found at chronic time-points for both materials. Although no molecular differences in the FBR to both polymers were found, the thick tissue capsule formed around Parylene C puts some concern on its use as a scaffold for intraneural electrodes.
Collapse
Affiliation(s)
- Natàlia de la Oliva
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Matthias Mueller
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jaume Del Valle
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain. .,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
10
|
The foreign body response and morphometric changes associated with mesh-style peripheral nerve cuffs. Acta Biomater 2018; 67:79-86. [PMID: 29223703 DOI: 10.1016/j.actbio.2017.11.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023]
Abstract
Nerve cuffs have been used to anchor and protect penetrating electrodes in peripheral nerves and have been used as non-penetrating electrodes for neural recording and nerve stimulation. The material of choice for such applications is silicone, an inert synthetic biomaterial which elicits a minimal chronic foreign body response (FBR). While histological studies of solid silicone cuffs are available, to the best of our knowledge a comparison to other cuff designs is not well documented. Here, we describe the FBR and morphological changes that accompany nerve cuff implantation in the rat sciatic nerve by comparing a metallic mesh with and without a parylene coating to one made of silicone. Two months after implantation, we observed that such implants, irrespective of the cuff type, were associated with a persistent inflammatory response consisting of activated macrophages attached to the implant surfaces, which extended into the endoneurial space of the encapsulated nerve. We also observed foreign body giant cells in the epineurial space that were more prevalent in the mesh cohorts. The mesh cuff groups showed significant changes in several morphometric parameters that were not seen in the silicon group including reductions in nerve fiber packing density and a greater reduction of large diameter fibers. High magnification microscopy also showed greater evidence of foamy macrophages in the endoneurial space of the mesh implanted cohorts. Although the precise mechanisms are unknown, the results showed that mesh style nerve cuffs show a greater inflammatory response and had greater reductions in morphometric changes in the underlying nerve compared to silicone in the absence of a penetrating injury. STATEMENT OF SIGNIFICANCE While traditional silicone cuffs have been in use for decades, the inflammatory and morphometric effects of these cuffs on the underlying nerve have not been deeply studied. Further, manipulation of the foreign body response to nerve cuffs by using various materials and/or designs has not been well reported. Therefore, we report the inflammatory response around nerve cuffs of various materials and designs, as well as report morphometric parameters of the underlying nerve. These data provide important information regarding the potential for quantitative morphometric changes associated with the use of nerve cuffs, and, importantly, suggests that these changes are associated with the degree of inflammation associated with the cuff.
Collapse
|
11
|
Vasudevan S, Patel K, Welle C. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. J Neural Eng 2016; 14:016008. [PMID: 27934777 DOI: 10.1088/1741-2552/14/1/016008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. APPROACH Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. MAIN RESULTS Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons near the implanted electrode shanks, along with dense cellular accumulations near the implant site. Scanning electron microscopy (SEM) showed alterations of the electrode insulation and deformation of electrode shanks. SIGNIFICANCE We describe a comprehensive testing platform with applicability to electrodes that record from the peripheral nerves. This study assesses the long term safety and performance of electrodes in the peripheral nerves using a rodent model. Under this animal test platform, FMA electrodes record single unit action potentials but have limited chronic reliability due to structural weaknesses. Future work will apply these methods to other commercially-available and novel peripheral electrode technologies.
Collapse
Affiliation(s)
- Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratory, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | |
Collapse
|
12
|
Prodanov D, Delbeke J. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design. Front Neurosci 2016; 10:11. [PMID: 26903786 PMCID: PMC4746296 DOI: 10.3389/fnins.2016.00011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022] Open
Abstract
Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it.
Collapse
Affiliation(s)
- Dimiter Prodanov
- Department of Environment, Health and Safety, ImecLeuven, Belgium
- Neuroscience Research FlandersLeuven, Belgium
| | - Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent UniversityGhent, Belgium
| |
Collapse
|
13
|
Christensen MB, Tresco PA. Differences Exist in the Left and Right Sciatic Nerves of Naïve Rats and Cats. Anat Rec (Hoboken) 2015; 298:1492-501. [PMID: 25857635 DOI: 10.1002/ar.23161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
The sciatic nerve of rats and cats is commonly used in experimental models of peripheral nerve injury and repair, as well as experiments involving peripheral nerve electrode implantation. In such experiments, morphometric parameters from the implanted nerve are commonly evaluated and compared to control values obtained from the contralateral nerves. However, this may not be an appropriate approach as differences may naturally exist in the structure of the two nerves owing to developmental or behavioral asymmetry. Additionally, in the cat, baseline values for standard morphometric parameters are not well established. In this study, we characterized fascicle area, fiber count, fiber density, fiber packing, mean g-ratio, and fiber diameter distributions in the rat and cat, as well as investigated the potential for naturally occurring sided differences in these parameters in both species. We also investigated whether animal age or location along the nerve influenced these parameters. We found that sided or left/right leg differences exist in some parameters in both the rat and the cat, calling into question the validity of using the contralateral nerve as a control. We also found that animal age and location along the nerve can make significant differences in the parameters tested, establishing the importance of using control nerves from age- and behaviorally matched animals whose morphometric parameters are collected and compared from the same location.
Collapse
Affiliation(s)
- Michael B Christensen
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, Utah
| | - Patrick A Tresco
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Christensen M, Pearce S, Ledbetter N, Warren D, Clark G, Tresco P. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater 2014; 10:4650-4660. [PMID: 25042798 DOI: 10.1016/j.actbio.2014.07.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/17/2014] [Accepted: 07/12/2014] [Indexed: 01/09/2023]
Abstract
As the field of neuroprosthetic research continues to grow, studies describing the foreign body reaction surrounding chronic indwelling electrodes or microelectrode arrays will be critical for assessing biocompatibility. Of particular importance is the reaction surrounding penetrating microelectrodes that are used to stimulate and record from peripheral nerves used for prosthetic control, where such studies on axially penetrating electrodes are limited. Using the Utah Slant Electrode Array and a variety of histological methods, we investigated the foreign body response to the implanted array and its surrounding silicone cuff over long indwelling periods in the cat sciatic nerve. We observed that implanted nerves were associated with increased numbers of activated macrophages at the implant site, as well as distal to the implant, at all time points examined, with the longest observation being 350 days after implantation. We found that implanted cat sciatic nerves undergo a compensatory regenerative response after the initial injury that is accompanied by shifts in nerve fiber composition toward nerve fibers of smaller diameter and evidence of axons growing around microelectrode shafts. Nerve fibers located in fascicles that were not penetrated by the array or were located more than a few hundred microns from the implant appeared normal when examined over the course of a year-long indwelling period.
Collapse
|
15
|
Foditsch EE, Hoinoiu B, Janetschek G, Zimmermann RP. Laparoscopic placement of a tined lead electrode on the pudendal nerve with urodynamic monitoring of bladder function during electrical stimulation: an acute experimental study in healthy female pigs. SPRINGERPLUS 2014; 3:309. [PMID: 25032087 PMCID: PMC4094762 DOI: 10.1186/2193-1801-3-309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 06/17/2014] [Indexed: 11/17/2022]
Abstract
Purpose The aim of this study was to develop a method for standard laparoscopic access to the pudendal nerve in pigs to implant an electrode for chronic neuromodulation studies. Methods Using routine laparoscopic surgical techniques, the pudendal nerve was located in 10 female pigs using standardized anatomical landmarks. A tined lead electrode was placed in parallel to the exposed pudendal nerve, and acute unilateral electrical stimulation was performed consecutively on both pudendal nerves. Bladder pressure and perineal skeletal muscle response was monitored during stimulation. Results Standard access to the pudendal nerve was successfully established in the pig model with surgical times of approximately 45 minutes for bilateral electrode placement. Acute unilateral stimulation did not evoke bladder responses but resulted in reliable stimulation-dependent activity of the perineal skeletal muscles. The structural integrity of the pudendal nerves was confirmed in all cases. Conclusions These results illustrate the effectiveness of laparoscopy for standardised, safe nerve localisation and electrode implantation at the pudendal nerve in pigs. Laparoscopic implantation represents an alternative approach for performing electrode implantation under optical guidance versus the standard approach of percutaneous, neuro-physiological monitored implantation. In the future, pudendal neuromodulation may be used as a supplement to sacral neuromodulation or as a standalone therapeutic approach, depending on the underlying bladder dysfunction.
Collapse
Affiliation(s)
- Elena E Foditsch
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bogdan Hoinoiu
- Pius Branzeu Centre for Laparoscopic Surgery and Microsurgery, Victor Babes University of Medicine and Pharmacy Timisoara, P-ta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Günter Janetschek
- Department of Urology and Andrology, Salzburg General Hospital, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Reinhold P Zimmermann
- Department of Urology and Andrology, Salzburg General Hospital, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| |
Collapse
|
16
|
Restaino SM, Abliz E, Wachrathit K, Krauthamer V, Shah SB. Biomechanical and functional variation in rat sciatic nerve following cuff electrode implantation. J Neuroeng Rehabil 2014; 11:73. [PMID: 24758405 PMCID: PMC4022540 DOI: 10.1186/1743-0003-11-73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nerve cuff electrodes are commonly and successfully used for stimulating peripheral nerves. On the other hand, they occasionally induce functional and morphological changes following chronic implantation, for reasons not always clear. We hypothesize that restriction of nerve mobility due to cuff implantation may alter nerve conduction. METHODS We quantified acute changes in nerve-muscle electrophysiology, using electromyography, and nerve kinematics in anesthetized Sprague Dawley rat sciatic nerves during controlled hindlimb joint movement. We compared electrophysiological and biomechanical response in uncuffed nerves and those secured within a cuff electrode using analysis of variance (ANOVA) and regression analysis. RESULTS Tethering resulting from cuff implantation resulted in altered nerve strain and a complex biomechanical environment during joint movement. Coincident with biomechanical changes, electromyography revealed significantly increased variability in the response of conduction latency and amplitude in cuffed, but not free, nerves following joint movement. CONCLUSION Our findings emphasize the importance of the mechanical interface between peripheral nerves and their devices on neurophysiological performance. This work has implications for nerve device design, implantation, and prediction of long-term efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
17
|
An implantable neural interface with electromagnetic stimulation capabilities. Med Hypotheses 2013; 81:322-7. [DOI: 10.1016/j.mehy.2013.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/17/2022]
|
18
|
Grill WM, Norman SE, Bellamkonda RV. Implanted Neural Interfaces: Biochallenges and Engineered Solutions. Annu Rev Biomed Eng 2009; 11:1-24. [DOI: 10.1146/annurev-bioeng-061008-124927] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281;
| | - Sharon E. Norman
- Bioengineering Program Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Ravi V. Bellamkonda
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia 30332
| |
Collapse
|
19
|
Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Kim S, Park K. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. JOURNAL OF ETHNOPHARMACOLOGY 2007; 111:176-181. [PMID: 17166679 DOI: 10.1016/j.jep.2006.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 11/06/2006] [Accepted: 11/10/2006] [Indexed: 05/13/2023]
Abstract
Abnormal activation of microglial cells has been implicated in various neurodegenerative diseases. Results showed that venom (KBV) produced and purified in Korea regulated lipopolysaccharides (LPS)-induced nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) in the murine microglia, BV-2 cell line. The production of proinflammatory cytokines, NO, and TNF-alpha was examined by LPS in BV-2 cell. The effect of KBV on the expression of inducible nitric oxide synthase (iNOS) and TNF-alpha was investigated by Western blot and RT-PCR in LPS-stimulated BV-2 cells. KBV suppressed the NO, iNOS, and TNF-alpha production, and decreased the levels of iNOS and TNF-alpha mRNA. These results suggest that KBV has anti-inflammatory properties that inhibit iNOS and TNF-alpha expression. KBV could be useful in inhibiting the production of inflammatory cytokine and NO production in neurodegenerative diseases. Further studies on the pharmacological aspects of the individual components of KBV are recommended.
Collapse
Affiliation(s)
- SangMi Han
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Park K. Effect of venom from the Asian honeybee ( Apis ceranaFab.) on LPS-induced nitric oxide and tumor necrosis factor-α production in RAW 264.7 Cell Line. JOURNAL OF APICULTURAL RESEARCH 2006; 45:131-136. [DOI: 10.1080/00218839.2006.11101331] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
21
|
Thil MA, Vince V, Veraart C, Delbeke J, Colin IM. Nitric oxide synthases II and III and vascular endothelial growth factor are up-regulated in sciatic nerve after spiral cuff electrode implantation. J Neuroimmunol 2005; 166:158-66. [PMID: 16038988 DOI: 10.1016/j.jneuroim.2005.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 06/08/2005] [Indexed: 01/12/2023]
Abstract
Nerve cuff electrodes, commonly used in functional electrical stimulation systems, induce local morphological changes that can affect nerve functionality. Nitric oxide (NO) and vascular endothelial growth factor (VEGF) have both neural and vascular effects. We investigated the time-dependent regulation of nitric oxide synthases (NOS) and of VEGF after implantation of spiral cuff electrode around rat sciatic nerve. NOSIII as well as VEGF were up-regulated in both epineurial and endoneurial compartments in cuff-implanted animals along with microvascular changes. Our results suggest that VEGF and NO are implied in morphological and functional alterations occurring in the early time after cuff implantation.
Collapse
Affiliation(s)
- Marie-Anne Thil
- Laboratoire de Génie de la Réabilitation Neurale, Medical School, Brussels, Belgium
| | | | | | | | | |
Collapse
|